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Background: The present study aimed to use bioinformatics tools to explore pivotal genes
associated with the occurrence of gastric cancer (GC) and assess their prognostic signifi-
cance, and link with clinicopathological parameters. We also investigated the predictive role
of COL1A1, THBS2, and SPP1 in immunotherapy.
Materials and methods: We identified differential genes (DEGs) that were up- and
down-regulated in the three datasets (GSE26942, GSE13911, and GSE118916) and cre-
ated protein–protein interaction (PPI) networks from the overlapping DEGs. We then investi-
gated the potential functions of the hub genes in cancer prognosis using PPI networks, and
explored the influence of such genes in the immune environment.
Results: Overall, 268 overlapping DEGs were identified, of which 230 were up-regulated and
38 were down-regulated. CytoHubba selected the top ten hub genes, which included SPP1,
TIMP1, SERPINE1, MMP3, COL1A1, BGN, THBS2, CDH2, CXCL8, and THY1. With the ex-
ception of SPP1, survival analysis using the Kaplan–Meier database showed that the levels
of expression of these genes were associated with overall survival. Genes in the most dom-
inant module explored by MCODE, COL1A1, THBS2, and SPP1, were primarily enriched for
two KEGG pathways. Further analysis showed that all three genes could influence clinico-
pathological parameters and immune microenvironment, and there was a significant corre-
lation between COL1A1, THBS2, SPP1, and PD-L1 expression, thus indicating a potential
predictive role for GC response to immunotherapy.
Conclusion: ECM–receptor interactions and focal adhesion pathways are of great signifi-
cance in the progression of GC. COL1A1, THBS2, and SPP1 may help predict immunother-
apy response in GC patients.

Introduction
Gastric cancer (GC) is the fourth most common human malignant tumor worldwide and the second lead-
ing cause of cancer death worldwide [1]. It has an insidious onset and is mostly detected at an intermediate
to advanced stage [2]. Therefore, even though multiple therapies such as surgery, chemotherapy, radia-
tion therapy, and targeted therapies alone or in combination have played a role in the treatment of GC,
the overall 5-year survival rate is still less than 20% [3]. Such low survival rate is mainly due to the het-
erogeneity of GC [4]. Genetic mutations are known to play a key role in the development, progression,
and prognosis of a variety of diseases, and genetic biomarkers have been widely used in the diagnosis and
targeted treatment of various diseases [5–7]. In this context, identifying the mutated genes in GC and
developing effective therapeutic strategies is a crucial factor in improving patient prognosis.

In recent years, the analysis of biological information, also known as bioinformatics, has attracted a
great deal of attention and sustained breakthroughs in the search for oncogenic genes. Various functions
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for molecular typing, prognostic prediction, new targeted drug development applications and biomarkers of progno-
sis have been confirmed [8–10]. Thus, we used bioinformatics to identify genes predictive of GC prognosis. In the
present study, we analyzed three mRNA gene chip datasets (GSE26942, GSE13911, and GSE118916), and identified
overlapping DEGs between tumor and normal samples. The prognostic value of the identified genes was assessed by
survival analysis. The efficacy of immune checkpoint inhibitors was influenced by a combination of factors such as tu-
mor genomics, in vivo PD-L1 levels, and characteristics of the tumor microenvironment. Therefore, we selected core
genes to explore their effects on the immune microenvironment and PD-L1 expression in GC. The genes identified
in the present study may be potential prognostic biomarkers and therapeutic targets for GC. Further, the association
of these genes with the GC immune environment could be further explore.

Materials and methods
Microarray data
To obtain gene expression datasets for GC in this study, we downloaded three datasets from the GEO database (http:
//www.ncbi.nlm.nih.gov/geo/): GSE26942, GSE13911, and GSE118916. These RNA profiles were based on GPL6947
(Illumina HumanHT-12 V3.0 expression bead chip), GPL570 platform (Affymetrix Human Genome U113 Plus 2.0
array), and GPL15207 (Affymetrix Human Gene Expression Array), and contained 258 GC tissues and 58 normal
tissues. The GSE26942 profile contains 205 GC tissues and 12 normal tissues, the GSE13911 profile 38 GC tissues
and 31 normal tissues, and the GSE118916 profile 15 GC tissues and 15 normal tissues.

DEGs screening
We obtained and exclusively selected differential genes (DEGs) by GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/)
analysis from the GEO database. Genes with P value <0.05 and | logFC | > 1 were considered as DEGs in this dataset.
A Venn diagram was used to visualize overlapping DEGs between the above datasets.

Function and pathway enrichment analysis
Overlapping DEGs were used to map possible biological functions, and gene ontology (GO) enrichment analysis was
performed in terms of biological processes (BP), cellular components (CC), and molecular function (MF) [11,12].
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was then performed to investigate
potential enrichment for signaling pathways among the overlapping DEGs

The KEGG database is widely used to explore information about biological pathways, genomes, diseases, chemicals,
and to identify functional and metabolic pathways [13]. GO and KEGG pathway enrichment analysis were performed
using the DAVID website. Bubble charts were created using R language.

Establishment of the PPI network, modules selection, and identification
of hub genes
To investigate the protein interactions of DEGs, we submitted them to the Interaction Gene Search tool (STRING)
(http://string.embl.de/) [14]. We then used Cytoscape software to integrate and visualize the protein–protein interac-
tion (PPI) network. Molecular complex detection (MCODE) was applied to screen the modules of the PPI network,
and the core modules were selected. In addition, hub genes in the network were identified using the cytoHubba ap-
plication in Cytoscape software. The maximum group centrality of each gene in the network was calculated by the
maximal clique centrality (MCC) score. We regarded the top 10 genes as hub genes.

Relationship between hub genes and survival analysis
We explored the main functions and pathway enrichment analysis of the hub genes by searching the DAVID website
(https://david.ncifcrf.gov/) [15]. To further validate the reliability of the hub genes, their expression was first examined
using the Gene Expression Profiling Interaction Analysis (GEPIA) database analysis [16]. The relationship between
hub genes and patient prognosis was then analyzed by Kaplan-Meier curves (http://kmplot.com/) [17], and P<0.05
was considered to be statistically significant.

Expression and mutation analysis of hub genes
The relationship between gene expression and mutations of hub genes was carried out using the online c-BioPortal
database (http://cbioportal.org) [18]. A total of 478 patients/samples were selected for further analysis. OncoPrint
was obtained using an online database at c-BioPortal.
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Figure 1. A Venn diagram of DEGs

A comparison between three datasets with 433, 3327, and 1888 DEGs, revealed 268 common DEGs between GC and normal

tissues.

Link between Hub genes expression levels and GC clinicopathological
parameters
ONCOMINE (https://www.oncomine.org/) [19] was used to explore the gene expression levels of potential biomark-
ers in GC tumor tissue compared with normal tissue. UALCAN (http://ualcan.path.uab.edu/) [20], an online database
for the analysis and mining of cancer data, was used to explore the relationship between mRNA expression lev-
els of potential biomarkers and the clinicopathological parameters of GC patients. P value < 0.05 was consid-
ered statistically significant. Immunohistochemistry was performed using the Human Protein Atlas (THPA) (http:
//www.proteinatlas.org/) [21]. We evaluated the expression levels of hub genes between normal gastric tissues and
GC tissues from THPA.

Relationship between hub genes and immune infiltrates
The correlation between hub genes and immune infiltration (B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and dendritic cells) in The Cancer Genome Atlas (TCGA) of Stomach Adenocarcinoma (STAD) was
carried out using the Tumor Immune Estimation Resource (TIMER) platform [22].

The expression between hub genes and PD-L1 gene expression
The relationship between each of the three hub genes and PD-L1 gene expression in the clinical data of 580 GC
patients in TCGA database are available from UCSC (https://genome-cancer.ucsc.edu/).

Results
Identification of DEGs
After a comprehensive analysis of the three microarray datasets, we identified 268 overlapping DEGs, of which 230
genes were up-regulated and 38 genes were down-regulated. A Venn diagram for the three datasets is shown in Figure
1.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

3

https://www.oncomine.org/
http://ualcan.path.uab.edu/
http://www.proteinatlas.org/
https://genome-cancer.ucsc.edu/


Bioscience Reports (2021) 41 BSR20202564
https://doi.org/10.1042/BSR20202564

Figure 2. Functional enrichment analysis and KEGG pathway analysis of DEGs

(A) Functional enrichment analysis of BP; (B) Functional enrichment analysis of CC; (C) Functional enrichment analysis of MF; (D)

KEGG pathway analysis.

GO and KEGG pathway enrichment analyses of DEGs
GO and KEGG pathway enrichment analyses were performed using the DAVID website. The top 10 terms of BP, CC,
MF, and KEGG pathways are shown in Figure 2. For biological processes, results from the GO analysis revealed an
enrichment for genes linked to processes such as digestion, oxidation–reduction process, cellular response to cad-
mium ion, xenobiotic metabolic process, cellular response to zinc ion, negative regulation of growth, multicellular
organismal water homeostasis, cell adhesion, cellular aldehyde metabolic process, and extracellular matrix organi-
zation (Figure 2A). Cellular component analysis showed that the DEGs were particularly enriched for categories
such as extracellular space, extracellular exosome, apical plasma membrane, extracellular region, basolateral plasma
membrane, organelle membrane, platelet alpha granule, external side of plasma membrane, perinuclear region of
cytoplasm, and sodium channel complex (Figure 2B). Regarding molecular functions, analysis of DEGs revealed
a significantly enrichment for functions such as oxidoreductase activity, creatine kinase activity, retinal dehydroge-
nase activity, ligand-gated sodium channel activity, aromatase activity, heparin binding, WW domain binding, NADP
binding, heme binding, and protease binding (Figure 2C). Additionally, the results of KEGG pathway analysis revealed
that the DEGs were mostly linked to the metabolism of xenobiotics by cytochrome P450, chemical carcinogenesis,
mineral absorption, drug metabolism – cytochrome P450, gastric acid secretion, mineral absorption, metabolic path-
ways, ECM-receptor interaction, retinol metabolism, glycolysis/gluconeogenesis, fructose, and mannose metabolism
(Figure 2D).

Construction of PPI network and identification of hub genes
A PPI network from the STRING database was established to predict the potential interactions of the DEGs at the
protein level (Figure 3A). By opening the PPI network from the STRING database with Cytoscope software, we con-
structed a co-expression network consisting of 213 nodes and 489 edges (Figure 3B). MCODE was applied to screen
modules of the PPI network. The most pivotal module in the PPI network was selected (Figure 3C). In addition,
hub genes in the network were identified using the cytoHubba application in Cytoscape software. The top 10 genes
were selected as hub genes, including SPP1, TIMP1, SERPINE1, MMP3, COL1A1, BGN, THBS2, CDH2, CXCL8,
and THY1 (Figure 3D).
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Figure 3. Selection of hub genes

(A) PPI network by STRING analysis; (B) PPI network was produced using Cytoscope Software; (C) Core modules were designed

using MCODE; (D) Top 10 genes network. The top 10 genes of the MMC method were chosen using the CytoHubba plug-in. The

more forward ranking is represented by a redder color.

Functional analysis of hub genes and survival analysis
Most hub genes were involved in the core module. Enrichment analysis using the DAVID website revealed that hub
genes were mainly enriched for the following GO terms: extracellular region, cell adhesion, extracellular matrix or-
ganization, extracellular space, extracellular matrix, and extracellular matrix disassembly (Table 1). A P-value <0.05
was set as the cut-off value. KEGG results included ECM–receptor interaction and focal adhesion (Table 1). Based
on the GEPIA website, all hub genes were differentially expressed between gastric tumor tissues and normal tissues
(Figure 4), which further indicated that these genes may contribute to the occurrence and development of GC. The
Kaplan–Meier plotter database confirmed that higher expression levels of these genes were related to lower overall
survival, except for SPP1, MMP3, and CXCL8. In fact, the mRNA expression of SPP1 was independent of overall
survival. Higher levels of MMP3 and CXCL8 expression had positive impacts on overall survival (Figure 5).
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Table 1 Functional enrichment analysis and KEGG pathway analysis of hub genes

Category Term Count P value

GOTERM BP DIRECT GO:0007155∼cell adhesion 5 6.23E-05

GOTERM BP DIRECT GO:0030198∼extracellular matrix
organization

4 1.25E-04

GOTERM BP DIRECT GO:0022617∼extracellular matrix
disassembly

3 7.13E-04

GOTERM BP DIRECT GO:0001525∼angiogenesis 3 0.00594

GOTERM BP DIRECT GO:0044344∼cellular response to
fibroblast growth factor stimulus

2 0.01597

GOTERM BP DIRECT GO:0043434∼response to peptide
hormone

2 0.02334

GOTERM BP DIRECT GO:0030574∼collagen catabolic process 2 0.03379

GOTERM BP DIRECT GO:0030336∼negative regulation of cell
migration

2 0.04979

GOTERM CC DIRECT GO:0005576∼extracellular region 8 1.27E-06

GOTERM CC DIRECT GO:0005615∼extracellular space 6 2.14E-04

GOTERM CC DIRECT GO:0031012∼extracellular matrix 4 3.31E-04

GOTERM CC DIRECT GO:0070062∼extracellular exosome 6 0.00636

GOTERM CC DIRECT GO:0005578∼proteinaceous extracellular
matrix

3 0.00725

GOTERM CC DIRECT GO:0031093∼platelet alpha granule
lumen

2 0.02684

GOTERM CC DIRECT GO:0005604∼basement membrane 2 0.03835

GOTERM CC DIRECT GO:0005581∼collagen trimer 2 0.04454

GOTERM MF DIRECT GO:0050840∼extracellular matrix binding 2 0.01378

GOTERM MF DIRECT GO:0005515∼protein binding 9 0.02599

GOTERM MF DIRECT GO:0005201∼extracellular matrix
structural constituent

2 0.03517

KEGG PATHWAY hsa04512:ECM–receptor interaction 3 0.00421

KEGG PATHWAY hsa04510:Focal adhesion 3 0.02219

Figure 4. Expression of hub genes in normal and GC tissues

(A) SPP1; (B) TIMP1; (C) SERPINE1; (D) MMP3; (E) COL1A1; (F) BGN; (G) THBS2; (H) CDH2; (I) CXCL8; (J) THY1.
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Figure 5. Relationship between the expression of hub genes and overall survival estimated using the Kaplan–Meier plotter

(A) SPP1; (B) TIMP1; (C) SERPINE1; (D) MMP3; (E) COL1A1; (F) BGN; (G) THBS2; (H) CDH2; (I) CXCL8; (J) THY1.

Figure 6. Genetic mutation analysis of 10 hub genes in GC

The mutation rate is 7% for THBS2; 6% for COL1A1 and CDH2; 5% for SERPINE1, MMP3, and BGN; and less than 5% for SPP1,

CXCL8, TIMP1, and THY1.

Mutational analysis of hub genes
In the mutational analysis of the hub genes, we found that mutations were mainly present in THBS2, COL1A1, and
CDH2 (Figure 6). Among all mutation types, amplification was the most common.

Correlation between hub genes expression levels and GC
clinicopathological parameters
COL1A1, THBS2, and SPP1 were found to participate in both ECM-receptor interaction and focal adhesion (Table
1). Furthermore, we used ONCOMINE to explore the expression levels of potential biomarkers in GC tumor tis-
sue compared with normal tissue. We found 400, 447, and 431 studies on COL1A1, THBS2, and SPP1, respectively
(Figure 7). To further validate their prognostic significance of the three genes, we looked at their levels of expression
in normal gastric tissues compared to GC tissues in THPA. Immunohistochemistry indicated that the expression
levels of COL1A1 and SPP1 are up-regulated in GC tissues. THBS2 protein did not show significant differences in
immunohistochemistry between GC and normal gastric tissues (Figure 8). We further explored the relationships be-
tween COL1A1, THBS2, and SPP1 expression levels and clinicopathological parameters of GC patients using UAL-
CAN analysis. As shown in Figure 9A–C, the mRNA transcription levels of the three genes, considered potential
biomarkers of GC, were positively correlated with individual cancer stages, and nodal metastasis status in GC, but
independent of Helicobacter pylori infection and sex. Notably, the levels of expression of the three genes differed
significantly among different human populations (Figure 9).
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Figure 7. mRNA transcription levels of potential GC biomarkers using ONCOMINE

Numbers in each cell indicate the number of studies that met the target genes screening criteria. The depth of color indicates the

level of gene expression, with red indicating overexpression and blue indicating down-regulation.

Figure 8. Immunohistochemistry from THPA was used to explore differences in the gene expression of three genes between

normal and GC tissues

(A) COL1A1; (B)THBS2; (C) SPP1.

Correlation between hub genes and immune infiltrates
The efficacy of immune checkpoint inhibitors is influenced by a combination of factors such as tumor genomics, in
vivo PD-L1 levels, and characteristics of the tumor microenvironment. To provide further insight into the manage-
ment of immunotherapy in GC, the present study analyzed the correlation between hub genes and tumor immune
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Figure 9. Relationship between clinicopathological parameters and hub genes

(A) Clinicopathological parameters of COL1A1; (B) Clinicopathological parameters of THBS2; (C) Clinicopathological parameters

of SPP1.

Figure 10. Correlation analysis between immune infiltrates and expression of COL1A1, THBS2, and SPP1 genes

The expression levels of COL1A1 showed a significant positive correlation with macrophages and CD4 + T cells, and it was a

definite negative correlation with B cells. THBS2 was highly correlated with macrophages and dendritic cells. SPP1 showed the

most significant negative correlation with B cells, and no correlation with CD8 + T cells. With the exception of CD4 + T cells, SPP1

showed a certain degree of positive correlation with the remaining immune infiltrating cells.

infiltration via the TIMER platform (Figure 10). The expression levels of COL1A1 showed a significant positive cor-
relation with macrophages and CD4 + T cells (cor = 0.357, P<0.0001), and a negative correlation with B cells (cor
= −0.214, P<0.0001). THBS2 was highly correlated with macrophages (cor = 0.526, P<0.0001) and dendritic cells
(cor = 0.393, P<0.0001). In addition, it also had some correlation with CD8+ T cells and CD4 + T cell expression
(P<0.005). SPP1 showed the most significant negative correlation with B cells (cor = −0.328, P<0.0001), and no cor-
relation with CD8 + T cells (P>0.05). With the exception of CD4 + T cells, SPP1 showed a certain degree of positive
correlation with the remaining immune infiltrating cells.
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Figure 11. Correlation between expression of hub genes and PD-L1 expression

(A) Expression of PD-L1 in normal versus GC tissues. (B) Co-identification of PD-L1 and COL1A1 in GC tissues. (C) Co-identification

of PD-L1 and THBS2 in GC tissues. (D) Co-identification of PD-L1 and SPP1 in GC tissues.

Association between hub genes and PD-L1 gene expression in GC
patients
After reviewing the literature, we chose to explore the association between gene mutations and PD-L1 gene expression
to assess gene signature and immune relevance. Results from the UALCAN database showed a significant increase in
PD-L1 expression in GC (Figure 11A) and that the three hub genes exist in the COL1A1/PD-L1 axis, THBS2/PD-L1
axis, and SPP1/PD-L1 axis (Figure 11B,C).

Discussion
In recent years, immunotherapy has been extensively studied as a promising strategy for the treatment of cancer
[23]. Programmed cell death ligand 1 (PD-L1) is an important immunomodulatory molecule that is highly expressed
in many human cancer types [24,25], and can inhibit physiological and pathological pathways by interacting with
its receptor PD-1 [26]. Despite the success of immune checkpoint therapy in melanoma and lung cancer, the ef-
ficacy of PD-1 or PD-L1 blockade in GC is not good. Clinically, the overall remission rate in GC patients treated
with PD-1/PD-L1 inhibitors is only approximately 20% [27]. Further, PD- L1 is not an ideal biomarker for gastroe-
sophageal cancer. The efficacy of immune checkpoint inhibitor single agents is influenced by tumor genomics, in
vivo PD-L1 levels, and the tumor microenvironment [27–29]. For example, in GC, microsatellite instability and EBV
status are predictive of the efficacy of immunosuppressive drugs [30,31]. Similarly, there are many factors related
to the immune microenvironment that also predict whether a patient will respond to single-agent PD-1 inhibition.
Such factors include high tumor antigen load, dendritic cells, CD4+T cell infiltration, CD8+T cell infiltration, and
pro-inflammatory cytokines, among others [32–35]. The most well-known cytokine responsible for PD-L1 upregula-
tion in the gastrointestinal tract is the regulatory cytokine interleukin 10 (IL10) [36]. In addition, single-agent effects
may also be associated with altered PD-L1 expression due to genetic alterations and activation of the oncogenic sig-
naling pathways PI3K/AKT, ERK, and JAK/STAT3 pathways [28,29].
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An increasing number of reports have revealed oncogenic genes and other genetic marker relationships in GC.
In the context of precision medicine, tailoring treatments based on a patient’s genotype is becoming increasingly
important. Therefore, we selected hub genes to explore the assessment of gene signatures and their correlations with
the tumor immunoenvironment.

Our results showed that the hub genes COL1A1, THBS2, and SPP1 were also able to alter cellular components
in the tumor microenvironment, and that they had an axial relationship with PD-L1 expression. COL1A1, which
encodes the most abundant protein of the collagen family, is a major component of the extracellular matrix and
can influence cell behavior and tissue structure [37]. COL1A1 is considered to effectively suppress gene expression
and inhibit the proliferation, migration, and invasion of GC cells [38]. THBS2 was identified as a potent inhibitor of
angiogenesis and tumor growth, while promoting cell adhesion and migration [39]. THBS2 also affects the proteolysis
of tumor cytoplasm, thereby contributing to certain proteins in the PI3K/AKT signaling pathway. Previous studies
have observed that the expression of TGF-β, COL1A1, and THBS2 in GC cells is associated with the survival of GC
patients in a time-dependent manner [40], suggesting that COL1A1 and THBS2 may affect PI3K by up-regulating
the TGF-β signaling pathway. COL1A1 has also been observed to play a regulatory role in the JAK pathway [41].
Interaction of SPP1 and its receptor CD47 further inhibits angiogenesis by antagonizing nitric oxide signaling in
endothelial and vascular smooth muscle cells which, in turn, affects the tumor microenvironment [42]. SPP1 can
directly regulate interleukin 6 [43]. SPP1 is also associated with the expression of genes related to the PI3K/ AKT
pathway and epithelial–mesenchymal transition (EMT) [44]. We explored that COL1A1, THBS2, and SPP1 were
mainly involved in ECM receptor interactions and adhesion plaque pathways using KEGG pathway analysis. Further,
they affect the immune microenvironment and upregulate the expression of PD-L1 through PI3K/AKT signaling
pathway, JAK signaling pathway, and TGF-β signaling pathway. In addition, it is possible that more basic experiments
are needed to elucidate the mechanism.
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