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A fuzzy rank‑based ensemble 
of CNN models for classification 
of cervical cytology
Ankur Manna1, Rohit Kundu2, Dmitrii Kaplun3*, Aleksandr Sinitca3 & Ram Sarkar1

Cervical cancer affects more than 0.5 million women annually causing more than 0.3 million deaths. 
Detection of cancer in its early stages is of prime importance for eradicating the disease from the 
patient’s body. However, regular population-wise screening of cancer is limited by its expensive and 
labour intensive detection process, where clinicians need to classify individual cells from a stained 
slide consisting of more than 100,000 cervical cells, for malignancy detection. Thus, Computer-Aided 
Diagnosis (CAD) systems are used as a viable alternative for easy and fast detection of cancer. In this 
paper, we develop such a method where we form an ensemble-based classification model using three 
Convolutional Neural Network (CNN) architectures, namely Inception v3, Xception and DenseNet-169 
pre-trained on ImageNet dataset for Pap stained single cell and whole-slide image classification. The 
proposed ensemble scheme uses a fuzzy rank-based fusion of classifiers by considering two non-linear 
functions on the decision scores generated by said base learners. Unlike the simple fusion schemes 
that exist in the literature, the proposed ensemble technique makes the final predictions on the 
test samples by taking into consideration the confidence in the predictions of the base classifiers. 
The proposed model has been evaluated on two publicly available benchmark datasets, namely, the 
SIPaKMeD Pap Smear dataset and the Mendeley Liquid Based Cytology (LBC) dataset, using a 5-fold 
cross-validation scheme. On the SIPaKMeD Pap Smear dataset, the proposed framework achieves a 
classification accuracy of 98.55% and sensitivity of 98.52% in its 2-class setting, and 95.43% accuracy 
and 98.52% sensitivity in its 5-class setting. On the Mendeley LBC dataset, the accuracy achieved 
is 99.23% and sensitivity of 99.23%. The results obtained outperform many of the state-of-the-art 
models, thereby justifying the effectiveness of the same. The relevant codes of this proposed model 
are publicly available on GitHub.

Cervical Cancer is the fourth most common category of cancer in women, affecting more than 0.5 million women 
worldwide and causing more than 0.3 million deaths annually. Hence, early detection is crucial for preventing and 
curing this cancer. The primary limitation in the diagnosis of cervical cancer is the complex and time-consuming 
detection procedure, which requires experts to classify each cell from a slide containing more than 100,000 
cervical cells stained by the Papanicolaou method by Gill et al.1. Besides, the subjective variability in the screen-
ing process may lead to fatal errors in the diagnosis. Such a labour-intensive and expensive procedure prohibits 
the population-wise screening of cervical cancer, especially in underdeveloped and developing countries. So, 
the researchers have been trying to develop many automated Computer-Aided Diagnosis (CAD) methods for 
the fast, sensitive and accurate detection of cervical cancer, which can augment the success of pathologists and 
doctors in cancer diagnosis and prevention.

Deep learning2 is an important tool of Artificial Intelligence (AI) that has been prevalent in formulating 
decision-support systems for biomedical image classification3. However, end-to-end classification using deep 
learning models requires a lot of training data to provide satisfactory performance, which is often not available 
in the medical domain. Transfer learning is one of the solutions to this problem, where a model trained on a 
dataset containing a very large amount of data is re-used (sometimes after re-training) in the present problem 
with the small dataset. However, different models might predict well on certain distributions of data, that is, the 
classification in some classes in the dataset might be more accurate than the others. Besides, conventional rank 
based ensemble techniques does not utilize the distribution of the prediction probabilities. As a result, important 
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information may remain unused. Keeping this fact in mind, in this work, we propose a novel approach where we 
utilize all the information available from different base learners by quantifying two important parameters—the 
closeness of the prediction probability to 1 and deviation of the prediction probability from 1. Moreover, our 
approach fuses all such quantified values for making the final prediction so that it can deal with the classification 
problem under consideration more effectively and make a fairly accurate prediction.

Ensemble learning is one such alternative where decision scores from multiple classifiers are fused to pre-
dict the final class label of an input sample. An ensemble model is aimed to capture the salient features of all 
its constituent models thus performing better than the individual base classifiers. Such models are robust since 
ensembling diminishes the dispersion or spread of the predictions made by the base models. The variance in 
the prediction errors of the base classifiers gets reduced in the ensemble model by the addition of some bias to 
the competing base learners.

In the present work, we formulate a fusion strategy that uses the decision scores obtained by three base 
Convolutional Neural Network (CNN) classifiers, namely, Inception v3 by Szegedy et al.4, Xception by5 and 
DenseNet-169 by Huang et al.6 (pre-trained on the ImageNet dataset7) to form the ensemble. We use a fuzzy 
ranking-based approach, where the probability scores are subjected to two non-linear functions, an exponentially 
decaying function, and the tanh function, to assign the ranks to the class probabilities predicted by a base learner. 
The ranks assigned by the two non-linear functions are multiplied. The same process is repeated for each base 
learner, and the rank products from each classifier are added to get the final ranks. We use two different func-
tions of different concavities so that they can generate complementary results. Fusion entails consolidating the 
multiple ranks associated with an identity and determining a new rank that would aid in establishing the final 
decision. The main motive of using two ranks is to consider the closeness to and deviation from the expected 
result corresponding to the primary classification result. Lesser deviation corresponds to a lower value of the 
product and a better result. So, the class having the lowest value of this sum of products of ranks is deemed as 
the predicted class of the ensemble model. Here, the two non-linear functions have opposite concavity in the 
range [0, 1] and hence a higher confidence score results in a larger value of rank in one function and a smaller 
value in the other, and our aim to minimize this product. If the confidence score of a prediction is high, then 
this sum of products yields a lower value than if the confidence score is low which are explained in detail later.

Several methods have been developed over the years for the automatic classification of cervical cancer using 
cytology images. Traditional machine learning-based methods10–12, although computationally less complex, 
require extraction of handcrafted features, and feature selection for classification. This limits the performance 
of such models because of the two main reasons: (1) extraction of handcrafted features becomes difficult for 
complex data pattern, and (2) all these features may not be sufficiently informative, thus adversely affecting the 
model’s performance.

However, Win et al.13’s method yielded commendable performance. They used a shape-based iterative method 
for nuclei detection followed by employing a marker-control watershed approach for separating overlapping 
cytoplasm. The authors performed feature extraction from these segmented nuclei and used a Random Forest 
classifier for feature selection. They achieved a classification accuracy of 94.09% on the SIPaKMeD dataset by 
Plissiti et al.9 by ensembling traditional classifiers like Linear Discriminant Analysis (LDA), and Support Vector 
Machine (SVM), etc.

Deep learning-based methods can avoid the aforementioned limitations of traditional machine learning 
techniques in the following ways: (1) deep learning models perform end-to-end classification without the need 
for feature engineering; (2) self-learning is induced in these models, thereby making the models effective to 
learn complex patterns in datasets. CNNs are prevalent for classifying image data, for example, Zhang et al.14 
performed end-to-end classification using a deep CNN architecture and evaluated their method on the HErlev 
dataset achieving an accuracy of 98.3%. CNN models learn to extract invariant features automatically using the 
convolution of image and filters, have translational invariance, and they perform better than machine learning 
or image processing methods, making them popular. However, deep learning models require a large amount of 
labelled data for producing satisfactory results, but such large volumes of medical data are difficult to acquire 
since experts (doctors or pathologists) are needed to classify the acquired data. So a popular concept, called 
transfer learning is used where a deep learning model trained on a large dataset is re-used for classification on 
the current data. Li et al.15 performed transfer learning using the Inception v3 deep CNN model on a cervical 
immunohistochemistry image dataset and obtained only 77.3% accuracy.

Ensemble learning is a strategy that considers decisions obtained from more than one model for making the 
final decision. Some simple fusion schemes have been explored in literature like Sarwar et al.16 who used an aver-
age probability-based ensemble and Xue et al.17 who used a majority voting based ensemble technique. However, 
such simplistic ensemble models do not take into account the confidence of predictions and use pre-determined 
or fixed weights associated with the base learners. Keeping this in mind, in this research, we propose a novel 
ensemble technique which fuses the decision scores from three base CNN based classifiers, namely Inception 
v34, Xception5 and DenseNet-1696 while taking into account the confidence in predictions of the base learners.

Motivation and contributions.  The tedious detection process of cervical cancer makes it impossible to 
conduct regular screening throughout the population. In this paper, we propose an automated screening frame-
work that is both accurate and time-efficient. Since the data available in the biomedical domain is scarce, an end-
to-end classification system using purely deep learning methods may fail to perform satisfactorily on unseen 
data. So, we use three transfer learning-based CNN classifiers to form an ensemble model where the predictions 
from multiple competing models are taken into account. Although simple fusion schemes like majority voting, 
weighted averaging, etc., have been used in literature, they do not consider the confidence in the predictions of 
a classifier while computing the predictions. In the proposed method, we develop a mathematical model that 
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considers this, thus achieving superior classification performance than conventionally used simple ensemble 
methods. The overall workflow of the framework is shown in Fig. 1.

The contributions of the current research work are as follows: 

1.	 Ensemble learning using three bases learners namely, Inception v34, Xception5 and DenseNet-1696 has been 
implemented that boosts the performance of the overall model for making predictions on the scarce available 
data.

2.	 The proposed ensemble method applies two non-linear functions of different concavities to determine the 
fuzzy ranks of the classes in the decision scores. The sum of products of the ranks of the three base learners 
are computed and the lower rank is attributed as the predicted class. The use of two non-linear functions 
ensures that the confidence in the predictions of the classifiers is accounted for in the computation of the 
ranks, thereby leading to superior predictions.

3.	 The way we quantify the deviation of the predicted value from the expected value is novel. Also, the boost 
in accuracy brought by proposed ensemble model is noteworthy.

4.	 The proposed framework outperforms many state-of-the-art methods on two benchmark cervical cytology 
image datasets: the SIPaKMeD Pap Smear dataset by Plissiti et al.9 and the Mendeley Liquid Based Cytology 
(LBC) dataset by Hussain et al.18 in terms of classification accuracy and sensitivity.

5.	 To justify the robustness in performance of the proposed ensemble framework, it has been tested on an 
additional multi-class medical image dataset: the Zenodo 5K dataset and the results obtained prove the 
superiority of the ensemble approach.

Proposed method
In this section, we give a brief overview of the base learners we use and the necessary customization we apply to 
the basic models, followed by the implementation detail of the proposed fuzzy rank based fusion of confidence 
scores of the base learners. Here our motive for ensembling is to utilize each of the confidence factors generated 
from base learners fully by mapping them into non-linear functions. One of the mapped values signifies the 
abidance or closeness to 1 and the other one signifies the deviation from 1. This proposed approach overcomes 
the shortcoming of the conventional ranking methods which do not consider the fact mentioned above19,20, and 
this may lead to an incorrect result. In the present study, we use three base learners and evaluate our method on 
bio-medical image datasets. Initially, we train the base learners (customization with pre-trained models trained 
on ImageNet7) and take the confidence scores. After that, we map the scores on two different functions having 
different concavities to generate non-linear fuzzy ranks and generate a fused score by combining these two 
ranks, which helps us to quantify the total deviation from expected. Lesser the deviation shows better confidence 

Figure 1.   Overall structure of the proposed fuzzy rank-based ensemble of CNN models used for classification 
of cervical cytology (the image of the microscope under “Cytology” has been taken from the website (open-
access) by Marsh et al.8, and the pap stained image under “Input Images” has been taken from the publicly 
available SIPaKMeD Pap Smear dataset9 used in this research and the complete image has been made by R.K. 
using Google Slides).
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towards a particular class. The class having the lowest deviation value is considered as the winner and is assigned 
as the final class value. Here, we first give a brief overview of the pre-trained CNN models used as base learners.

Inception v3.  The most salient feature of the Inception v3 architecture developed by Szegedy et al.4 is the 
numerous parallel convolutions supported by the structure. This allows deep features to be generated while 
controlling the overfitting problem while using lesser computation than monolithic architectures like VGG-19. 
Figure 2 shows the architectural diagram of the Inception v3 CNN model.

Xception.  The Xception architecture developed by Chollet et al.5 has been inspired from the Inception v3 
architecture, consisting of the same number of model parameters as the latter, but the Xception architecture uses 
them more efficiently. They showed that pointwise convolutions and depthwise separable convolutions lie at the 
two extremes of a discrete spectrum, where the inception modules lie in the middle. Thus, they replaced the 
inception modules with depthwise separable convolutions, which provided a boost in the classification perfor-
mance while incurring the same computation cost. The basic structure of the Xception model is shown in Fig. 3.

DenseNet‑169.  The DenseNet architectures by Huang et al.6 are distinctive, in the sense that they provide a 
rich feature representation while also computationally efficient. The reason for that is, each layer in the DenseNet 
model is a concatenation of the feature maps in the current layer and all its preceding layers, as shown in Fig. 4. 
This makes the model compact since fewer channels are accommodated in the convolutional layers thus decreas-

Figure 2.   The architecture of the Inception v3 model: base learner 1 (image has been made by R.K. using 
Google Slides).

Figure 3.   The architecture of the Xception model: base learner 2 (image has been made by R.K. using Google 
Slides).
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ing the number of trainable parameters, and the concatenation of the feature maps from the previous layers gives 
enhanced feature representation.

Cascade of pre‑trained model and customized layers.  For better utilization of the information gen-
erated by pre-trained models, we add some customized layers based on the structure of the models. Next to the 
pre-trained models, we add a fully connected layer of 1024, 1028 and 256 nodes for Inception v3, DenseNet-169 
and Xception respectively. This fully connected layer is associated with the Rectified Linear Unit (ReLU) acti-
vation function to overcome the vanishing gradient problem and faster learning. Then a dropout layer of 20% 
is added to avoid the problem of overfitting. If we directly calculate the confidence scores from such a high 
number of hidden units, we may lose some important information. To address this issue, at first, we cluster the 
necessary information into a lesser number of hidden nodes such as 128, 64, and 32 nodes for Inception v3, 
DenseNet-169 and Xception respectively. Then at the end, we implement class number specific output units. 
The hyperparameters used for training the CNN models have been set through extensive experiments and are 
shown in Table 1. The number of epochs used for fine-tuning the datasets has been set to 20, because the model 
weights are already optimized for image classification through pre-training on the ImageNet data, and we only 
need to train the customized layers that have been added to the CNN models, while keeping the weights of the 
other (pre-trained) layers fixed.

Proposed ensemble approach.  In this section, we detail the mathematical formulation for the proposed 
ensemble method. Let the confidence scores for C number of classes given by base learner i are ( Pi1 , P

i
2 , P

i
3 , ... , 

PiC ), here i = 1, 2, 3. At first, we accumulate all the confidence scores obtained from each of the base learners. As 
( Pi1 , P

i
2 , P

i
3 , ... , P

i
C ) represent probabilities, essentially it will follow Eq. (1).

Let ( Ri1
1  , Ri1

2  , Ri1
3  , ... , Ri1

C ) and ( Ri2
1  , Ri2

2  , Ri2
3  , ... , Ri2

C ) are fuzzy ranks generated by using the two non-linear functions.
The fuzzy ranks are calculated by Eqs.  (2) and  (3).

(1)
C
∑

k=1

Pik = 1, ∀ i = 1, 2, 3.

Figure 4.   Architecture of the DenseNet model: base learner 3 (image has been made by R.K. using Google 
Slides).

Table 1.   Values of the hyperparameters used for training the base CNN classifiers.

Hyperparameter Value

Optimizer RMSProp

Loss function Categorical cross entropy

Learning rate 2.00E−05

Batch size 32

Dropout rate 20%

Number of epochs 20
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The domain of definition for the functions calculating non-linear rankings will be [0, 1] as Pikǫ[0, 1] . The plots 
for these functions are shown in Fig. 5.

Equation (2) provides a reward for a classification. If x approaches 1, then the value of Eq. (2) increases i.e., 
the amount of reward increases. Conversely for Eq. (3), when we calculate deviation from 1, i.e., if x approaches 
0, the deviation will be more.

Let ( RSi1 , RS
i
2 , RS

i
3 , ... , RS

i
C ) be the fused rank scores, where RSik is given by Eq. (4).

 

(2)Ri1
k =1− tanh

(

(Pik − 1)2

2

)

(3)Ri2
k =1− exp

(

−
(Pik − 1)2

2

)

(4)RSik = Ri1
1 × Ri2

1

Figure 5.   The non-linear functions used to generate fuzzy ranks in the proposed ensemble framework. x 
denotes the probability of a class of a sample data. (a) Quantifies the deviation from its objective for a class 
having prediction probability. Deviation decreases when x decreases. Eventually it becomes 0 when x = 1 . (b) 
Quantifies the reward to be given to a class having prediction probability x. Reward increases when x increases. 
Eventually it becomes 1 when x = 1.
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1.	 exp(− (x−1)2

2 ) is concave downward in its domain of definition [0, 1] for this study. As the negative of this 
function is a matter of concern, it will be concave upward. Because of its negative gradient in [0, 1], the output 
rank score will try to shift towards 1.

2.	 tanh( (x−1)2

2 ) is concave upward in its domain of definition [0, 1] for this study. As the negative of this func-
tion is a matter of concern, it will be concave downward. Because of its positive gradient in [0, 1], the output 
rank score will try to shift towards 0.

The rank score is the product of reward and deviation for a particular confidence score obtained from a base 
learner. As the range of Eq. (3) is less than the range of Eq. (2), the nature of the product will be governed by 
Eq. (3). Lesser deviation calculated from the confidence score implies a lesser rank score. Finally, the rank scores 
are the only matter of concern for calculating the fused scores.

This RSik will signify how confidence level towards a particular class as this is the product of fuzzy ranks 
generated by the two different types of functions. Now the fused score tuple is ( FS1, FS2, FS3, ..., FSC ), where FSk 
is given by Eq. (5).

This fused score can be realized as the final score corresponding to each class. We then find the class which 
has the least fused score and consider it as the winner using Eq. (6). The computational complexity for the fusion 
strategy is O(number of classes).

From the plot of the product of two rank generating functions, shown in Fig. 6, it is clear that the final rank 
decreases with an increase in confidence (probability) score, which is proof of correctness. The flow diagram of 
the proposed ensemble method is shown in Fig. 7.

Figure 8 shows an example of the proposed method for an image from the Mendeley LBC dataset (4-class). 
Here for an image belonging to class 2, we collect the probability values from the three base learners for each 
of the four classes, shown in Fig. 8a–c respectively. The probability value belonging to class 1 given by Incep-
tion v3 is 0.261. So the corresponding ranks are 0.735 and 0.238 as obtained from Eqs. (2) and  (3). Essentially 
the rank score becomes 0.175 by Eq. (4). Similarly, we calculate rank scores for each of the three base learners 
for four classes. We get 0.175, 0.134 and 0.148 as the rank scores for class 1 from Inception v3, Xception and 
DenseNet-169 respectively. The fused score becomes 0.458 by Eq. (5). Similarly 0.426, 0.594, and 0.588 (refer to 
“Fused Score” column of Table (d) of Fig. 8) are the fused scores for classes 2, 3 and 4 respectively. We can see 
that the winner made by Inception v3 and DenseNet-169 is class 2, but by Xception it is class 1. Here our fusion 
method works properly and makes a robust decision. The overall fused score is minimum for class 2, so by Eq. 6, 
the predicted class is 2, which is mentioned at the beginning of this explanation.

Results and discussion
In this section, we have reported the results by evaluating the proposed ensemble model on two publicly available 
datasets and discussed the significance of the results obtained. We have also compared the performance of the 
proposed model with many existing methods to ensure the superiority of the proposed method.

Dataset description.  In the current research, we have used two publicly available benchmark datasets, 
namely, the Mendeley Liquid Based Cytology (LBC) dataset proposed by Hussain et al.18 and the SIPaKMeD 
Pap Smear dataset proposed by Plissiti et al.9 to evaluate the performance of the proposed ensemble framework.

(5)FSk =

L
∑

i=1

RSik , ∀k = 1, 2, ...,C

(6)class(I) = min
∀k

FSk

Figure 6.   Plot of the product of the rank generating functions used in the proposed method. x denotes the 
prediction probability of a class and y represents the fuzzy rank product.
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Mendeley liquid based cytology dataset.  The Mendeley LBC dataset18 contains 963 images unevenly distributed 
among four classes. The images were prepared by the liquid-based cytology technique using cells obtained from 
460 patients. The distribution of the images in the dataset is shown in Table 2 and some examples images from 
the dataset are shown in Fig. 9.

SIPaKMeD pap smear dataset.  The SIPaKMeD pap smear dataset9 consists of 4049 isolated cervical cell images. 
The cells are unevenly distributed among five different classes, classified by the experts. Normal cells are divided 
into two categories, namely “Superficial-Intermediate” and “Parabasal”, while abnormal (but not malignant) cells 
are categorized into “Koilocytes” and “Dyskeratotic”, and the final category is benign or “Metaplastic” cells. The 
distribution of images in the dataset is shown in Table 3 and some examples of images from the dataset are 
shown in Fig. 10.

Evaluation metrics.  To validate the performance of the proposed model, we have used four popular evalu-
ation criteria: Accuracy, Precision, Recall and F1-Score. In a binary classification problem, suppose the two 

Figure 7.   Mathematical steps of the proposed ensemble method using three CNN base models. I represents the 
input images; P represents the decision scores generated by the base learner and i represents the base learners: 
Inception v3 ( i = 1 ), Xception ( i = 2 ) and DenseNet-169 ( i = 3 ) (image has been made by R.K. using Google 
Slides).

Figure 8.   A hypothetical example showing the working procedure of the proposed ensemble model for an 
image taken from the 4-class dataset. Tables (a–c) show all the necessary calculations required to generate the 
rank scores from the base learners. Table (d) shows the overall fused score and the final decision to get the 
classification result. Bold font represents the rank score of the class that is declared the winner by the respective 
model (image has been made by R.K. using Google Slides).
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classes are: positive and negative. True Positive (TP) refers to a sample belonging to the positive class, being clas-
sified correctly. False Positive (FP) refers to a sample belonging to the negative class but classified to be belonging 
to the positive class. Similarly, True Negative (TN) refers to a sample being classified correctly as belonging to 
the negative class. False Negative (FN) refers to a sample belonging to the positive class but classified as being 
part of the negative class. Now, extending these measures to a multi-class problem with say N classes generates 
a confusion matrix, say C, in which the columns represent the true class and rows represent the predicted class.

The mathematical expressions of the evaluation metrics obtained from the confusion matrix C are thus given 
by Eqs.  (7),  (8), (9) and  (10).

Accuracy:

(7)Accuracy =

∑

i Cii
∑

i

∑

j Cij

Figure 9.   Examples of images from the Mendeley LBC dataset18. HSIL high squamous intra-epithelial 
lesion, LSIL low squamous intra-epithelial lesion, NIL negative for intra-epithelial lesion, SCC squamous cell 
carcinoma.

Table 2.   Distribution of images in the Mendeley LBC smear dataset.

Class Category Number of images

1 Negative for intra-epithelial malignancy 613

2 High squamous intra-epithelial lesion 113

3 Low squamous intra-epithelial lesion 163

4 Squamous cell carcinoma 74

– Total 963

Figure 10.   Examples of images from the SIPaKMeD Pap Smear dataset9.

Table 3.   Distribution of images in the SIPaKMeD pap smear dataset.

Class Category Category Number of images

1 Normal Superficial-intermediate 831

2 Normal Parabasal 787

3 Abnormal Koilocytotic 825

4 Abnormal Dyskeratotic 813

5 Benign Metaplastic 793

– – Total 4049
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Precision:

Recall or Sensitivity:

F1-Score:

Implementation.  Table 4 shows the results obtained by the proposed ensemble framework on the publicly 
available datasets used in this work on the 5-fold cross-validation experimental setting. The results confirm that 
the proposed model achieves high classification accuracy and sensitivity, while also being much faster than the 
current manual screening procedure justifying the reliability of the automated approach. The training time per 
fold is 90 min for the SIPaKMeD Pap Smear dataset, and 25 min for the Mendeley LBC dataset. The confusion 
matrices obtained by the proposed framework on fivefold cross-validation on all the datasets used in this study 
are shown in Fig. 11. For the SIPaKMeD 2-class and Mendeley LBC datasets, the false positive and false negative 
rates for each class are fairly low. In the SIPaKMeD 5-class dataset, however, a significant number of samples are 
misclassified. This is more prominent for the “Superficial Intermediate” class where many samples are classified 
as belonging to class “Metaplastic”.

To justify the choice of the base learners, we have performed experiments using combinations of several base 
learners: Inception v3, Xception, DenseNet-121, DenseNet-169, DenseNet-201, VGG-16, VGG-19, ResNet-50 
and ResNet-101. The results obtained are reported in Table 5. The proposed combination of Inception v3, Xcep-
tion and DenseNet-169 obtains the best result on all the three datasets and is significantly better than the second-
best performance obtained by the ensemble of Inception v3, VGG-16 and DenseNet-169. The performance of an 
ensemble depends more upon the ability of the base learners to provide complementary information, than the 
individual performance of the base learners. Clearly, the three classifiers used in this research are better suited 
for the ensemble than the other tested combinations.

The proposed framework can be used as a plug-and-play model where new test images can be passed through 
the model to generate the predictions through the ensemble scheme, and this will eventually help the expert 
clinicians to make a quicker and accurate decision. For testing on new test samples, about 5 seconds are required 
per image. So, the proposed CAD method is reliable for use in the field.

All the base models are generated by customizing the pre-trained models, and all the pre-trained models 
have a sufficient number of convolution layers. Hence, we do not require to add more convolution layers in our 

(8)Precision =

∑

i Cii
∑

i

∑

j Cji

(9)Recall =

∑

i Cii
∑

j Cij

(10)F1− Score =
2

1
Precision + 1

Recall

Table 4.   Results obtained by the proposed framework on the three publicly available datasets used in this 
study, considering fivefold cross-validation scheme. Avg average of the fivefolds, Std. Dev. standard deviation.

Dataset Fold Accuracy (%) Precision (%) Recall (%) F1-Score (%)

SIPaKMeD 2-Class

1 98.09 98.13 98.03 98.08

2 98.67 98.75 98.54 98.63

3 97.80 97.85 97.73 97.79

4 98.19 98.11 98.29 98.20

5 100.00 100.00 100.00 100.00

Avg ± Std.Dev. 98.55± 0.78 98.57± 0.77 98.52± 0.79 98.54± 0.78

SIPaKMeD 5-Class

1 95.60 95.60 95.73 95.66

2 94.84 94.56 94.60 94.58

3 95.34 95.21 95.34 95.27

4 95.41 95.34 95.41 95.37

5 95.96 96.00 95.81 95.90

Avg ± Std.Dev. 95.43± 0.36 95.34± 0.48 95.38± 0.43 95.36± 0.45

Mendeley LBC

1 98.96 98.96 98.96 98.96

2 99.48 99.12 99.48 99.30

3 99.12 98.96 99.12 99.04

4 99.12 99.12 99.12 99.12

5 99.48 99.48 99.48 99.48

Avg ± Std.Dev. 99.23± 0.21 99.13± 0.19 99.23± 0.21 99.18± 0.19
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customized models. However, for the visualization purpose, we have provided the filters of convolution for the 
Inception v3 model on the Mendeley LBC dataset in Fig. 12.

Robustness of base learners.  It is evident from Table 6 that our model performs well in all the datasets 
we have tested on. To prove that the model is not overfitted even after being trained on a smaller dataset, we 
have provided loss curves Fig. 13 for base learners. A decrease in the validation loss along with training loss is 
prominent in the provided loss curves for the base learners. It indicates that the base learners we have fine-tuned 
perform robustly and are not overfitted.

Figure 11.   Confusion matrices obtained by the proposed method on the three datasets used in this research on 
fivefold cross-validation. Dys dyskeratotic, Koi koilocytotic,Meta metaplastic, Para parabasal, SupInt superficiel 
intermediate. NILM negative for intra-epithelial malignancy, HSIL high squamous intra-epithelial lesion, SCC 
squamous cell carcinoma, LSIL low squamous intra-epithelial lesion (images have been made by R.K. using 
Google Slides).

Table 5.   Results obtained on ensembling various combinations of base learners on all the three datasets used 
in this study.

Model-1 Model-2 Model-3

Ensemble result (classification accuracy %)

Mendeley LBC SIPaKMeD 2-Class SIPaKMeD 5-Class

Inception v3 Xception DenseNet-121 96.05 95.38 92.30

Inception v3 Xception DenseNet-201 94.04 93.89 90.60

Inception v3 VGG-16 DenseNet-169 97.37 96.39 93.01

Xception VGG-16 ResNet-50 95.06 93.98 91.05

DenseNet169 VGG-19 ResNet-50 96.36 94.68 91.56

DenseNet169 VGG-19 ResNet-101 95.64 93.07 90.42

Inception v3 Xception DenseNet-169 99.23 98.55 95.43
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Comparison to state‑of‑the‑art.  Table 6 shows the classification results obtained by the base classifiers 
and their ensemble using the proposed ensemble technique. In the SIPaKMeD Pap Smear dataset, the Inception 
v3 model performs better than the Xception and DenseNet-169 models, whereas, the Xception model performs 
better than the other two in the Mendeley LBC dataset. The proposed ensemble method performs significantly 
better than all the base classifiers in both datasets. This indicates that the classification capability of different 
CNN models has some dependency upon the dataset under consideration: Inception v3 performs better for 
single-cell images dataset, while Xception performs better for the whole slide images dataset; but the proposed 
ensemble method performs robustly by considering the confidence score from all its base learners. Thus the 
ensemble model can be generalized better than a single CNN classifier. Figure 14 shows the results of some 
standard CNN models obtained on the datasets, compared to the proposed ensemble framework.

Some fusion schemes are popularly used in literature, like majority voting, probability averaging, and weighted 
probability averaging, etc. Figure 15 shows the comparison of the proposed ensemble scheme to some of these 
popular ensemble techniques that have been used in literature, using the same base classifiers: Inception v3, 
Xception and DenseNet-169. In both datasets, the weighted probability averaging technique gives classification 
results closest to the proposed ensemble technique, wherein the weights have been determined experimentally. 
But, this is a static process, since, after the selection of the weights, there is no scope for dynamically refactoring 
the weights at prediction time. The proposed ensemble model, however, assigns ranks to the classifiers on each 
test sample based on the confidence in predictions by the base learners, which leads to superior classification 
performance.

Table 7 compares the proposed approach with some state-of-the-art results on the datasets. No published 
work has been found on the Mendeley LBC dataset at the time of writing this manuscript for comparison.

Error analysis.  Figure 16 shows some examples from the SIPaKMeD Pap Smear dataset where one or more 
base classifiers made wrong predictions on the sample, but the ensemble made the correct predictions. Fig-
ure 16a is a sample from the “Metaplastic” class of the SIPaKMeD dataset, which is classified as “Koilocytotic” 
by the DenseNet-169 with the confidence of 31%, and “Parabasal” by the Xception model with the confidence 
of 36%. However, being classified as “Metaplastic” by the Inception v3 model with 98% confidence allowed 
the ensemble to predict the sample correctly. Similarly, the sample in Fig. 16b, originally of class “Parabasal” is 
misclassified as “Koilocytotic” by the DenseNet-169 model with the confidence of 32% while the Xception and 
Inception v3 models predicted correctly with confidence scores of 95% and 97% respectively, thus allowing the 
ensemble to predict the sample correctly as “Parabasal”. Figure 16a has multiple nuclei in its image and the cyto-
plasm in Fig. 16b is not distinguishable. Although both the test samples had a bad image quality, the proposed 
framework was able to correctly classify them, justifying the robust performance of the model.

Figure 12.   Visualization of the convolution filters of the Inception v3 model on the Mendeley LBC dataset (the 
plots have been formed using Keras framework of Python).
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Figure 13.   Loss curves obtained on fine-tuning the three CNN base learners: Inception v3, Xception and 
DenseNet-169 on the three datasets used in this research—(a–c) SIPaKMeD 2-class dataset, (d–f) SIPaKMeD 
5-class dataset and (g–i) Mendeley LBC 4-class dataset (The loss curves have been plotted using Keras 
framework of Python).

Table 6.   Comparison of the classification performance of the base learners and their ensemble using the 
proposed scheme.

Dataset Method Accuracy(%) Precision (%) Recall (%) F1-Score (%)

SIPaKMeD 2-Class

Inception v3 97.71 97.65 97.75 97.70

Xception 95.42 95.61 95.22 95.37

DenseNet-169 96.89 96.11 95.65 93.82

Proposed ensemble 98.55 98.57 98.52 98.54

SIPaKMeD 5-Class

Inception v3 94.36 94.40 94.37 94.38

Xception 94.00 93.94 94.00 93.97

DenseNet-169 93.26 93.34 93.27 93.30

Proposed ensemble 95.43 95.34 95.38 95.36

Mendeley LBC

Inception v3 97.69 97.64 97.67 97.65

Xception 98.04 98.11 98.26 98.18

DenseNet-169 98.07 97.47 97.53 97.50

Proposed ensemble 99.23 99.13 99.23 99.18
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Figure 17 shows some test samples from the SIPaKMeD Pap Smear dataset that were misclassified by the 
proposed framework. Figure 17a shows a sample from the “Metaplastic” class which is misclassified as “Parabasal”. 
The nucleus in the image is not distinguishable from the cytoplasm leading to an incorrect classification by the 
ensemble model. Figure 17b shows an image belonging to the “Superficial Intermediate” class, but misclassi-
fied as “Koilocytotic”. The reason for this might be the intrusion of another Superficial Intermediate cell in the 
image on the top right corner. This unwanted cell is not completely included in the image and only part of the 
cytoplasm is visible. This leads to an erroneous nucleus to cytoplasm ratio, leading the framework to classify the 
image as a “Koilocytotic” class.

Statistical analysis.  To statistically analyse the viability of the proposed ensemble framework concerning 
the base learners used to form the ensemble, McNemar’s statistical test24 is performed. McNemar’s test is a non-
parametric analysis of paired nominal data distribution. The “ p− value ” signifies the probability of two models 
being similar, thus, a lower p− value is desired. To reject the null hypothesis that the two models are similar, the 
p− value needs to be smaller than 5% that is, if p− value < 0.05 , we can safely say that the two models under 
consideration are statistically different. From Table 8, it can be concluded that in both the datasets (and in both 
settings of the SIPaKMeD pap smear dataset), the null hypothesis is rejected, that is, the ensemble model is 
markedly different from the base learners.

Additional test.  To further justify the robustness of the proposed ensemble framework, we evaluate it on 
an 8-class colorectal cancer histopathology dataset: the Zenodo 5K dataset25. The distribution of images in the 
dataset is tabulated in Table 9.

Table 7.   Comparison of the proposed framework with some state-of-the-art methods on the SIPaKMeD pap 
smear dataset.

Dataset Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)

SIPaKMeD 2-Class
Win et al.13 98.27 – – –

Proposed method 98.55 98.57 98.52 98.54

SIPaKMeD 5-Class

Plissiti et al.9 95.35 – – –

Win et al.13 94.09 – – –

Sevi et al.21 88.40 – – –

Proposed method 95.43 95.34 95.38 95.36

Figure 14.   Comparison of the proposed ensemble model with some standard CNN models in literature: 
Inception v34, Xception5, DenseNet-1696, ResNet-1822, VGG-1923 (image has been made by R.K. using Google 
Sheets).
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Table 10 shows the results obtained upon evaluation using the fivefold cross-validation scheme. From the 
table, it can be noted that the ensemble of the classifiers yield results significantly better than its constituent base 
learners in this multi-class data arrangement, justifying that the proposed ensemble method is robustly boosting 
the performance of the base learners. Comparison of the results obtained by the proposed method and some 
state-of-the-art methods are tabulated in Table 11, where the proposed ensemble method is seen to outperform 
the previous methods by a significant margin.

Figure 15.   Comparison of the proposed ensemble model with some popular fusion techniques in literature 
using the same base learners: Inception v3, Xception and DenseNet-169 (image has been made by R.K. using 
Google Sheets).

Figure 16.   Examples of test samples from the SIPaKMeD Pap Smear dataset9 where one or more of the base 
classifiers predict incorrectly, but the ensemble predicts correctly. (a) DenseNet-169 classifies the sample as: 
“Koilocytotic” with confidence 31%, Xception classifies the sample as: “Parabasal” with confidence 36% and 
Inception v3 classifies the sample as: “Metaplastic” with confidence 98%. Ensemble prediction is: “Metaplastic”. 
(b) DenseNet-169 classifies the sample as: “Koilocytotic” with confidence 32%, Xception classifies the sample 
as “Parabasal” with confidence 95%, and Inception v3 classifies the sample as “Parabasal” with confidence 98%. 
Ensemble prediction is: “Parabasal”.
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Figure 17.   Examples of some misclassified samples from the SIPaKMeD Pap Smear dataset9. (a) Final 
prediction: “Parabasal” (b) Final prediction: “Koilocytotic”.

Table 8.   Results of the McNemar’s test performed between the proposed ensemble model and the base 
learners used: null hypothesis is rejected for all cases.

Dataset Comparison model p-value

SIPaKMeD 2-Class

Inception v3 2.15E−02

Xception 1.80E−04

DenseNet-169 4.30E−03

SIPaKMeD 5-Class

Inception v3 1.61E−03

Xception 9.80E−04

DenseNet-169 1.20E−03

Mendeley LBC

Inception v3 8.44E−04

Xception 4.13E−02

DenseNet-169 1.79E−04

Table 9.   Distribution of images in the Zenodo 5K dataset used for the additional test in this research.

Class Category Number of images

1 Tumour epithelium 625

2 Simple stroma 625

3 Complex stroma 625

4 Immune cells 625

5 Debris 625

6 Normal mucosal glands 625

7 Adipose tissue 625

8 Background (no tissue) 625

Table 10.   Results (accuracies in %) obtained by the proposed ensemble framework and its base classifiers on 
the Zenodo 5K breast histopathology dataset.

Fold Inception v3 Xception DenseNet-169 Proposed ensemble

1 93.12 89.34 88.80 96.90

2 94.02 88.19 87.24 96.91

3 91.20 89.41 87.49 96.90

4 95.80 89.33 89.96 96.95

5 93.60 88.18 89.60 96.86

Avg ± Std.Dev 93.55± 1.66 88.89± 0.64 88.62± 1.22 96.90± 0.03
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Conclusion and future work
Cervical cancer is one of the leading causes of mortality among women, whose population-wide screening is 
restricted due to the expensive and laborious detection process demanding the expertise of clinicians for detec-
tion. In this paper, we develop a CAD framework that classifies cytology images using an ensemble of three stand-
ard CNN based classifiers. The proposed ensemble model generates ranks of the classifiers using two non-linear 
functions which help to take into account the confidence in predictions of the base learners. The proposed CAD 
framework, when evaluating two benchmark datasets for cervical cytology classification, produces competitive 
results in terms of accuracy and sensitivity to the disease, thus justifying the effectiveness of the framework. 
The fast detection tool developed can function like a plug-and-play model that requires little intervention of the 
expert clinicians for cervical cancer screening, and hence suitable for incorporation in the field.

As discussed previously, some of the images could not be accurately classified by the proposed ensemble 
model, due to poor image contrast or the presence of overlapping cells. So there might be a need for preprocess-
ing of the images, which we would like to address in the future. We may try contrast enhancement techniques or 
prior segmentation of cells for isolating overlapping cells. We may also consider ensembles of other base learners, 
and explore different rank generation functions to perform the ensemble.
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