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Abstract
Eukaryotic cells activate the S-phase checkpoint signal transduction pathway in response to DNA replication stress. Affected by the noise 
in biochemical reactions, such activation process demonstrates cell-to-cell variability. Here, through the analysis of microfluidics- 
integrated time-lapse imaging, we found multiple S-phase checkpoint activations in a certain budding yeast cell cycle. Yeast cells not 
only varied in their activation moments but also differed in the number of activations within the cell cycle, resulting in a stochastic 
multiple activation process. By investigating dynamics at the single-cell level, we showed that stochastic waiting times between 
consecutive activations are exponentially distributed and independent from each other. Finite DNA replication time provides a robust 
upper time limit to the duration of multiple activations. The mathematical model, together with further experimental evidence from 
the mutant strain, revealed that the number of activations under different levels of replication stress agreed well with Poisson 
distribution. Therefore, the activation events of S-phase checkpoint meet the criterion of Poisson process during DNA replication. In 
sum, the observed Poisson activation process may provide new insights into the complex stochastic dynamics of signal transduction 
pathways.
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Introduction
Biological noise, i.e. the stochasticity of biochemical reactions, 
is crucial for many biological processes (1). Noisy signals 
through a combination of positive and negative feedback loops 
may affect bi-stability, oscillation, and other dynamic charac
teristics (2, 3). By regulating gene expression, biological noise 
can determine cell differentiation (4), circadian rhythms (5), 
and cell fate transition (6). Through observation of fluorescent 
reporters of gene expression at the single-cell level, we can 
quantitatively investigate the intensity of noise and its effects 
on biological processes (7).

Noise also plays multiple roles in the signal transduction path
way, such as limiting channel capacity and enhancing dynamic 
signal processing (8, 9). In a system with positive feedback, noisy 

signals can be amplified and therefore result in cell-to-cell varia

tions, which induce different responses of individual cells to the 

same environmental stimulus (10, 11). Also, noisy fluctuations 
in oscillatory systems may facilitate signal amplification and in

duce various responses through stochastic resonance (12). 

Binary and graded responses, or their combinations, are the com

mon activation modes in signal transduction (13, 14). These re
sponse patterns are indistinguishable under an average 

response level in a cell population, but they can be captured at 

the single-cell level (15). Thus, identifying cell-to-cell variability 
at the single-cell level in numerous cells, either by time-lapse 

fluorescence microscopy or by single-molecule RNA fluorescence 

in situ hybridization (smRNA FISH) (16), forms the basis for inves
tigating the dynamic activation of signal transduction pathways.
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In response to the DNA replication stress signal, the S-phase 
checkpoint signal transduction pathway activates to facilitate 
the progress of DNA replication and maintain genomic integrity 
(17). In the presence of the positive feedback loop, the activation 
moment of the S-phase checkpoint in budding yeast demonstrates 
cell-to-cell variability under DNA replication stress triggered by 
stochastic noise (18). The positive feedback loop in the S-phase 
checkpoint arising from Rad53 phosphorylation can be modeled 
as a double-well potential, where biochemical reactions facilitate 
a barrier-crossing process for the activation (19). Meanwhile, the 
recovery process of the S-phase checkpoint, which incorporates 
a negative feedback loop, relieves DNA replication stress (20). We 
remain unclear on how the recovery process of the S-phase check
point influences the overall dynamic properties of the S-phase 
checkpoint system (21). Generally, a network with both positive 
and negative feedback loops may exhibit oscillatory behaviors, 
e.g. the p53 and NF-κB signal transduction pathways (22, 23). 
However, with strong biological noise, the S-phase checkpoint 
may demonstrate more complex dynamic characteristics.

Herein, through microfluidics-integrated time-lapse imaging in 
live cells and deep learning-based image analysis methods, we an
alyzed the dynamics of S-phase checkpoint activation and inacti
vation in Saccharomyces cerevisiae at the single-cell level. Under 
different levels of DNA replication stress induced by hydroxyurea 
(HU), we found that S-phase checkpoint in budding yeast can be 
activated stochastically multiple times within a single-cell cycle. 
The waiting times of each activation are independently and iden
tically distributed, suggesting that activation of the S-phase check
point pathway is a Poisson process, the duration of which is 
determined by DNA replication time. Indeed, the number of acti
vation events in a cell cycle follows a Poisson distribution. A simple 
Poisson process model parametrized by HU can well describe the 
number of activation events in both wild-type (WT) and mutant 
strains. Overall, the dynamics of the observed Poisson activation 
process are distinct from other well-studied signaling transduc
tion pathways.

Results
Activation and inactivation processes of S-phase 
checkpoint in budding yeast
We first provide an overview of the regulatory network engaged in 
S-phase checkpoint activation and inactivation of budding yeast. 
The activation of S-phase checkpoint is initialized by several types 
of events that perturb replication fork progression, such as nu
cleotide deficiency, DNA damage and DNA secondary structure 
(24). Hydroxyurea (HU) is experimentally used to induce DNA rep
lication stress and trigger the activation of the S-phase checkpoint 
by inhibiting the activity of ribonucleotide reductase (RNR) (25). 
RNR catalyzes a redox reaction to produce natural deoxy- 
nucleoside diphosphates (dNDPs) required for their subsequent 
de novo synthesis (26), but the inactivation of RNR induces a re
duction of the dNTP pool and the accumulation of single-stranded 
DNA (ssDNA) in S-phase (27). Induced by the accumulation of 
ssDNA, DNA replication stress then provides the upstream signal 
for Rad53 phosphorylation mediated by sensor Mec1 and adaptors 
Rad9 and Mrc1 (28, 29). Consequently, phosphorylated Rad53 
(Rad53p) amplifies upstream signals through autophosphoryla
tion, forming a positive feedback loop. Also, Rad53p phosphory
lates Dbf4 to decrease the concentration of DDK, an essential 
kinase for DNA replication, thus preventing further accumulation 
of ssDNA (30, 31), resulting in the formation of a negative feedback 
loop. Meanwhile, by phosphorylating kinase Dun1 (21), Rad53p 

promotes the transcription of RNR2/3/4 to increase the dNTP 
pool for DNA synthesis (32), thus forming another negative feed
back. As a result, the reduction of ssDNA eventually alleviates 
the upstream DNA replication stress signal which, in turn, results 
in the inactivation of S-phase checkpoint in a recovery process 
(20), during which the Rad53p tends to return to its normal level. 
However, when exposed to a persistent DNA damage signal, 
S-phase checkpoint may be activated again by the excess of 
ssDNA at the new location of stalled replication fork to then re
peat the cyclic dynamics, resulting in multiple activations of the 
checkpoint within one cell cycle. Overall, the combination of 
both positive and negative feedback loops plays an important 
role during the activation and inactivation processes of S-phase 
checkpoint. In addition, the prevalence of stochastic noise in sig
naling pathways within budding yeast may further induce even 
more complex activation patterns at the single-cell level.

To investigate the dynamics of S-phase checkpoint, we simpli
fied the above processes into a network shown in Fig. 1A, including 
the key kinase Rad53, ssDNA, and RNR (18). For convenience, we 
use “activation” to denote the activation of S-phase checkpoint 
below.

S-phase checkpoint is activated multiple times 
during a cell cycle
The phosphorylation of kinase Rad53 plays an essential role in the 
activation of S-phase checkpoint. Consequently, measuring the 
level of Rad53p in a single yeast cell is crucial for determining 
the state of S-phase checkpoint. We have developed a method to 
temporally quantify Rad53p level in single cells by the level of 
Rnr3, the transcription of which is regulated by Rad53p (19). To ac
complish this, we fused Rnr3 with GFP and quantified Rnr3 levels 
at the single-cell level by microfluidics-integrated time-lapse 
fluorescence imaging. Meanwhile, with a customized cell segmen
tation and tracking algorithm, we extracted the temporal fluores
cence intensity variation of each cell from the images for 
hundreds of cells (see Materials and Methods section).

For each HU concentration, we collected temporal fluorescence 
data for around 300 cells at a 5-min time resolution for 8 h of the 
WT strain (see Materials and Methods section). Through the time- 
window fitting approach, we used a 15-min time-window to calcu
late the fluorescence growth rate (FGR) of each cell to quantify the 
Rad53p level and thus determine the state of S-phase checkpoint 
(see Materials and Methods section, Online Supplementary Fig. 
S1). We found that cell-to-cell variability not only lies in the mo
ment of activations but also in the number of activations in a 
cell cycle, which is denoted as X, leading to the multiple activa
tions of S-phase checkpoint. We demonstrated the temporal var
iations of Rnr3 and FGR in different cells that activated once and 
twice under 100 mM HU stimulation in Fig. 1B. Among them, cells 
activated once (X = 1) exhibit a heterogeneous increase in Rnr3 
level and a pulse in FGR level, whereas inactivated cells without 
the activation of the S-phase checkpoint exhibit no obvious in
crease in Rnr3 level. For cells activated twice (X = 2), the Rnr3 level 
rises during the first activation and reaches a stable value and 
then rises again during the second activation, causing two hetero
geneous pulses in FGR. For comparison, in the absence of HU 
stimulation, cells are not activated in a cell cycle; instead, they ex
hibit stable and low Rnr3 and FGR levels over time (Online 
Supplementary Fig. S3). Under low concentration HU stimulation, 
the phenomenon of multiple activations is hard to be observed 
(20-, 30-, and 40-mM HU, Online Supplementary Fig. S1).

To quantitatively study the activation and inactivation process 
of S-phase checkpoint, we have developed maximum 
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fluorescence growth rate (MFGR), which is defined as the 
maximum value of FGR during time [0, t], i.e. 
MFGR(t) W max0⩽s⩽t FGR(s), to determine whether the cell has acti
vated up to moment t (see Materials and Methods section) (19). 
Under HU stimulation, the activation of the S-phase checkpoint 
demonstrates a binary response in a cell population, resulting in 
the bimodal distribution of MFGR (Fig. 1C and Online 
Supplementary Fig. S4). During the activation process, the FGR 
of a single cell increases and does so across the activation bound
ary between the peaks of MFGR bimodality, showing that the cell 
switches from inactive to active state. Thus, when the FGR of a cell 
is above the activation boundary, the cell is considered to be in the 
activated state; otherwise, it is in the inactivated state. 
Accordingly, we can calculate the proportion of cells that have 
not been activated from time 0 to t (Rin(t)). Moreover, by comparing 
the FGR curve of each cell with the activation boundary, we can 
obtain the activation duration of the possible ith activation Ai, 
the waiting time for the possible ith activation τi, and the number 
of activations X of the cell (Fig. 1D).

The rationale for determining the number of activations X of a 
cell by the FGR-based method can be supported by adopting the 
t-distributed stochastic neighbor embedding (t-SNE) dimensional
ity reduction method (33) on the raw Rnr3 fluorescence data. In 
the reduced 2D space, we labeled the cells using the X number 
generated by the FGR-based method and discovered that cells 

with the same X number are clustered under 100 mM HU stimula
tion (Fig. 1E). Therefore, the aggregation of cells with the same X in 
the 2D t-SNE space indicates that cells with the same X share close 
characteristics.

Waiting times between sequential activations are 
independently and identically distributed
To investigate the relationship between the first and second ac
tivation in single cells, we set the moment of entry into S-phase 
to 0 for each cell and calculated the proportion of cells that 
have not been activated Rin(t) over time. In Fig. 2A, we derived 
the logarithm of Rin(t), notated as the inactivation curve, and 
found that the inactivation curve decays linearly over time, 
which satisfies ln(Rin(t)) = −λ1t, where λ1 represents the activa
tion rate of the first activation (λ1 = 0.0133). Since length of 
the cell cycle is finite, we introduced a normalization factor a 
to normalize the probability density of the waiting time for 
the first activation from 0 to its maximal value among activated 
cells and found that the curve P(τ1) = a1λ1e−λ1τ1 can fit the distri
bution of waiting time for first activation τ1 (Fig. 2A). These re
sults suggest that the waiting time for first activation is 
exponentially distributed.

Similarly, we studied the dynamics of the second activation 
process by setting the end moment of the first activation as mo
ment 0 for each X ≥ 1 cell. We mapped the inactivation curve of 
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Fig. 1. Multiple activations in budding yeast S-phase checkpoint. A) Schematic diagram of the S-phase checkpoint pathway. HU inhibits the activity of 
RNR and then suppresses the synthesis of dsDNA. DNA replication stress signal promotes the phosphorylation of Rad53 and the autophosphorylation of 
Rad53p, forming positive feedback. Rad53p prevents DNA deconvolution through a downstream pathway and mediates the transcription of RNR to repair 
upstream DNA damage, forming negative feedback loops. B) Left panel: Rnr3 fluorescence and FGR of 10 cells that activated once (X = 1), where three cells 
among them are highlighted. Rnr3 and FGR share the same x-axis. Rnr3 fluorescence and FGR of each cell were normalized between 0 and 1. Right panel: 
Rnr3 fluorescence and FGR of 10 cells that activated twice (X = 2), where three cells are highlighted. C) Under 100 mM HU stimulation, MFGR distribution 
shows a single modal at 7.5 min, whereas it shows a bimodal distribution at 77.5 min (see Online Supplementary Fig. S4). Dotted lines denote the 
activation boundary. D) The activation boundary defines the waiting time (τi) and activation duration (Ai) for the ith activation of a single cell. Activation 
and inactivation moments are marked by dots. E) Rnr3 fluorescence data after dimensionality reduction by t-SNE with 100 mM HU. Cells are labeled by 
the number of activations X into three groups (X = 0, X = 1, and X ≥2).
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the waiting time for second activation τ2 and found that τ2 of X = 2 
cells is also exponentially distributed (Fig. 2A). The calculated ac
tivation rate of the second activation (λ2 = 0.0123) is close to that of 
the first activation with 100 mM HU. By changing HU concentra
tion, we found that the waiting time of both the first and second 
activation events also follows exponential distribution (Fig. 2B 
and Online Supplementary Fig. S5). The activation rate was posi
tively correlated with different HU concentrations, approaching 

saturation at around 60 mM HU, and no significant difference 
was observed between λ1 and λ2 (paired t-test, P-value=0.44). 
The conclusion that the values of λ1 and λ2 are close is robust 
and independent of the choice of activation boundaries (Online 
Supplementary Fig. S7). Overall, with the same HU concentration, 
the waiting times for possible first and second activations follow 
an identical exponential distribution. To further verify that the 
multiple activations are identically distributed, we investigated 
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the possible third activation. Under the stimulation of 100 mM 
HU, we found that the FGR of still another part of the cells would 
have three peaks, indicating that these cells had been activated 
three times in a cell cycle (Fig. 2C). Setting the end moment of 
the second activation to 0, we also found no significant difference 
between λ3 and the first two activation rates under 100 mM HU 
stimulation (Fig. 2D).

We ranked the cells by τ1 and mapped the heatmaps of tem
poral FGR variations with 100 mM HU. Figure 2E intuitively dem
onstrates cell-to-cell variability in waiting time for the first 
activation among a cell population, for which the activation mo
ment shows a nonlinear distribution (Fig. 2E). When the range of 
y-axis is [0, 1], the first activation curve in the heatmap satisfied 
(1 − e−λ1t). Setting the inactivation moment of the first activation 
as moment 0 and ranking the cells by τ2, we can also visualize 
the second activation from the heatmaps of temporal FGR varia
tions, indicating a pattern similar to that of the first activation. 
With the same processing, we can also see the third activation. 
Notably, S-phase lengths of different cells are not uniform, and 
some cells enter the next cycle shortly after the second activation. 
Thus, the second activation curve only satisfies (1 − e−λ2t) in the 
early 60 min. We will discuss the time limit of activations in the 
next section. As shown in the heatmaps, the FGR value of acti
vated cells is significantly higher than that of inactivated cells 
among a given cell population, which supports distinguishing 
cell states by the activation boundary threshold.

Under 100 mM HU stimulation, we selected cells with X ≥ 2 to 
map the 2D distribution of τ1 and τ2 to test whether the first and 
the second activation are independent (Fig. 2F, Online 
Supplementary Fig. S6). We denoted the distribution of τ1 as P(τ1), 
the distribution of τ2 as P(τ2), and the joint distribution of τ1 and 
τ2 as P(τ1, τ2) in the τ1–τ2 plane. The joint distribution P(τ1, τ2) of X ≥ 
2 cells is almost everywhere equal to P(τ1) × P(τ2), i.e. 
P(τ1) × P(τ2) = P(τ1, τ2). This result is consistent with the mathemat
ical definition of the independence of the two variables, suggesting 
that first and the second activation are independent for X ≥ 2 cells. 
Similarly, the joint distribution of τ1 and τ3, P(τ1, τ3), is equal to 
P(τ1) × P(τ3) and the first activation (Fig. 2G), suggesting that the 
first and third activations are also independent. We then validated 
the independence of the multiple activations by analyzing their 
inactivation curves (see Materials and Methods section, Online 
Supplementary Fig. S9). Overall, the multiple activations of 
S-phase checkpoint are independently and identically distributed, 
i.e. a Poisson process, and we term this multiple activation process 
as a Poisson activation process.

The duration of DNA replication determines the 
upper time limit of multiple activations
We next investigated the relationship between the Poisson activa
tion process of the S-phase checkpoint and DNA replication. Using 
100 mM HU, for the cells with X ≥ 1, we found the smaller τ1 to be 
associated with the larger proportion of cells that activate again in 
a cell cycle, showing a strong negative correlation (Fig. 3A, Pearson 
coefficient r = −0.96). Similarly, for cells with X ≥ 2, the smaller 
τ1 + τ2 is, the larger the proportion of cells that could activate for 
a third time (Fig. 3B r = −0.97, Online Supplementary Fig. S6). 
Since S-phase checkpoint is solely activated during the S-phase 
(DNA replication phase), longer τ1 represents more DNA that has 
completed replication. The negative correlation between τ1 and 
the proportion of cells reactivated during the cell cycle implies 
that the probability of S-phase checkpoint activation may depend 
on the length of unreplicated DNA in the S-phase.

Within the S-phase of a yeast cell cycle, during waiting time τ1 

before the first activation, DNA replication will continue until ei
ther pathway activation or the end of the S-phase. Therefore, 
the larger value of τ1 indicates a shorter length of unreplicated 
DNA. When the S-phase checkpoint is activated, the progress of 
DNA replication is prevented (30, 31). After completion of the 
checkpoint recovery process, DNA replication continues to pro
gress until a potential second activation is triggered or until all 
DNA replication is completed. The second activation is induced 
by DNA stress signals at the different replication stage with the 
first activation. Therefore, we suggested that multiple activations 
are caused by independent DNA stress signals among different 
DNA replication progressions. As the DNA replication process ad
vances, the likelihood of the pathway being activated during this 
DNA replication period decreases progressively. That is, the finite 
time for DNA replication (T) establishes an upper time limit for all 
potential activations, and all subsequent activations following the 
first activation can be viewed as a Poisson process within the re
maining DNA replication time. This elucidates the negative cor
relation between the ratio of reactivated cells and τ1.

To quantitatively assess the upper time limit for the Poisson ac
tivation process arising from DNA replication time, we conducted 
a mapping of waiting times for each activation in individual cells. 
Remarkably, the sum of τ1 and τ2 has a distinct upper limit in the 
X ≥ 2 cell population (Fig. 3C). Similarly, for cells in the X ≥ 3 
population, an upper limit is set for τ1 + τ2 + τ3 (Fig. 3C). 
Comparing the upper limit of τ among cells with different activa
tion numbers (X = 1, 2, and 3), we observed that the upper confi
dence limit (UCL) of τ1 in the X = 1 cell population closely 
matched the UCL of τ1 + τ2 in the X = 2 cell population (75% UCL, 
Fig. 3D). Furthermore, the UCL of τ1 + τ2 + τ3 in cells with a third ac
tivation was also similar to the upper limit of τ1 + τ2 with varying 
HU concentrations. These experimental results support that the 
upper limit of τ, which is independent of activation numbers, rep
resents pure DNA replication time. Upon increasing the HU con
centration, we observed a corresponding rise in the upper limit 
of τ and a prolongation of the cell cycle (Fig. 3D). This indicates 
that the DNA replication time is influenced by the HU concentra
tion, with higher doses of HU leading to longer DNA replication 
times. In addition, we noticed that the duration of cell activation 
A remained constant across different HU concentrations, and 
the first activation duration A1 closely resembled the second acti
vation duration A2 (Fig. 3E, Online Supplementary Fig. S10).

Therefore, our findings suggest that the DNA replication time 
provides a robust upper time limit for the Poisson activation pro
cess independent of the number of activations, and increasing HU 
concentration extends this upper time limit. At the same time, the 
fact that the upper time limit of the Poisson activation process, i.e. 
DNA replication time, is independent of the number of activations 
also implies that the DNA replication rate remains relatively con
stant during the waiting time of different activations. Combining 
with the identical distribution of waiting times between multiple 
activations (Fig. 2), it demonstrated that the intensity of upstream 
DNA stress signals is similar during different τn.

In summary, the activation process can be modeled as a Poisson 
process within time interval [0, T], where T is the DNA replication 
time and is dependent on HU concentration. Intriguingly, the 
rad53-S350A mutant (S350A), with impaired Rad53 autophosphory
lation, also exhibits a Poisson activation process during HU stimula
tion, though with a lower activation rate than the WT strain (Online 
Supplementary Fig. S2). Notably, in other rad53 mutants, such as 
T354A and S350A-T354A with severely impaired Rad53 autophos
phorylation, the Poisson activation process is hard to observe.
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The event of multiple activations is a Poisson 
process
We have investigated the underlying biological mechanism in the 
Poisson activation process of S-phase checkpoint. To further val
idate our understanding of the S-phase checkpoint, we built a 
phenomenological Poisson process model to describe the prob
ability of activation under different HU concentrations during 
DNA replication (Fig. 4A). We introduced two parameters in our 
phenomenological model, T and λ, where T is DNA replication 
time and λ is the activation rate. Both T and λ are dependent on 
HU concentration ([HU]). The number of activations X(λ, T) follows 
a Poisson distribution with mean λT (see Materials and Methods 
section) as

P(X(λ, T) = k) =
(λT)k

k!
e−λT, k = 0, 1, 2, . . . . (1) 

We made two assumptions here. First, we ignored the DNA 
replication process during activation duration, i.e. the number 
of activations X does not affect the DNA replication time T, which 
is supported by the fact that the upper limit of τ1 is close to the 
upper limit of τ1 + τ2. Second, we ignored the heterogeneity of 
the origin of replication and simply assumed that the activation 
rate λ is uniform and consistent during time [0, T]. In that case, 
the DNA replication stress signal is the average signal of all repli
cation forks.

We first investigated the relationship between λ and HU con
centration. Figure 2B shows that λ will increase with HU and tends 

to saturate at HU greater than 60 mM. Thus, we used the Hill func
tion to describe the relationship between λ and HU as

λ = λm
[HU]n

[HU]n + Kn
λ
. (2) 

Fitting the equation to the data, we found the best fit parameter 

values are λm = 0.013min−1, Kλ = 19.5mM and n = 2 (Fig. 4B).
Next, we studied the relationship between T and HU concentra

tion. HU affects replication time by altering the replication rate α 
of DNA (25), and the replication time T can be approximated by 
T = L

αNR
, where L = 1.3 × 107 bp is the length of DNA, and NR = 600 

is the number of replication origins (2, 34). We used the Hill func
tion to describe how HU concentration influences the replication 
rate α as α = α0

Km
α

Km
α +[HU]m

, where m and Kα are constants. α0 denotes 
the replication rate without HU, which equals 1.6 ± 0.3kb/min 
(34). We also examined the power-law model to calculate the rep
lication rate α in Online Supplementary Fig. S11. Then, we fit the 
relationship between X and HU concentration by Eq. 1, with the 
best fit parameters of the Hill model, Kα = 0.89mM and m = 0.53 
(see Table 1). We found that our models could well describe the 
probability of number of activations X during a cell cycle and 
that the measured number of activations follows the Poisson dis
tribution calculated by Eq. 1 under different HU concentrations 
(Fig. 4C). DNA replication time estimated by our model is close 
to the 75% UCL of τ1 + τ2 (Fig. 4D). We could also verify whether 
it is a Poisson process by comparing the expectation and variance 
of X. Since an event more than three times X is difficult to identify 
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Fig. 3. Distribution of waiting times between sequential activations with 100 mM HU. A) Left panel: The τ1 distribution of X = 1 cells (upper panel) and X ≥ 2 
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the data points; Pearson coefficient (r) and corresponding P-value were also shown in the panel. B) Left: The τ1 + τ2 distribution of X = 2 cells (upper panel) 
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precisely, we herein compared the theoretical and experimental 
expectations and variances at X = 0, 1, and 2 (Online 
Supplementary Fig. S11). The theoretical predictions of the 

expectations and variances are close to the measured values 
under different HU concentrations. These facts support that the 
event of multiple activations is a Poisson process during DNA rep
lication time.

We further validated our phenomenological model by introdu
cing the rad53 autophosphorylation site mutant rad53-S350A, 
which only influences the autophosphorylation of Rad53 and 
does not affect the replication time in theory. We measured the 
activation rate of S350A mutant by fitting the inactivation curve 
with Eq. 2, and the best fit λ∗m of S350A mutant was found to be 
0.011min−1 (Fig. 4E). Calculating replication time with the Hill 
model, we found that the number of activations predicted by 
our model satisfied the experimental measurements in the 
S350A mutant (Fig. 4E). Through our phenomenological model, 
we could also predict the expectation of X and the minimum HU 
concentrations required for observable multiple activation phe
nomena for various mutant strains (Online Supplementary Fig. 
S11). Irrespective of HU concentration, our findings show that 
multiple activations might not be observed if the mutation 
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Fig. 4. The event of multiple activations is a Poisson process. A) Schematic diagram of the first and the second activation during DNA replication 
progression. The spread peaks were at different DNA replication progressions during the first the second activations. B) Fitting the λ1 and λ2 activation rate 
at the same time by Eq. 2 in WT strain. The best fit parameters are λm = 0.013min−1, Kλ = 19.5mM, and n = 2. C) Left panel: Using the Hill model to describe 
the relationship between T and [HU], our model can fit the probability of number of activations in a cell cycle among a cell population under different HU 
concentrations. The lines denote the probability of X ≥ 1, X ≥ 2, X ≥ 3, and X ≥ 4 cells in a population calculated by our model, where the dots denote the 
measured probability of X ≥1, 2, 3 and 4 cells in a population. Right panel: Comparison of measured (dots) and calculated (lines) probability of X = 0, 1, 2, 
and 3 among a cell population under 20, 60, and 100 mM HU, respectively. D) Comparison of the 75 and 95% UCL of τ1 + τ2 to the replication time T 
predicted by our model. E) Fitting the λ1 and λ2 activation rate by Eq. 2 at the same time in rad53-S350A mutant. The best fit parameters are 
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Table 1. The descriptions, values, and sources of parameters in 
our model.

Parameters Descriptions Values  
(mean with SD)

Sources

L DNA length 1.3×104 kb (2)
α0 Replication rate of each fork 1.6 (±0.3) kb/ 

min
(34)

NR Number of active replication forks ∼600 (34)
λm Maximal activation rate of WT 0.013 (±0.0065)  

min−1

Fit

λ∗m Maximal activation rate (S350A) 0.011 (±0.0056)  
min−1

Fit

Kλ Hill coefficient of activation rate 19.5 (±9.7) mM Fit
m Order of replication for Hill model 0.53 (±0.019) Fit
Kα Hill coefficient of replication rate 0.89 (±0.17) mM Fit
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significantly reduces λm. This also explains the absence of Poisson 
process activations in other autophosphorylation site mutants, 
such as rad53-T354A, as suggested above.

Discussion
The S-phase checkpoint signaling transduction pathway is evolu
tionarily conserved in eukaryotic cells. In response to DNA repli
cation stress, S-phase checkpoint is activated to repair the 
stalled DNA replication process. Once DNA replication stress is re
lieved and the checkpoint is inactivated, S-phase checkpoint 
might be reactivated by the new DNA stress or persistent signals, 
resulting in multiple activations. In our previous work, we sum
marized activation in association with the positive feedback of 
kinase phosphorylation as a barrier-crossing process in a double- 
well potential triggered by noise (19). However, the S-phase check
point signal transduction pathway is a dynamic process that in
cludes both activation and recovery processes, triggered in 
response to DNA replication stress signal. It is therefore important 
to study complex dynamics over the entire time course of S-phase 
checkpoint.

In general, a signaling network with coupled positive-negative 
feedback loops may demonstrate oscillatory behaviors, such as 
those in p53 and NF-κB signaling networks (23, 35). Here, we re
ported a Poisson activation process of the S-phase checkpoint sig
nal transduction pathway in a single-cell cycle. We studied the 
dynamics of multiple activations within single cells at different 
levels of HU and found that stochastic waiting times between con
secutive activations are exponentially distributed and independ
ent from each other. This indicates that multiple activation 
events form a Poisson process. In addition, a key feature of the 
Poisson process is that the number of events within a given time 
duration follows a Poisson distribution. In the case of S-phase 
checkpoint, we found that the level of HU affected both activation 
rate (λ) and duration of DNA replication (T) in such distribution. 
Therefore, we used a phenomenological model to show that the 
number of activations among cell populations at different levels 
of HU agreed well with a Poisson distribution parametrized by 
HU, providing strong quantitative evidence for the observed 
Poisson process. Overall, we provided experimental evidence 
that the stochastic Poisson process, instead of previously con
ceived limit cycles, could be emerge from biological pathways 
that exhibit strong noise effects coupled positive-negative feed
back loops. Besides, the DNA damage checkpoint shares similar
ities with the S-phase (DNA replication) checkpoint, with the 
same key kinase Rad53. Also, the DNA damage checkpoint can 
be triggered at various stages of the cell cycle, including the 
G1/S transition, S-phase, and G2/M boundary (36). Given these 
similarities, it is plausible that the activation of the DNA damage 
checkpoint may also follow a Poisson process during cell 
cycles induced by DNA-damaging drugs, which needs further 
investigation.

We suggest that the Poisson activation process is mainly deter
mined by two biological factors. First, the limited number of Rad53 
molecules leads to stochastic fluctuations in the autophosphory
lation chemical reaction. In detail, the positive feedback mechan
ism of Rad53 autophosphorylation sets a threshold for activation, 
while the noise-driven over-threshold behavior of Rad53p results 
in an exponential distribution of waiting times. Second, the effi
cient recovery process of the S-phase checkpoint returns the cel
lular state to a level closely resembling its preactivation state, as 
evidenced by the fact that the waiting times for multiple activa
tions follow the same exponential distribution. Consequently, 

the recovery process sets the stage for subsequent activations. 
Therefore, biochemical reaction noise raised from a limited num
ber of molecules and complete recovery processes are the deter
mining factors of the S-phase checkpoint Poisson activation 
processes.

The Poisson activation process in the S-phase checkpoint 
serves potential biological functions. First, these activations are 
highly stochastic, which stands in contrast to oscillatory dynam
ics where the intervals between activations fluctuate around fixed 
values. This stochastic nature of S-phase checkpoint activations 
leads to variability among cells in a population when exposed to 
the same external stimulus, where this diversity in response strat
egies enhances the cell’s ability to effectively defend against en
vironmental challenges (37). Second, the independently and 
identically distributed waiting times of the Poisson activation pro
cess mean that cells essentially return to their initial state after 
each checkpoint activation, which enables yeast cells to promptly 
respond to subsequent DNA replication stress signals following 
recovery processes.

For individual cells, the independence of the waiting times be
tween different activations actually rules out the possibility that 
cell-to-cell variability of activation totally arises from inherent 
differences among cells (38). Moreover, we investigated the effect 
of extrinsic noise on the number of activations by assuming that 
the activation rate λ follows a Gaussian distribution in a cell popu
lation, and found that the introduction of extrinsic noise did not 
noticeably affect the number of cell activations (Fig. 4C and 
Online Supplementary Fig. S12). Thus, in the context of single-cell 
cycle activations, we suggest that cell-to-cell variability originates 
from biochemical reaction noise arising from Rad53 phosphoryl
ation or upstream signaling. At the molecular level, waiting time 
τ includes both the time of Rad53 phosphorylation and the time 
of upstream signal accumulation and transduction, which is 
hard to separate them from τ by our current method. 
Constructing kinase translocation reporters of Rad53 may be a 
possible approach to distinguish the time of Rad53 phosphoryl
ation and the time of upstream signal accumulation from τ (39).

In a yeast cell, the number of Rad53 molecules varies from 
1,000 to 2,000 (40); thus, the intrinsic noise in Rad53 phosphoryl
ation can determines the waiting time for activation. Given the 
evolutionary conservation of the S-phase checkpoint, it is likely 
that the noise characteristics associated with it will persist across 
different species that have a limited number of Rad53 analogs. 
However, within mammalian cells, both cell volume and the 
quantity of each specific protein in a single cell (approximately 
105/cell) significantly surpass those in budding yeast (2). This 
means that the effect of noise in mammalian cells will be much 
smaller than that in yeast cells. In this case, S-phase checkpoint 
might convert from a Poisson process to a deterministic oscilla
tory system under high intensity of DNA replication stress. 
Chk2, the human homolog of Rad53 in the evolutionarily con
served S-phase checkpoint, may demonstrate oscillatory behavior 
under sufficient DNA replication stress. Similarly, in mammalian 
cells, p53 is a decisive transcription factor for DNA damage repair, 
demonstrating conserved oscillatory behaviors across species 
(23, 41). Overall, in a cell with a large number of Rad53 molecules, 
such as Rad53-overexpressing strains, we predict that internal 
noise will not significantly affect the Rad53 phosphorylation pro
cess and that all cells may share a similar waiting time. We will 
explore this possible bifurcation of the S-phase checkpoint path
way in future work.

Our study has some limitations. First, the 5-min resolution in 
imaging was too low to study the detailed distribution of 
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activation durations A1 and A2 (Online Supplementary Fig. S10), 
while improving the temporal resolution will reduce the number 
of observed cells. Also, deficiencies in time accuracy make it diffi
cult to distinguish between two activations that are close in time; 
thus, some cells exhibited a considerably longer activation dur
ation than others. By refining the structure of microfluidic chip 
or the imaging method, it may be possible to improve temporal 
resolution while maintaining the number of cells observed. 
Second, we estimated Rad53p level by the growth rate of Rnr3. 
However, since Rad53p upregulates Rnr3 through transcription 
and translation, the presence of transcription and translation 
may result in a slight overestimation of the measured waiting 
time for the first activation. Limited by the Rnr3-based method, 
it is also hard to directly distinguish Rad53 phosphorylation 
time and upstream signaling time from τ.

Overall, we identified the Poisson activation process from the 
S-phase checkpoint pathway in budding yeast, which may provide 
insights into the complex stochasticity in other signaling trans
duction pathways or biological processes.

Materials and methods
Yeast strains and cell culture
We used the budding yeast S. cerevisiae to investigate the multiple 
activations of S-phase checkpoint. By fusing GFP to Rnr3, 
Rnr3-GFP can act as a reporter to identify the activation state of 
S-phase checkpoint. We called the BY4741 RNR3-GFP WT strain 
as WT in this study. In addition, the rad53-S350A mutant, which 
reduces the autophosphorylation of Rad53p, was used to test 
the reliability of our model. Both strains in this study come from 
our previous work (19).

We used two media (YPAD and SC) in this study. One liter of 
YPAD solid media includes 120 mg adenine, 20 g peptone, 10 g 
yeast extract, 20 g glucose, and 20 g agar. One liter of SC solid me
dia contains 6.7 g yeast nitrogen base without amino acids (YNB), 
2 g dropout mix, 20 g glucose, and 20 g agar. YPAD and SC liquid 
media can be achieved by removing agar from the recipe above. 
SC media with HU can be obtained by mixing 1 M HU solution 
and SC media.

To obtain cells suitable for imaging, we picked a single colony of 
yeast (WT or mutant) from YPAD plates and cultured it overnight 
at 30◦ in YPAD liquid media. Afterward, we extracted the cells by 
centrifugation and transferred them to SC media for another 2 h. 
Finally, we adjusted the cell density to OD = 0.8 and injected cells 
into the microfluidic chip for imaging.

Time-lapse imaging
To facilitate the adjustment of the cell growth environment, we 
injected the cells into the microfluidic chip for imaging. The mi
crofluidic chip we used comes from past research (42). It contains 
four channels, and each channel has 40 chambers distributed on 
both sides of the channel. After cells were injected into the micro
fluidic chip, we used a syringe pump (Longer, China) to continu
ously inject HU-free SC media into the chip and observed cell 
growth status by bright-field (BF) microscopy channel for 2 h. 
The speed of injection was 66.67 μl/h. To avoid air bubbles from 
entering the microfluidic chip during imaging, the SC media 
with HU for injection were configured 4 h in advance of use, along 
with ensuring that the syringe was free of air bubbles when con
nected to the chip. After that, we switched the cell growth envir
onment to SC media with HU for formal imaging.

Images were collected in a Nikon Ti-E inverted microscopy 
(Nikon Co., Japan) with 100× objective and an Evolve 512 EMCCD 
camera (Photometrics, USA). SOLA Light Engine (Lumencor, 
USA) provided both white light and fluorescence. NIS Elements 
AR software (Nikon Co., Japan) was used to select observation 
points and control the imaging process. We also used a tempera
ture incubator (World Precision Instruments Inc., USA) to provide 
a stable 30◦ external environment during imaging.

We used BF and green fluorescence channels to photograph the 
cells in the microfluidic chip with a 5-min resolution for 8 h. To 
collect the fluorescence of more cells, we selected 100 observation 
points. Setting more observation points would have taken more 
than 5 min to photograph all observation points at once.

Cell segmentation and tracking
We tracked cells from BF images and then extracted cell fluores
cence from fluorescent images. We performed cell segmentation 
on BF images by the U-net-based deep learning framework (43). 
The training set is derived from manually labeled BF images.

Based on the segmented images, we used custom Matlab code 
to identify and track cells, as well as extract the fluorescence data. 
We manually calibrated the traces for each cell and eliminated 
cells that were tracked incorrectly. We used the average intracel
lular fluorescence minus the background fluorescence as the 
fluorescence data of the cells. The effect of image segmentation 
and cell tracking is shown in Online Supplementary Fig. S13. 
Our method is stable and able to extract more than 300 cells in 
one single imaging. We regard the moment of budding as the 
marker for entering S-phase, and we only collected fluorescence 
data from the first budding moment to the second budding mo
ment for all cells after HU administration. We have open-sourced 
the code at Zenodo (https://doi.org/10.5281/zenodo.7898069).

Calculation of FGR and MFGR
The reliability of using the MFGR distribution to distinguish acti
vated cells has been validated by previous work (19). After collect
ing data from the fluorescent sequencing of single cells, we used a 
15-min time-window fitting method to calculate FGR, consisting 
of four consecutive time points of data (R = 4; four time points 
are t, t + 5, t + 10 and t + 15 min) which were used to perform a lin
ear fit. The slope obtained from the fit is the FGR in time t + 7.5. 
Thus, the FGR starts at 7.5 min and ends at the last time point of 
cell data minus 7.5 min. We investigated the influence of other R 
values on our results in Online Supplementary Fig. S8. The activa
tion rates become robust for R≥ 4, and λ1 and λ2 are close. Since in
creasing R can lead to the loss of time point, R = 4 or 5 may be the 
best choice.

The MFGR of a cell at moment t is defined as the maximum val
ue of FGR during time [0, t], i.e. MFGR(t) W max0⩽s⩽t FGR(s). Given 
cell-to-cell variability in the activation process, MFGR can well 
distinguish activated from inactivated cells if we only care 
whether the cells have been activated or not. The bimodal distri
bution of MFGR of a cell population demonstrates the binary re
sponse pattern of cell activation. By comparing the boundary of 
MFGR bimodal distribution with the FGR of a single cell, we can 
determine whether the cell is in an activated state and calculate 
the time of activation and inactivation. To avoid the influence of 
fluctuating fluorescence, when the FGR of two consecutive points 
(t, t+5 min) is greater than the boundary, we consider the cell to be 
activated at moment t. After activation, when two consecutive 
points (t, t+5 min) are smaller than the boundary, we consider 
the cell to be inactivated at moment t.
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The number of activation times X in S-phase
Based on our findings, we proved that the multiple activations 
of S-phase checkpoint are independent and have the same ac
tivation rate λ, i.e. a Poisson process. When we assume that 
DNA replication time T is not dependent on the number of 
activations X, the time interval between two activations τ fol
lows an exponential distribution as P(τ) = λe−λτ. The number of 
activations X in unit time follows a Poisson distribution, such 
that the probability that X = k in unit time can be found by 
P(X = k) = λk

k!
e−λ, k = 0, 1, 2, . . ..

The stationary increments of activations, or X(t + s) − X(s), t > s, 
are Poisson with mean λt, i.e.

P(X(t + s) − X(s) = k) =
(λt)k

k!
e−λt, k = 0, 1, 2, . . . .

Expectation E(X(t + s) − X(s)) = λt, and variance Var(X(t + s) − X(s)) 
= λt. For the DNA replication process, we set t = T and s = 0 in the 
equation above to calculate the distribution for the number of activa
tions. The distribution of the number of activations X(λ, T) during 
DNA replication time T follows:

P(X(λ, T) = k) =
(λT)k

k!
e−λT, k = 0, 1, 2, . . . .

The DNA replication time T and activation rate λ are dependent on 
the concentration of HU in our system.

Fitting the relations between HU concentration 
and activation rate λ or total DNA replication time T
In our study, we adopted the least squares method to fit the relation
ship between the activation rate λ and HU concentration by Eq. 2. 
The standard deviation of each parameter was estimated as the 
arithmetic square root of the diagonal elements of the covariance 
matrix of the fitted results. Afterward, based on the data of X, we fit
ted the relationship between DNA replication time T and HU concen
tration by Eq. 1 with the same method. The mean and SD of the 
parameters obtained by fitting are listed in Table 1.

Statistical analysis of activation rate estimation 
and independence test with truncated time
Assume that σ1 and σ2 are two independently and exponentially 
distributed random variables with rate parameter λ. Within the 
observation period [0, T], define the two observed activation times 
such that

τ1 = σ1, σ1 ≤ T
+∞, σ1 > T

􏼚

and

τ2 = σ2, σ1 + σ2 ≤ T
+∞, σ1 + σ2 > T.

􏼚

Then for fixed t < T we have

P τ1 > t( ) = exp −λt( ), 

which proves that the rate of first activation can be estimated 
through the regression between − ln P(τ1 > t) and t in the linear re
gion of a graph. In particular, the consistency and convergence 
rate of such statistical estimator has been studied in Ref. (19).

For the second activation, the inactivation curve for regression 
was based on the conditional probability which assumes that the 

first activation has been observed within [0, T], i.e.

P τ2 > t ∣ τ1 < T
( 􏼁

= 1 − P τ2 ≤ t ∣ τ1 < T
( 􏼁

= 1 − P σ2 ≤ t, σ1 + σ2 ≤ T ∣ σ1 < T
( 􏼁

= 1 −
P σ2 ≤ t, σ1 < T, σ1 + σ2 ≤ T( )

1 − exp −λT( )

=
exp λ T − t( )( ) + λt − 1

exp λT( ) − 1
.

To justify regression using the inactivation curve, we observe that

− ln P τ2 > t ∣ τ1 < T
( 􏼁

= λt −
λ2t2

2 exp λT( ) − 1
( 􏼁 + O λ3t3( 􏼁

.

Therefore, the estimation of λ using the slope of the inactivation 
curve could still be accurate as long as the ground-truth λ is small 
and the time points used for regression are within the shorter time 
interval compared to the overall DNA replication time T, which is 
the case for the data we analyzed.

To analyze the independence test, we observe that for 
t1 + t2 < T,

P τ1 ∈ [t1, t1 + Δt1], τ2 ∈ [t2, t2 + Δt2] ∣ τ1 < T
( 􏼁

=
P τ1 ∈ [t1, t1 + Δt1], τ2 ∈ [t2, t2 + Δt2]
( 􏼁

P τ1 < T( )

=
P σ1 ∈ [t1, t1 + Δt1], σ2 ∈ [t2, t2 + Δt2]
( 􏼁

1 − exp −λT( )

≈
λ2 exp ( − λ(t1 + t2))

1 − exp −λT( )
Δt1Δt2 

and

P τ1 ∈ [t1, t1 + Δt1] ∣ τ1 < T
( 􏼁

P τ2 ∈ [t2, t2 + Δt2] ∣ τ1 < T
( 􏼁

≈
λ2 exp (λ(T − t1))( exp (λ(T − t2)) − 1)

( exp (λT) − 1)2
Δt1Δt2.

Therefore, we have

∣ P τ1 ∈ [t1, t1 + Δt1], τ2 ∈ [t2, t2 + Δt2] ∣ τ1 < T
( 􏼁

− P τ1 ∈ [t1, t1 + Δt1] ∣ τ1 < T
( 􏼁

P τ2 ∈ [t2, t2 + Δt2] ∣ τ1 < T
( 􏼁

∣

=
exp (λT)λ3t2

( exp (λT) − 1)2 Δt1Δt2 + O(λ4), 

suggesting that validity of the independence test using probability 
density still holds with truncated time, as long as λ is small and T is 
larger than the time points used for test.

Similarly, for the cumulative distribution function, we also 
have

∣ P τ1 < t1, τ2 < t2 ∣ τ1 < T
( 􏼁

− P τ1 < t1 ∣ τ1 < T
( 􏼁

P τ2 < t2 ∣ τ1 < T
( 􏼁

∣

=
exp (λT)λ3t1t2

2

2( exp (λT) − 1))2 + O(λ4), 

indicating that independence could also be observed from inacti
vation curve probabilities (Online Supplementary Fig. S9).
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