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Sepsis is an organ failure disease caused by an infection resulting in extremely high mortality. Machine learning algorithms
XGBoost and LightGBM are applied to construct two processing methods: mean processing method and feature generation
method, aiming to predict early sepsis 6 hours in advance.,e feature generation methods are constructed by combining different
features, including statistical strength features, window features, and medical features. Miceforest multiple interpolation method
is applied to tackle large missing data problems. Results show that the feature generation method outperforms the mean
processing method. XGBoost and LightGBM algorithms are both excellent in prediction performance (AUC: 0.910∼0.979),
among which LightGBM boasts a faster running speed and is stronger in generalization ability especially on multidimensional
data, with AUC reaching 0.979 in the feature generation method. PTT, WBC, and platelets are the key risk factors to predict
early sepsis.

1. Introduction

According to the sepsis-3 criteria, sepsis refers to an out-of-
control body reaction caused by infection, leading to life-
threatening organ failure. Patients suffering from sepsis face
a terribly high risk of death. A survey [1] shows that the
number of people who die from sepsis worldwide is higher
than previously thought. In poor areas, the vast majority of
the dead are children. In 2017, there were 48.9 million sepsis
cases worldwide, of which 11 million died of infection, and
the mortality rate was as high as 20%. At present, it is a pity
that few antiseptic treatment programs have been clinically
proven to be effective.

In intensive care, early recognition of the sepsis risk is
essential to control the disease, because the treatment of
sepsis is highly time-sensitive. According to the Interna-
tional Medical Guidelines, it is recommended to start early
fluid resuscitation within the first 3 hours to stabilize tissue
hypoperfusion induced by sepsis, and it is recommended to
start intravenous antibacterial agents as early as possible,
especially within 1 hour after sepsis. Actually, every hour of
delay in treatment will increase the mortality rate by about
4–8%. In order to grasp the “golden period” of controlling
disease progression, rule-based sepsis scoring systems are

usually used in clinical settings, including systemic in-
flammatory response syndrome (SIRS) criteria, sequential
organ failure assessment (SOFA) scores, and modified early
warning score (MEWS), to alert the possible occurrence of
sepsis. By providing timely interventions, these early
warning scores can help with early warning programs or
specific prehospital treatment with high sensitivity. How-
ever, these criteria are poor in specificity. For example, the
physiological indicators of viral influenza can often cause
false alarms.

Artificial intelligence technology emerges as an effective
method in medical assistance including early sepsis diag-
nosis. ,rough the integration of electronic medical records,
medical imaging, pathophysiology, and other data, these
methods have been developed to analyze and predict the
health of the human body and obtain accurate prescription
information to help clinicians make quick and effective
judgments.

2. Literature Review

A diagnosis system based on artificial intelligence (AI) is
shown to be effective in many medical fields. In the area of
diagnosis, prognosis, and treatment of sepsis, machine
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learning algorithms used include supervised learning and
reinforcement learning [2–5]. For example, Beck et al. [6]
develop the C-Path (Computational Pathologist) system to
automatically diagnose breast cancer and predict whether
patients will survive or not by examining breast tissue
imaging.

,e main two challenges in the current research include
the use of different physiological indicators and modeling
efficient machine learning algorithms for the diagnosis,
prognosis, and treatment of sepsis. Similarly, in order to
predict sepsis in advance, it is also crucial to choose ap-
propriate variables and design valuable algorithms in the
clinical setting.

,e input variables of the model are physiological in-
dicators and the output variable is whether the patient would
suffer from sepsis several hours later. Specifically, the input
variables generally include vital signs like heart rate, oxygen
saturation, and body temperature; biomarkers like pro-
calcitonin and interleukin-6; laboratory values like bicar-
bonate and creatinine; and demographic variables like sex
and age. In most cases, the variables include lots of missing
values, such as that in MIMIC III (Intensive Care Medical
Information Market Database), which has been used in
many studies. Among most researches, variables with lots of
missing values are excluded from predictors, so valuable
information may be lost as a result. Several studies use
imputation and mean filling methods to fill in missing
values, but this may also lead to selection bias or mixtures of
confounding factors. ,e data preprocessing method needs
to be considered according to the characteristics of different
data sets.

Common ways to deal with missing values are mis-
sForest [7], KNNimpute [8, 9], and so on. Other ways are
also proposed. For instance, Desautels et al. [10] proposed
the InSight algorithm by using easy-to-monitor patient vital
signs data and an integrated tree boost algorithm to train the
model so as to simplify the types of input variables as much
as possible. ,e final simplified input variables include vital
signs (systolic blood pressure, pulse pressure, heart rate,
respiratory rate, temperature, and peripheral capillary ox-
ygen saturation (SpO2)), patient age, and Glasgow coma
score (GCS). Its AUC indicating discriminative power be-
tween infected and noninfected patients reaches 0.880.
Taneja et al. [11] make a detailed comparison of input
variables such as vital signs and biomarkers and predict
sepsis risks 4 hours in advance. ,e vital signs and bio-
markers are separately used as input variables to train the
model to obtain the AUC score, and then, they are both used
as input variables to train the model to compare the effects.
,e final feature importance is listed in order as vital bio-
markers and vital signs.

,e machine learning algorithms generally include
support vector machines, gradient boosting trees, random
forests, Lasso regression, and neural networks. Among them,
support vector machines and gradient boosting trees have
shown good performance. ,e model with better prediction
ability will be further tested and improved for clinical service
so that clinicians can make better decisions in sepsis early
diagnosis. Taneja et al. [11] compared the predictive abilities

of five machine learning models, including logistic regres-
sion, support vector machines, random forests, Adaboost,
and Naive Bayes. Among them, the support vector machine
algorithm and Adaboost algorithm have the highest AUC
scores. ,e other models in use also include deep learning
methods and biological methods. For example, Scherpf et al.
[12] used a recurrent neural network (RNN) to conduct
experiments on the sepsis data set provided by the MIMIC
III platform. Nemati et al. [13] used a proportional hazard
model to predict sepsis several hours in advance. Lin et al.
[14] used the convolutional LSTMmodel, the random forest
model selected by Lamping et al. [15], and the Gaussian
process-based RNN model used by Hariharan [16].

,e above studies have shown good performance in the
field of sepsis prediction. However, the amount of data used
in these researches are shrunk, as most of the missing values
are processed by direct deletion or forward filling, and the
explanatory ability of the model is also limited. It is chal-
lenging to transfer these methods into clinical practice for
the following detailed reasons. (1) A unified data set is
lacked. Researchers use data from different patient groups,
for example, the MIMIC public database or other inde-
pendent hospital data sources. ,e clinical variables they
select to generate models differ and the scale of data differs a
lot as well. (2) ,e premise and indicators of prediction
settings vary, such as clinical standards for sepsis, obser-
vation windows, and evaluation indicators.

Above all, it is still not possible to do full validations for
sepsis prediction in different groups with current machine
learning methods and evaluate their generalizability. In
addition, many of the machine learning models are complex
and hard to be explained. Clinicians lack tools to interpret
this “black box” model in clinical practice. ,is study is
committed to digging out the most effective information
from large-scale data. In terms of the interpretability ability,
a metric called SHAP value is used in this study which can
help models break the “black box” barriers and have good
interpretability.

Specifically, this research develops machine learning
models with good generalization ability and clinical inter-
pretability by generating two data preprocessing methods
based on XGBoost and LightGBM algorithms, which can be
used to predict early sepsis 6 hours in advance, to assist
clinicians in early diagnosis, intervention, and treatment. (1)
In themean processing method, it is explored whether or not
the model predictive ability will be improved by extracting
mean vectors. After dividing the early warning period into 2
hours or 3 hours window, it is discussed about the rela-
tionship between the extent of category imbalance and the
model’s predictive ability. (2) In the feature generating
model, the prediction performance of raw variables trained
in different models are compared with those extra with
different types of newly generated features in the relation-
ship between model performance and model complexity.

,e rest of the research is arranged as follows. In Section
3, materials and methods are given. ,e data used for
prediction are introduced, followed by the two data pro-
cessing methods and the prediction process. Section 4 re-
ports the results of predictive analysis and explores the
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complexity of data preprocessing, as well as the number and
types of new features generated which affected the model’s
prediction ability. Section 5 gives the conclusion and future
work.

3. Materials and Methods

,e original data are from the physiological ICU database
from three independent hospital systems [17, 18], making a
total of 22336 patients (1714 sepsis patients). ,e frequency
of the data shown is one hour, making a total of 790,125
observations. ,e data set has 40 indicators, including 8 vital
signs, 26 laboratory values, and 6 demographic indicators as
shown in Table 1. Instead of one hour, most of the laboratory
values are measured per 12 hours or per day, resulting in
about 90% missing values due to the difference in the data
collecting frequency. Besides, the data collected in this paper
is based on the latest definition of diagnosis of sepsis 3.0.

It can be seen from Table 1 that the basic information of
the demographic indicators is fairly complete, and most vital
sign indicators are frequently measured, with a relatively low
proportion of missing values. On the contrary, laboratory
variables, involving biomarkers, have a long-time gap of
collection intervals, and most of the values are missing. If
missing values are deleted directly, a lot of information will
be lost. ,at is helpless at sepsis prediction, and this study
uses the imputation method to fill missing data instead of
deleting the variables directly.

,ere is also a group imbalance problem involved.
Among the 22336 patients, there are only 1714 patients
suffering from sepsis, and in the 790215 observations of
original data, there are only 17,135 observations with sepsis
label as 1, and the rest as 0.,e ratio of 0-1 categories is 45 :1
as shown in Table 2. ,e response variable has an obvious 0-
1 distribution imbalance, which intensifies the difficulty of
predictive modeling. If it is forcibly modeled, the algorithm
will return a learner that always predicts a new sample into
category 0. ,is study will preprocess the original data to
deal with the problem of data imbalance and missing values,
by applying the mean processing method and the feature
generation method.

3.1. Mean Processing Method. ,e observation labels of
patients include the state of no illness, 6 hours before the
illness, and the state of illness, which are, respectively, called
the safe period, the early warning period, and the sick period.
,e values of these three states are set as 0, 1, and 1, re-
spectively. ,e reason that the sepsis label in the early
warning period is also marked as 1 is that the goal of the
study is to predict the onset 6 hours in advance, so the
warning period is also marked as 1. Due to the problem of
large missing values, the data of patients who suffer from
sepsis are transferred into three observations labeled with 0,
1, and 1. Each corresponding input variable is also averaged
into three observations according to the range of label
values. Such processing method could also help fix the
problem: the lack of special biomarkers caused by a too long
time interval. At the same time, for patients who do not

suffer from sepsis, it is believed that values of their biological
indicators were basically within the safe range and thus
belonged to the safe period. ,erefore, the data is averaged
into one observation for each variable of each patient who
does not suffer from sepsis.

After data processing, 23711 physiological data are fi-
nally formed. ,e 0-1 observation number of the sepsis label
is 20133 : 3578, and the ratio is about 5.6 :1. ,e category
imbalance has been significantly improved.

3.1.1. Feature Selection. In the mean processing method, 25
variables were determined to participate in the training
model, including (a) vital signs indicators (HR, O2Sat, Temp,
SBP, MAP, DBP, Resp), (b) laboratory variables (HCO3, pH,
PaCO2, AST, BUN, AlkalinePhos, Chloride, Creatinine,
Lactate, Magnesium, Potassium, Bilirubin_total, PTT,WBC,
Fibrinogen, Platelets), and (c) demographic indicators (Age,
Gender).

Variables with more than 98% missing proportions
were removed. HospAdmTime (the time between hospi-
talization and ICU) and ICULOS (ICU hospitalization
time) in the demographic indicators are deleted. Hos-
pAdmTime presents different numerical levels according to
the condition of different patients and may be related to the
longer incubation period of sepsis. ,is study is more
interested in finding rules to predict early sepsis from the
changes in specific physiological data, and they are elim-
inated to avoid being interfered. Patients with sepsis in the
entered data face a high mortality rate. ,ey often require
long-time treatment in the ICU, and the ICULOS value is
generally too high. On the contrary, patients without sepsis
are generally treated in the ICU for only a short time and
then transferred out of the ICU after the condition is
improved, thus with low ICULOS value. ,e difference in
ICULOS value is due to the difference in the nature of the
illness condition, which is contrary to the causal sequence
of early sepsis predicted from physiological data, so the
variable ICULOS is deleted.

3.1.2. Imputation ofMissing Data. Missing data has a greater
impact on data analysis, which is mainly manifested in two
aspects: the weakening of data statistics and biased esti-
mation. Kim and Curry [19] found that when 2% of the data
is missing, deleting the missing value will bring about an
18.3% lack of information. Quinten [20] has shown that
10%∼35% of missing data will bring about 35%∼98% lack of
information. ,erefore, the direct deletion of missing values
is only suitable for data sets with a low percentage of missing
values and is generally not preferred.

,e imputation method is divided into the single im-
putation method and the multiple imputation method.
Single imputation is the simplest method, replacing
missing values with a single value, without any estimation
of the uncertainty of imputation. It is more accurate to use a
single imputation method to fill a data set when the per-
centage of missing data is low. Multiple imputation is to
consider the uncertainty of imputation by running a single
imputation multiple times, so it can provide a more
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accurate estimate of missing data. ,ese methods estimate
incomplete data sets many times, by using standard
analysis methods to analyze the estimated data sets. ,e
results obtained from the analysis are finally aggregated
into a result with less deviation. ,e multiple imputation
method is more suitable for data sets with a high percentage
of missing data.

,erefore, this article will use the multiple imputation
method Miceforest [21] to impute the missing data. It is
based on the multiple imputation of the chain equation of
random forest, using the process of predictive mean
matching to select the value to be estimated. ,e imputation
method boasts a fast speed, with high memory utilization,
and can output diagnostic maps and fill in missing data with
high accuracy. Using the Python language as the tool and the
Miceforest as the basis, the Multiple Imputed Kernel
function is used to perform multiple imputation according
to the missing percentage of various indicators.

In Figure 1, the imputed mean line chart is plotted to see
if the mean has converged. It shows that most of the 23
variables tend to converge in the mean after few iterations.
,is also confirms that the lack of patient physiological data
in the data set is not completely random but is based on the
existence of a regular lack of time interval.

After processing, the distribution of the original data and
the data set after imputation is shown in Figure 2. Among
them, the red line is the original data, and the black line is the
imputed (estimated) value of each data set. It can be seen
from the figure that the distribution of the 23 variable
imputation data is similar to the original data, and it is
intuitively shown that the fitting effect is good.

3.1.3. Machine Learning Methods to Predict Early Sepsis.
Two integrated tree algorithms are considered, XGBoost and
LightGBM. ,e detailed information about these methods
can be referred to [22–27]. ,e metrics precision, recall, F1-
score, Kappa coefficient, and Matthew’s coefficient are used
to evaluate the prediction performance of the algorithm.,e
feature importance score and SHAP value are chosen to
explain the model.

For the feature importance score, both XGBoost and
LightGBM algorithms can output feature importance, which
can intuitively reflect the importance of each feature in the
data set through the score.,e calculation formula of feature
importance is shown below, and the importance of feature xj

in the entire model is
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Among them,M is the number of trees in the model, and
Tm represents the mth tree.

,e feature importance of feature xj on a single tree is
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Among them, L-1 is the number of nonleaf nodes of the
tree, vt represents the feature selected when the internal node
t is split, and 􏽢I2t is the reduction of the square loss (MSE) after
the split of the internal node t. ,erefore, the larger 􏽢I2t , the
greater the ability of this node to reduce loss and the stronger
the fitting ability.

Table 1: Examples of variables in different types and the corresponding percentage of missing values.

Vital signs Unit Missing percentage
HR (heart rate) Beats per minute 7.7%
O2Sat (pulse oximetry) % 12.0%
Temp (temperature) Deg C 66.2%
SBP (systolic BP) Mm·Hg 15.2%
. . . . . . . . .

Laboratory variables Unit Missing percentage
BaseExcess (measure of excess bicarbonate) mmol/L 89.6%
HCO3 (bicarbonate) mmol/L 91.9%
FiO2 (fraction of inspired oxygen) pH % 85.8%
pH / 88.5%
. . . . . . . . .

Demographics Unit Missing percentage
Age years 0.0%
Gender Female (0) or male (1) 0.0%
Unit1 (MICU) No(0) or yes(1) 48.9%
. . . . . . . . .

Table 2: ,e basic information of patients in ICU.

Basic information Counts Sum of counts Proportion (%) Sum of proportion (%)
Patients with sepsis 20662 22336 92.33 100Patients with no sepsis 1714 7.67
Sepsis label (0) 773080 790215 97.83 100Sepsis label (1) 17135 2.17
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Figure 1: ,e result of convergence in the process of variable interpolation.
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Figure 2: ,e data distribution after interpolation and the original data distribution.

Computational Intelligence and Neuroscience 5



,e above feature importance score can discover which
features have a greater impact on the final model, but it is
impossible to discover the relationship between the features
and the final prediction result. But the SHAP value can
explore the relationship [28]. SHAP is an additive inter-
pretation model inspired by Shapley Values. For each test
sample, the model produces a predicted value, and the SHAP
value is that assigned to each feature in the sample. Its
calculationmethod is similar to the summationmethod of the
linear model. By assuming that the model benchmark score
(that is, the mean value of the target variable of all samples) is
ybase, the i

th sample is xi, the j
th feature of the ith sample is xi,j,

the SHAP value of this feature is f(xi,j), and the predicted
value is

yi � ybase + f xi,1􏼐 􏼑 + f xi,2􏼐 􏼑 + · · · + f xi,k􏼐 􏼑. (3)

When f(xi,j)> 0, the feature has a positive effect on the
prediction of the target value and vice versa. ,erefore, the
SHAP value can not only reflect the influence of the overall
characteristics but also the influence of the characteristics in
each sample.

3.1.4. Improvements to the Mean Processing of the Warning
Period. In the above mean processing method, the 6-hour
warning period for each patient is directly combined to
obtain a single observation, but the prediction performance
of the model may not be satisfactory. It is further explored
whether when the time window of segmentation is finer or
denser can lead to better performance or not. ,erefore, the
6-hour warning period is divided into 2-hour or 3-hour time
windows to calculate the mean vector, and the mean pro-
cessing method of safe period and disease period is kept
unchanged.,e detail is shown in Figure 3. New datasets for
training models are generated in the same way, and the
improvement is compared with the original models of their
generalization capabilities based on the ROC curve and P-R
curve.

3.2. Feature Generation Method. Compared with the mean
processing method, the feature generation method retains
the original appearance of the data and valuable features are
extracted as much as possible on the basis of the original
features.

3.2.1. Imputation of Missing Data. ,e original data set has
more than 790,000 observations, with normal samples
(patients without sepsis) accounting for 97.8%, and sepsis
samples only accounting for 2.2%. As it differs a lot, the
undersampling method is used to process the original data
set. ,e method works by retaining the data with label 1 and
undersamples the appropriate amount of data with label 0 to
balance the category ratio.

When an individual is admitted into the ICU, the label
may maintain as 0 in the early stage and transfer to stage 1
after a long time. ,erefore, even for sepsis patients, the
proportion of observations with label 1 does not exceed 20%
on average. In this situation, only the data of sepsis patients

are kept.,e physiological data of all 1790 sepsis patients are
selected from 22336 patients for analysis. ,e percentage of
label category is shown in Table 3.

In the feature generation method, the forward deduction
method is used for the original data, which means the latest
value of a particular variable is used to estimate its missing
value. If there are still missing values, the Miceforest impu-
tation method is used to fill in the remaining missing values.

3.2.2. Feature Generation. In order to explore more infor-
mation from the original data in the feature generation
method, this study considers generating new features from
the original data by dividing time windows to extract sta-
tistical features [29]. Medical diagnostic indicators such as
shock index and oxygenation index are also added as fea-
tures to train the model.

,e vital sign index data are generally measured more
frequently and have a lower percentage of missing; however,
the overall measurement frequency of laboratory test values
is very low. In order to capture the physiological data detail,
this study constructs two features: the total measurement
counts of all vital signs and laboratory values till the current
moment, and the corresponding inspection frequency. ,e
specific calculation method is shown in Table 4.

According to the different frequencies of physiological
data, time windows is constructed, and statistical features are
extracted in each window. ,e time windows of different
variables are shown in Table 5.

After the feature generation process, the variables in-
cluded in the measurement intensity feature, window fea-
ture, and medical index feature are shown in Table 6.

,e last three features are shown as follows. Shock index
is expressed as pulse rate/systolic blood pressure (mmHg),
namely, HR/SBP. ,e index can help measure the presence
and severity of shock with a normal value of 0.5. When the
shock index equals 1, it indicates mild shock; when the shock
index is higher than 1.5, it indicates severe shock. One of the
common symptoms of sepsis is the occurrence of shock,
namely, insufficient tissue perfusion and continuous hy-
potension.,erefore, monitoring the shock index matters in
predicting sepsis risk.

,e oxygenation index is expressed as the percentage
of arterial oxygen partial pressure/inspired oxygen con-
centration, namely, PaO2/FiO2. ,e normal value of this
index is 400–500mmHg. If PaO2 drops significantly,
adding the oxygen concentration in the inhaled gas will
not help to further increase PaO2. And if the oxygenation
index is less than 300mmHg, it suggests lung respiratory
dysfunction happens. ,e diagnostic criteria for sepsis
include unexplained hypoxemia, and the oxygenation
index is an important indicator to monitor the patient’s
cardiopulmonary function. Unfortunately, arterial oxy-
gen partial pressure PaO2 is not collected in the mea-
surement data, but there is blood oxygen saturation SaO2
for replacement.

It can be seen from the oxygen dissociation curve in
Figure 4 that the level of oxygen saturation mainly depends
on the level of oxygen partial pressure.,e curve is S-shaped,
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and the change in the SaO2 value is generally positively
correlated with the change in the PaO2 value. ,erefore,
SaO2/FiO2 is used to measure the patient’s lung breathing
function.

qSOFA score is mainly developed for sepsis screening in
a resources-limited setting, as it does not require much
intensive monitoring. As a sequential organ failure score, it

measures whether the respiratory rate, systolic blood
pressure, and state of consciousness are normal. If respi-
ratory frequency ≥22 breaths/min, systolic blood pressure
≤100mmHg, and change of consciousness happens in the
qSOFA score table, one point will be added to the cumulative
score. When the qSOFA score is greater than 2, the risk of
sepsis becomes higher.
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Figure 3: Diagram of dividing the 6 h early warning period into 2 h or 3 h time windows to calculate the mean vector.

Table 3: ,e percentage of label category of undersampling.

Label Counts Ratio of labels 1 and 0
0 88828

5.18:11 17136
Sum 105964

Table 4: Measurement intensity calculation method.

Features Calculation method
Total count ,e total count of vital signs indicators and laboratory values from ICULOS� 1 to ICULOS� t (t is the current time)
Inspection
frequency Count(t)/ICULOS(t)

Table 5: Time window structure of different variables.

Variables Time window
length Feature descriptions

HR, MAP, O2Sat, Resp, SBP 2 hours Calculate the difference between values when
ICULOS� t or ICULOS� t-2

WBC, Temp, MAP, SBP, Creatinine, Platelets, FiO2, SaO2, PTT,
BUN, Calcium, Phosphate, Hct, Lactate, Alkalinephos, Glucose, Hgb

12 hours Calculate maximum, minimum, and the time range
from ICULOS� t-12 and t-24 to ICULOS� t24 hours

Note: (1) when the length of the time window is 2 h, if the current time t< 2, the feature value is nan, and the missing position is filled with the median of the
column data; (2) when the length of time windows is 12 h/24 h, if the current time t< 12/24, the time window will change into time from ICULOS� 1 to the
current time ICULOS� t to construct features.
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,e number of new feature variables generated above and
the original variables is 149 in total. Before training the model
on these variables, some variables are eliminated. Among
them, the entire column of EtCO2was empty, so it is removed.
,e ICULOS variable and count variable are removed, be-
cause this study does not consider the relationship between
the length of time in the ICU andwhether patients suffer from
sepsis. Finally, the number of variables entering the model
training is 146. In the feature generation method, the same
algorithms XGBoost and LightGBM are also applied along
with the feature importance score and SHAP value.

4. Results

In the mean processing method and the feature generation
method, 75% of the data are selected for training, and the
remaining 25% are used in the test set for verification and
evaluation. ,e result is shown in Table 7.

4.1. Model Performance. In the mean processing method
(method1), the XGBoost and LightGBM algorithms differ in
performance. ,e XGBoost algorithm has a recall rate of

0.55, with better distinction performance between 0-1 cat-
egories. From the comparison result between the Kappa
coefficient and Matthews coefficient, it can be seen that the
confusion matrix generated by the XGBoost algorithm is
much more balanced in the test result.

In the feature generation method (method2), the
XGBoost and LightGBM algorithms perform better than the
mean processing method. In the prediction result, the
LightGBM model is better in precision, recall, and others
with a better performance in distinguishing 0-1 categories.
From the result of the Kappa coefficient and Matthews
coefficient, it can be seen that the confusionmatrix predicted
by the LightGBM algorithm on the test set is more balanced,
indicating that LightGBM is more excellent as shown in
Figure 5. Overall, the feature generation method with
LightBGM has the best performance.

4.2. Results of Improved Mean Processing Method. After
dividing the time window into different sizes, the AUC value
of the model trained on the data generated by the smallest
2 h time window significantly improves to 0.974. It also has
the best performance in the P-R curve, which is about 4%
higher than the accuracy of the original model. Figures 6 and
7 show that the more detailed the window feature extraction
of time series data is, the more balanced the 0-1 distribution
of categorical variables will be, so is the prediction perfor-
mance of the model.

4.3. -e Influence of the Features on the Model Performance.
In the feature generation method, after adding measurement
intensity features, window features, and medical indicator
features, the prediction performance of the model further
improves compared to the model trained directly with raw
data. In order to explore the impact of the new features on
the model prediction, the LightGBM algorithm is explored
as an example. Respectively by deleting the features in the
feature generation method and comparing the prediction
effect of models containing different features on the test set,

20 40 60 80 100 600
Pa02, mmHg

100

Sa
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, %

80

60

40

20

0

Figure 4: ,e oxygen dissociation curve.

Table 6: ,e meaning of the new feature variable.

Features Based variables Descriptions
Count All vital signs data + all laboratory

value data

,e count of the measurement times of all variables till the current moment
Inspection
frequency

,e sum of the measurement times of all variables per unit time till the
current moment

2h_diff Some vital signs variables1 ,e difference between the current time and the value 2 hours ago
12h_max

Some laboratory value variables2

Maximum value in a sliding time window spanning 12 hours
12h_min Minimum value in a sliding time window spanning 12 hours
12h_maxmin Range in a sliding time window spanning 12 hours
24h_max Maximum value in a sliding time window spanning 24 hours
24h_min Minimum value in a sliding time window spanning 24 hours
24h_maxmin Range value in a sliding time window spanning 24 hours
HR/SBP HR,SBP Shock index
SaO2/FiO2 SaO2, FiO2 Oxygenation index
qSOFA Resp, SBP qSOFA score
1HR, MAP, O2Sat, Resp, and SBP. 2WBC, Temp, MAP, SBP, Creatinine, Platelets, FiO2, SaO2, PTT, BUN, Calcium, Phosphate, Hct, Lactate, AlkalinePhos,
Glucose, and Hgb.
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Table 7: Prediction ability of different methods in XGBoost and LightGBM.

Precision Recall F1-score Kappa coefficient Matthews coefficient

Mean processing method XGBoost 0.78∗ 0.55∗ 0.65∗ 0.60∗ 0.61∗
LightGBM 0.70 0.42 0.53 0.46 0.48

Feature generation method XGBoost 0.89 0.61 0.72 0.67 0.69
LightGBM 0.91∗ 0.65∗ 0.76∗ 0.72∗ 0.73∗

ROC
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0.80.4 0.60.2 1.00.0
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XGB_AUC = 0.9389 (method1)
LGBM_AUC = 0.9101 (method1)
XGB_AUC = 0.9703 (method2)
LGBM_AUC = 0.9789 (method2)

Figure 5: Comparison of AUC between different methods in XGBoost and LightGBM.
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Figure 6: Comparison of AUC between the 2 h and 3 h improved
model and the original model.
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model and the original model.
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AUROC, Accuracy, and performance metrics like precision
and recall are shown in Table 8.

From Table 8, it can be found that models trained with raw
variables plus the measurement intensity feature or window
feature or medical index feature are all helpful to improve the
performance of the originalmodel at various levels. Specifically,
window features perform better than measurement intensity
features and medical indicator features.

4.4. -e Feature Importance. For the feature importance
score, we take the XGBoost algorithm in the mean pro-
cessing method as an example; the top 10 variables with
feature importance scores are Temp, O2Sat, Resp, HR, Age,
SBP, MAP, PTT, PaCO2, and Potassium as shown in Fig-
ure 8. ,is means that these variables play an important role
in predicting the risk of sepsis.

,e above feature importance score can show which
features have a greater impact on the final model, but it is
impossible to explore the relationship between the fea-
tures and the final prediction result. ,e SHAP value can
explore it.

As shown in Figure 9, each row in the figure represents a
feature, the abscissa is the SHAP value, and a point rep-
resents a sample. ,e redder the color, the higher the SHAP
value of the feature; the bluer the color, the lower the value of
the feature. ,e wider area indicates a large number of
features, where the sample is gathered. ,e ranking of the
features is in descending order according to the average
absolute value of SHAP. It is intuitively seen that Temp
(temperature) is the most important feature for predicting
early sepsis. ,e higher the value, the higher the risk of
sepsis. Temp is followed by O2Sat (oxygen saturation), Resp
(respiratory rate), BUN (blood urea nitrogen), and so on.
,e feature ranking of SHAP value is slightly different from
the feature ranking of feature importance due to the dif-
ference in their calculation methods.

In order to understand the corresponding relationship
between the value of a single feature and the SHAP value, a
scatter plot describing the corresponding relationship is
suggested. ,e abscissa is the feature value, and the or-
dinate is the SHAP value corresponding to the charac-
teristic value of all samples. As shown in Figure 10, taking
the Temp as an example, when the temperature is lower

Table 8: Prediction performance of different features on the test set.

Variables AUROC Accuracy Precision Recall
Raw variables 0.9710 0.919 0.92 0.60
Raw variables +measurement intensity features 0.9756 0.927 0.93 0.64
Raw variables +window features 0.9767 0.928 0.93 0.64
Raw variables +medical indicator features 0.9718 0.919 0.92 0.60
Feature generation method features 0.9789 0.931 0.93 0.65
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Figure 8: XGBoost algorithm’s feature importance.
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than 36 degrees or higher than 37.8 degrees, the SHAP
value will increase significantly, and the risk of early sepsis
is greatly increased.

,is interaction effect is further explored by adding a
dependency, for example, the respiratory rate, as shown in
Figure 11. Among them, in the upper half of the figure, the
proportion of red points in all points is higher. ,is shows
that for cases with higher Resp (respiratory rate), the
temperature has a greater influence on predicting early
sepsis.

,e advantages of SHAP are that it can be displayed in
each specific sample instance and reflect the important
features which are affecting the results of prediction. ,e
importance of these features, provided by the SHAP value,
can be displayed by the length of the bar. ,e longer bar
shape means that the SHAP value is higher and the variable
is of greater importance. Among them, the feature that
pushes the forecast higher (risk factor) is shown in red, and
the feature that pushes the forecast lower (protection factor)
is shown in blue.
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Figure 9: Sorted SHAP value diagram of all the features in the model.
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For example, Figure 12(a) shows a patient who keeps having
a high temperature (>38.5 degrees Celsius), long thromboplastin
time (PTT>21), and low oxygen saturation. ,e model esti-
mates that the sepsis risk of this patient is above average. In
Figure 12(b), the patient is predicted as low sepsis risk. Although
this patient has two risk factors: low platelet count
(Platelets<100) and high total bilirubin (Bilirubin_total>1), its
oxygen saturation, temperature, respiratory rate, and white
blood cell count are all within the normal range, making the
predicted risk of this case lower than the average.

5. Discussion and Conclusion

,is study proposes two data processing methods and
finds that the performance of the feature generation
method trained with the LightGBM algorithm is the best,
which can effectively explain the prediction results of each
patient through SHAP value. For the mean processing
method and the feature generation method, the perfor-
mance highlights include the following. (1) ,e mean
processing method streamlines the complicated data and
avoids imputing a large amount of missing data, but the
cost is that only the mean information is extracted from
the data in different states, and the rest of the valuable
information is lost, which limited the model’s predictive
ability. ,e improved mean processing method generates
a new data set by calculating the mean vector of the di-
vided warning period data per 2 hours and 3 hours, and
the AUC of the model jumps to 0.97. (2) In the feature
generation method, the amount of data obtained by
undersampling contains about 100,000 observations.
After filling in the missing values through Miceforest, the
AUC of the original model reaches 0.971. Followed by
generating new features, the improved model’s AUC
reached 0.979 and recall has the most obvious improve-
ment from 0.6 to 0.64.

XGBoost has a stronger generalization ability when the
amount of data and the number of features is relatively
small. However, when the amount of data and the number of
features increase sharply to a large scale, LightGBM has not
only a fast iteration speed in training but also a better
predictive ability than XGBoost. ,is is because it occupies

lowmemory and adopts a leaf-wise growth strategy. It can be
seen that when there are many types of data features and the
scale of data is large, the LightGBM algorithm has obvious
advantages in operating efficiency and memory.

PTT, WBC, and Platelets are important variables
ranking top 10 in both mean processing method and feature
generation method. ,ese three laboratory values may be
helpful to improve the accuracy of predicting early sepsis.
Among them, WBC is an important indicator to determine
whether inflammatory infection occurs. Increased white
blood cell count is one of the most specific changes in acute
bacterial infections. PTT and Platelets are coagulation in-
dicators to assess organ function. Coagulation abnormalities
are universal in patients with sepsis, which may cause
multiple organ dysfunction. ,is will provide some evidence
and hints for clinical diagnostic research.

,e Miceforest algorithm has done excellently in filling
in missing values. It can predict reasonable values for filling
based on the distribution of the original data. Increasing the
proportion of data of positive samples is a key to improve the
performance of the model, which further fixes the problem
of data imbalance while increasing the feature dimension to
dig out more features is of limited help to improve the
performance of the model.

,e future work includes that further verification by
prospective research is needed, given the unknown uni-
versality and stability of the model. More features of some
variables can be mined to further explore variable infor-
mation for better prediction performance. For imbalanced
data, more effective methods can be studied to improve the
generalization of the model.
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Figure 12: (a) Example of high risk according to SHAP value. (b) Example of low-risk according to SHAP value.
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