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Abstract

Rationale: Two distinct subphenotypes have been identified in
acute respiratory distress syndrome (ARDS), but the presence of
subgroups in ARDS associated with coronavirus disease (COVID-19)
is unknown.

Objectives: To identify clinically relevant, novel subgroups in
COVID-19–related ARDS and compare them with previously
described ARDS subphenotypes.

Methods: Eligible participants were adults with COVID-19 and
ARDS at Columbia University Irving Medical Center. Latent class
analysis was used to identify subgroups with baseline clinical,
respiratory, and laboratory data serving as partitioning variables.
A previously developed machine learning model was used to
classify patients as the hypoinflammatory and hyperinflammatory
subphenotypes. Baseline characteristics and clinical outcomes
were compared between subgroups. Heterogeneity of treatment
effect for corticosteroid use in subgroups was tested.

Measurements and Main Results: From March 2, 2020, to
April 30, 2020, 483 patients with COVID-19–related ARDS met

study criteria. A two-class latent class analysis model best fit the
population (P=0.0075). Class 2 (23%) had higher proinflammatory
markers, troponin, creatinine, and lactate, lower bicarbonate, and
lower blood pressure than class 1 (77%). Ninety-day mortality was
higher in class 2 versus class 1 (75% vs. 48%; P, 0.0001).
Considerable overlap was observed between these subgroups and
ARDS subphenotypes. Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) RT-PCR cycle threshold was
associated with mortality in the hypoinflammatory but not the
hyperinflammatory phenotype. Heterogeneity of treatment effect to
corticosteroids was observed (P=0.0295), with improved mortality
in the hyperinflammatory phenotype and worse mortality in the
hypoinflammatory phenotype, with the caveat that corticosteroid
treatment was not randomized.

Conclusions: We identified two COVID-19–related ARDS
subgroups with differential outcomes, similar to previously described
ARDS subphenotypes. SARS-CoV-2 PCR cycle threshold had
differential value for predicting mortality in the subphenotypes. The
subphenotypes had differential treatment responses to corticosteroids.
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A substantial proportion of patients with
severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection
develop the acute respiratory distress
syndrome (ARDS) (1–4). Despite emerging

treatment options for coronavirus disease
(COVID-19), such as dexamethasone and
IL-6 receptor antagonists, mortality among
patients with COVID-19–related ARDS
remains high (5, 6). Although some
prognostic features in severe COVID-19
have been identified, the determinants of
the individual variability in treatment
response and outcomes remain
incompletely understood (1–3).

ARDS not associated with COVID-19 is
characterized by clinical and biological
heterogeneity, which has been implicated as a
contributing factor in negative clinical trials
aimed at developing treatment strategies (7,
8). To address this heterogeneity, prior work
has consistently identified two subphenotypes
in non–COVID-19–related ARDS defined by
differential profiles of inflammation, organ
failure, and outcomes, as well as responses to
randomized treatment interventions (9–11).
Recently, these two subphenotypes (hyper-
and hypoinflammatory) were identified in a
small cohort of 39 patients with COVID-
19–related ARDS (12). However, it remains
unclear whether distinct biological and clinical
subgroups exist in COVID-19–related ARDS
and whether these subgroups are distinct
from previously described non–COVID-19–
related ARDS subphenotypes.

The primary objective of this studywas to
identify novel subgroups inCOVID-19–related
ARDSusingminimally biased clustering
methods and to evaluate the clinical and
prognostic relevance of any resulting subgroups
using 90-day outcome data. Using a previously
described clinical classifiermodel, we also set
out to compare any identifiedCOVID-
19–relatedARDS subgroupswith the
previously described hypo- and
hyperinflammatoryARDS subphenotypes (13).

Methods

Study Population
Among adult (age> 18) patients admitted to
the ICUs at two hospitals affiliated with

NewYork-Presbyterian Hospital/Columbia
University Irving Medical Center (NYP/
CUIMC) fromMarch 2, 2020, through April
30, 2020, patients were included in this study
if they fulfilled the following criteria: 1) had a
positive PCR test for SARS-CoV-2, 2)
required invasive mechanical ventilation
(IMV), and 3) met criteria for ARDS, using
the Berlin definition based on a review of
clinical data and chest radiographs assessed
by critical care physicians (4). Exclusion
criteria included death before ICU
admission, tracheostomy before ICU
admission, or endotracheal intubation before
transfer from an outside hospital. The latter
group was excluded owing to lack of
consistent available clinical data within 24
hours of intubation for patients transferred
already on IMV and to mitigate potential
selection bias of which patients were
transferred during the early surge of the
pandemic in New York City. Unless stated
otherwise, all laboratory, ventilatory, and
vital sign variables used for analysis were
recorded on the initial day of IMV. The
study was approved by the institutional
review board at CUIMC.

Data Collection
Electronic medical records were reviewed for
data on demographic, clinical, and laboratory
variables for all included patients. Vital signs,
ventilatory measurements, and routine
laboratory studies that resulted within 24
hours of initiation of IMVwere used for
analysis. For blood-based biomarkers (IL-6,
B-type natriuretic peptide, high-sensitivity
C-reactive protein, D-dimer, ferritin, lactate
dehydrogenase, lactate, high-sensitivity
cardiac troponin T, procalcitonin,
international normalized ratio, and activated
partial thromboplastin time), data were
extracted when measured as part of clinical
care. For patients without IL-6 measured
clinically, prospectively stored samples were
tested, methods of which are
described below.

At a Glance Commentary

Scientific Knowledge on the
Subject: Acute respiratory distress
syndrome (ARDS) is a frequent sequela
of severe coronavirus disease
(COVID-19). Although hyper- and
hypoinflammatory subphenotypes
defined by unique clinical characteristics
and biomarkers have been consistently
identified among patients with
non–COVID-19–related ARDS, and
clinical outcomes among severely ill
patients with COVID-19 are variable,
the existence of distinct subgroups
among patients with COVID-19–related
ARDS remains unknown.

What This Study Adds to the Field:
Using latent class analysis, we identified
two subgroups among a cohort of
483 patients with COVID-19–related
ARDS. Class 2 patients had higher
inflammatorymarkers and lactate and
corresponded with the previously
identified hyperinflammatory
subphenotype, whereas class 1
corresponded with the
hypoinflammatory subphenotype.
Class 2 had significantly higher 90-day
mortality than class 1 (75% vs. 48%;
P, 0.0001). Differential response to
corticosteroid treatment was observed,
with decreasedmortality in steroid-
treated patients in class 2 but not class 1.
Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) PCR cycle
threshold was a predictor of mortality in
class 1, but not class 2, suggesting distinct
drivers of mortality among classes.
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Interventions delivered throughout
hospitalization were recorded, including
targeted treatments for COVID-19 (e.g.,
corticosteroids, IL-6 receptor antagonists),
receipt of tracheostomy, vasopressor use,
renal replacement therapy, and advanced
therapies for ARDS (neuromuscular
blockade, ventilation in the prone position,
and extracorporeal membrane oxygenation).

The primary outcome of this study was
vital status at 90 days after intubation.
Secondary outcomes included vital status at
28 and 180 days after intubation, ICU length
of stay, and ventilator-free days at 90 days
after intubation. For the primary outcome,
follow-up time was right censored on July 29,
2020, so that each patient had at least 90 days
of observation.

Latent Class Analysis
Clinical data including demographics, vital
signs, and laboratory values were evaluated
as class-defining variables for latent class
analysis (LCA). Demographics and vital
signs were used in accordance with LCA for
prior ARDS subphenotyping (9–11). The
study design enabled inclusion of several
novel laboratory and respiratory variables
that were not used in prior LCA studies, such
as lactate, troponin, procalcitonin, ferritin,
and ventilatory ratio (14). Variables with
.25%missingness (Table E1 in the online
supplement), those with.15% of values
outside the upper limit of assay detection,
and highly correlated variables were excluded
from the LCA (see the online supplement for
details). Clinical outcomes and illness
severity scores were not included as class-
defining variables, and modeling was
performed agnostic of these variables. The
variables used for LCA are summarized in
Table E2.

For LCA, we fit four sequential models
consisting of 1–4 classes. The LCA
algorithms used were similar to those in our
prior studies and are described further in the
online supplement (9–11). The best-fitting
model was selected based on the Bayesian
information criteria, entropy, and the
Vuong-Lo-Mendall-Ruben test (15). Once
the best model was selected, an individual
patient’s class assignment was determined by
the highest probability of class membership
(>0.5). LCA was performed using Mplus8
editor version 1.7.

Clinical Classifier Model
To compare the overlap of the newly
identified COVID-19–related ARDS

subgroups with previously described ARDS
subphenotypes, we estimated the
probabilities of belonging to the
hyperinflammatory subphenotype using a
previously validated clinical classifier model
(16). Given that COVID-19–related ARDS
has a uniform etiology and the demographics
of the study population were markedly
different from those in which the clinical
classifier models were developed, we applied
a model composed of vital signs and
laboratory values only. In the original study,
this model had an area under the receiver
operator characteristics curve of 0.94 for
discriminating ARDS subphenotypes (16).
The variables used in the clinical classifier
model are described in Table E2. A
probability of>0.5 was used to assign
patients to the hyperinflammatory
subphenotype, and,0.5 to the
hypoinflammatory subphenotype.

Variable of Importance for Mortality
Given the uncertain validity of standard
critical care scoring systems such as Acute
Physiology and Chronic Health Evaluation-II
and Sequential Organ Failure Assessment
(SOFA) scores in COVID-19, to evaluate the
additional prognostic value of the identified
LCA classes in comparison with cohort-
specific mortality predictors in COVID-
19–related ARDS, we used a supervised
learning approach to identify the most
important variables in predicting mortality in
our cohort (12, 17). The rationale for
developing these models was to identify the
most important variables, among those used
in the LCAmodeling, in predicting mortality
in this cohort. The models were not intended
as a clinical prediction tool. Specifically, we
used XGBoost, a gradient boosted tree
algorithm, to train a model to predict
mortality at Day 90 from intubation
(primary outcome). Predictor variables used
in this model are described in Table E2.
Variable importance was calculated using the
split gain for each variable across the
different trees in the model. The analyses
were performed using the R package
XGBoost and algorithmic procedures are
detailed in the online supplement.

Biospecimen Procedures
Biospecimens were obtained from the
Columbia University Biobank, which is
supported by the Irving Institute for Clinical
and Translational Research and Columbia
University’s Clinical and Translational
Science Award. For patients who did not

have IL-6 measured clinically, IL-6 was
quantified in prospectively banked serum
samples using the Human IL-6 Quantikine
ELISA Kit (R&D Systems), the same assay
that was used on clinical samples. SARS-
CoV-2 PCR testing was performed on
nasopharyngeal swab samples. PCR was
performed in the clinical microbiology
laboratory at CUIMC using platforms that
amplify the Envelope (E) gene within the
SARS-CoV-2 genome (cobas 6800 [Roche
Molecular Systems] and Infinity [Cephid
Inc]). Cycle threshold (CT)—the number of
PCR cycles required to reach the fluorescent
threshold for a positive test—was recorded if
PCR tests were positive within 7 days of
intubation (18–21). Most CT values (60%)
were within 24 hours of intubation and 80%
were within 3 days.

Statistical Analysis
Comparison between groups was performed
using t tests, Wilcoxon-rank sum, or
Pearson’s chi-square tests, depending on the
distribution of the variable. Kaplan-Meier
survival curves, censored at Day 90, were
plotted to compare survival across groups.
For evaluation of the prognostic value of
individual variables and for exploration of
treatment interaction between
subphenotypes and corticosteroid exposure,
logistic regression models were used to
estimate odds ratios, with mortality at Day 90
as the dependent variable. Analyses were
performed in RStudio (version 1.1.453) using
R (version 4.0.1) or in STATA/IC version
16.1 (StataCorp LLC).

Results

Of 558 screened patients, 483 were included
in this analysis (Figure E1 and Table 1). The
mean age was 64 (614) years, and 164
patients (34%) were female. Most patients
(59%) were Hispanic. The median time from
hospitalization to initiation of IMVwas 1 day
(interquartile range [IQR], 0–4), and the
median duration of symptoms before
admission was 7 days (IQR, 4–9). Shock and
multiorgan dysfunction were common, with
407 (84%) patients requiring vasopressors
and 150 (31%) requiring renal replacement
therapy. Most patients received targeted
therapies for COVID-19, including
hydroxychloroquine (395/483, 82%),
corticosteroids (322/483, 67%), IL-6 receptor
antagonists (141/483, 29%), and remdesivir
(28/483, 6%). Neuromuscular blockade

ORIGINAL ARTICLE

1276 American Journal of Respiratory and Critical Care Medicine Volume 204 Number 11 | December 1 2021



Table 1. Baseline Characteristics and Therapy Use in the COVID-19 ARDS Cohort with Stratification by COVID-19–related
ARDS Classes

Variables Total Cohort (N= 483) Class 1 (N= 373) Class 2 (N=110) P Value

Age, yr 65614 63615 67612 0.0025
Sex
F 164 (34) 125 (34) 39 (36) 0.7922
M 319 (66) 248 (67) 71 (65)

Race
Black 86 (18) 62 (17) 24 (22) 0.1248
White 56 (12) 40 (11) 16 (15)
Hispanic 285 (59) 231 (62) 54 (49)
Other 31 (6) 24 (6) 7 (6)
Unknown (declined to report) 25 (5) 16 (4) 9 (8)

Body mass index 30.267.1 30.56 7.2 29.36 6.4 0.1575
Smoker (current or former) 98 (20) 69 (18) 29 (26) 0.029
Preadmission symptom duration, d 7 (4–9) 7 (4–9) 7 (3–9) 0.7555
Time from admission to intubation, d 1 (0–4) 1 (0–3) 1 (0–5) 0.427
Temperature, �C 37.661.1 37.96 1.0 37.56 1.2 0.0006
Heart rate, beats per min 111622 1076 22 1236 20 ,0.0001
Respiratory rate, breaths per min 32 (26–38) 32 (26–37) 34 (30–40) 0.0011
Systolic blood pressure, mm Hg 88617 906 16 82617 ,0.0001
White blood cells, 31029/L 13.567.5 12.46 6.4 17.26 9.4 ,0.0001
Absolute lymphocyte count, 31029/L 0.8 (0.6–1.2) 0.8 (0.6–1.2) 0.9 (0.6–1.3) 0.5682
Platelets, 31029/L 234 (169–304) 238 (173–306) 212 (151–298) 0.1106
APTT, s 40624 386 20 47633 0.0006
International normalized ratio 1.460.6 1.36 0.4 1.760.9 ,0.0001
PaO2

/FIO2
147666 1476 65 1496 71 0.7321

VT/PBW, ml/kg 6.561.0 6.56 1.1 6.660.9 0.4172
PEEP, cm H2O 13 (10–15) 12 (10–15) 13 (10–16) 0.6558
Compliance, ml/cm H2O 29612 306 12 29613 0.5768
Ventilatory ratio 2.160.9 2.06 0.9 2.561.1 ,0.0001
Creatinine, mg/dL 1.5 (1.0–2.6) 1.3 (0.9–1.9) 2.7 (1.8–4.6) ,0.0001
Bicarbonate, mmol/L 2064.8 21.56 4.1 16.16 4.7 ,0.0001
Glucose, mg/dL 1906111 1766 95 2386 144 ,0.0001
Sodium, mmol/L 1396 7.1 13965.7 1426 10.1 ,0.0001
Bilirubin, mg/dl 0.6 (0.4–0.9) 0.6 (0.4–0.8) 0.7 (0.5–1.4) ,0.0001
Albumin, g/dl 3.0760.53 3.146 0.49 2.8460.60 ,0.0001
Lactate, mg/dl 1.9 (1.3–2.7) 1.7 (1.2–2.3) 3.6 (2.5–6.7) ,0.0001
Troponin, ng/L 38 (16–100) 27 (13–63) 135 (69–246) ,0.0001
IL-6, pg/ml 202 (106–385) 190 (103–313) 324 (142–996) ,0.0001
Procalcitonin, ng/ml 0.9 (0.3–2.4) 0.6 (0.3–1.4) 2.7 (1.2–15.4) ,0.0001
Ferritin, mg/dl 1,179 (664–2,324) 1,048 (591–2,064) 1,864 (1,083–3,856) ,0.0001
Lactate dehydrogenase, U/L 620 (475–847) 582 (564–656) 855 (660–1,607) ,0.0001
C-reactive protein, mg/L 232 (143–300) 227 (142–300) 254 (162–300) 0.1131
D-dimer, mcg/ml 3.8 (1.7–20) 3.2 (1.5–13.6) 12.7 (3.6–20) ,0.0001
Cycle threshold, SARS-CoV-2 PCR 27.065.0 26.96 5.1 27.56 4.6 0.2845
Selected therapies use*
Any corticosteroids 322 (67) 247 (66) 76 (69) 0.539

Dexamethasone 7 (1) 6 (2) 1 (1) .0.99
Methylprednisolone 223 (46) 182 (49) 41 (37) 0.033
Hydrocortisone 78 (16) 46 (12) 32 (29) ,0.001
Prednisone 15 (3) 13 (3) 2 (2) 0.538

IL-6 antagonist 141 (29) 118 (32) 23 (21) 0.030
Hydroxychloroquine 395 (82) 323 (87) 72 (65) ,0.001
Remdesivir 28 (6) 25 (7) 3 (3) 0.117

Vasopressor use 407 (84) 298 (80) 109 (99) ,0.0001
Renal replacement therapy* 150 (31) 108 (29) 42 (39) 0.056
Neuromuscular blockade† 160 (33) 127 (34) 33 (30) 0.4764
Prone positioning* 111 (23) 97 (26) 14 (13) 0.0059
ECMO* 10 (2) 5 (1.3) 5 (4.6) 0.0882
SOFA score‡ 10 (7–12) 9 (7–11) 12 (10–14) ,0.0001

Definition of abbreviations: APTT=activated partial thromboplastin time; ARDS=acute respiratory distress syndrome; COVID-19=coronavirus
disease; ECMO=extracorporeal membrane oxygenation; PBW=predicted body weight; PEEP=positive end-expiratory pressure;
SARS-CoV-2=severe acute respiratory syndrome coronavirus 2; SOFA=Sequential Organ Failure Assessment.
Normally distributed data are presented as mean6SD; nonnormally distributed data are presented as median (interquartile range); and
categorical data are presented as n (%). P values represent Student’s t test for normally distributed data, Wilcoxon-rank test for nonnormally
distributed data, and chi-square test for categorical values.
*These variables were recorded during the course of the ICU admission and not exclusively at baseline.
†Variable was recorded within 48 hours of ARDS diagnosis.
‡If Glasgow Coma Score missing, imputed as 15.
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within 48 hours of intubation was
administered to 160 (33%) patients, 111
(23%) received prone positioning, 10 (2%)
received extracorporeal membrane
oxygenation, and 142 (29%) underwent
tracheostomy. At Day 90, 260 patients (54%)
had died, 206 (43%) had been discharged
from the hospital alive, and 17 (4%)
remained hospitalized. Twenty-eight-day
and 180-day mortality were 44% (211/483)
and 55% (265/483), respectively. The median
length of stay in the ICU was 32 days (IQR,
15–43), and median ventilator-free days was
0 (IQR, 0–57).

Latent Class Analysis
Fit statistics for the LCAmodels are
presented in Table 2. As model complexity
increased, Bayesian information criteria
decreased, with the greatest decrease
observed between a 1-class and 2-class

model. The 2-class model was a significantly
better fit than the 1-class model (Vuong-Lo-
Mendall-Ruben P=0.0075), whereas the
3-class and 4-class models were not
significant improvements over a model
comprising one fewer class. Together, the
data were indicative of the 2-class model best
fitting the population.

In the 2-class model, 373/483 (77%) of
the patients were assigned to class 1 and 110/
483 (23%) to class 2. Indicative of robust
class allocation, the mean probabilities for
class assignment were 0.96 (60.09) and 0.92
(60.12) for COVID-19–related ARDS class 1
and COVID-19–related ARDS class 2,
respectively. Demographic differences
between classes are summarized in Table 1.
Patients assigned to COVID-19–related
ARDS class 2 were significantly older (67 vs.
63 years, P=0.0026), and a higher
proportion were Hispanic (62% vs. 49%,

P=0.016). The proportions of patients with
hypertension and diabetes mellitus were
similar across the two classes (Figure E2).

COVID-19–related ARDS class 2 was
associated with higher levels of lactate,
troponin, procalcitonin, and creatinine
(Figure 1). Proinflammatory markers such as
IL-6 and ferritin were also significantly
higher in COVID-19–related ARDS class 2,
whereas levels of albumin and bicarbonate
were significantly lower. Among the relevant
biomarkers not included in the LCA,
D-dimer and C-reactive protein were higher
in COVID-19–related ARDS class 2.
However, the latter failed to reach statistical
significance (Figure E3). Except for
ventilatory ratio, which was higher in class 2,
no significant differences were observed
between the COVID-19–related ARDS
classes in respiratory variables (Figure E4).
Compared with COVID-19–related ARDS

Table 2. Fit Statistics for the Latent Class Analysis Models

Classes BIC Entropy N1 N2 N3 N4 P Value

1 39,988 — 483 — — — —
2 39,646 0.83 373 110 — — 0.0075
3 39,529 0.88 355 109 19 — 0.2479
4* 39,456 0.85 270 107 87 19 0.6859

Definition of abbreviation: BIC=Bayesian information criteria.
Each row represents a single model comprising K classes. N1–N4 are the number of observations in each class and the P value represents the
Vuong-Lo-Mendell-Rubin test, which tests whether a model comprising a K class is a better fit than a K-1 class.
*Seventeen perturbed starting value run(s) did not converge or were rejected in the third stage.
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Figure 1. Standardized values for continuous class-defining variables used in the latent class models. The variables are sorted from left to right
in descending order for the highest values in the hyperinflammatory subphenotype. Standardized values were calculated by assigning the mean
of the variables as 0 and SD as 1. ALC=absolute lymphocyte count; APTT =activated partial thromboplastin time; BMI=body mass index;
CT=cycle threshold; LDH= lactate dehydrogenase; PBW=predicted body weight; PEEP=positive end-expiratory pressure; RR= respiratory
rate; SBP=systolic blood pressure; VR= ventilatory ratio; WBC=white blood cell count.
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class 1, COVID-19–related ARDS class 2
patients had significantly higher mortality at
90 days and had fewer ventilator-free days
(Table 3).

Comparison with ARDS
Subphenotypes
Using the clinical classifier model, 341/483
(71%) patients were classified as the
hypoinflammatory ARDS subphenotype and
142/483 (29%) were classified as the
hyperinflammatory ARDS subphenotype.
Eighty-six percent of the COVID-19–related
ARDS class 1 patients were classified to the
hypoinflammatory subphenotype, and 81%
of the COVID-19–related ARDS class 2
patients were classified into the
hyperinflammatory subphenotype (Figure 2).
Among patients who crossed over to the
noncorresponding subgroup (e.g., class 1 to
the hyperinflammatory subphenotype), their
probability of subgroup assignment was
significantly lower compared with those

patients who classified into their
corresponding subgroups (Figure E5),
suggesting greater uncertainty in subgroup
membership in these patients.

As expected, differences between the
two ARDS subphenotypes in demographics,
ventilatory variables, and biomarkers were
similar in their patterns to those observed
between the two COVID-19–related ARDS
classes (Table 4) and to the non–COVID-
19–related ARDS subphenotypes described
in the literature (13, 22). Of note, unlike the
COVID-19–related ARDS classes, age across
the two ARDS subphenotypes was similar.

Clinical outcomes trends observed
among patients in the hyperinflammatory
and hypoinflammatory subphenotypes were
similar to their corresponding COVID-
19–related ARDS classes (Table 3). In
COVID-19–related ARDS class 1 (Figure
3A) and the hypoinflammatory
subphenotype (Figure 3B), there was a
survival advantage observed early in the
observation period that persisted to 90 days.

Supervised Mortality Predictor Model
The XGBoost bootstrappedmodel trained to
predict mortality at Day 90 had an area
under the receiver operator characteristics
curve of 0.84 (95% confidence interval [CI],
0.81–0.88). The top 10 most important
variables in the model are presented in
Figure 4 and are consistent with those
described in several other studies (23–25).
The several-fold higher importance values of
age and troponin in comparison with other
predictors in the model indicate that these
two variables were the key predictors of
mortality in this cohort. Among the top 10
predictor variables, age, compliance, glucose,
international normalized ratio, body mass
index, and CT did not feature prominently as
partitioning variables in the LCAmodel,
suggesting that the prognostic value of the

LCA classes is independent of common
predictors of mortality in COVID-19–related
ARDS.

PCR CT as a Predictor of Outcome
CT was an unexpected finding among the
top 10 important predictor variables for
mortality in COVID-19–related ARDS.
When evaluated further, we found that
higher CT was associated with decreased risk
of mortality (odds ratio, 0.95 per unit
increase in CT; 95% CI, 0.91–0.98) and
remained so after adjusting for age, sex, body
mass index category, race, and SOFA score
(odds ratio, 0.95; 95% CI, 0.91–0.99). There
was no significant difference in CT values
between the hyper- and hypoinflammatory
subphenotypes (P=0.9482). When stratified
by subphenotypes, CT values were similar
among survivors and nonsurvivors in the
hyperinflammatory subphenotype; however,
CT values were significantly lower in
nonsurvivors in the hypoinflammatory
subphenotype (Figure 5). When the
subphenotypes were dichotomized into
subgroups by the population median of CT
(.27.07 “CT high,”,27.07 “CT low”), no
significant difference in mortality was
observed in the hyperinflammatory
subphenotype (CT high 66% vs. 69% CT
low; P=0.8970). In contrast, in the
hypoinflammatory subphenotype, mortality
was significantly lower in the CT-high
subgroup than in the CT-low group (42% vs.
56%; P=0.0149). These findings were the
same when evaluated in the COVID-
19–related ARDS classes (data not
presented).

Exploratory Analysis of Corticosteroid
Treatment Interaction
across Subgroups
In a logistic regression model, the interaction
term between ARDS subphenotype and

Table 3. Comparison of 90-Day Mortality and Ventilator-Free Days Censored at Day 90 in the COVID-19–related ARDS Classes
and ARDS Subphenotypes

COVID-19–related ARDS ARDS Subphenotypes

Class 1 (n=373) Class 2 (n=110) P Value Hypo (n=341) Hyper (n=142) P Value

Mortality Day 90 178 (48) 82 (75) ,0.0001 166 (49) 94 (66) 0.0006
Mortality Day 180 182 (49) 83 (75) ,0.001 170 (50) 95 (67) 0.0010
VFD 0 (0–68) 0 (0–1) ,0.0001 0 (0–67) 0 (0–45) 0.0003

Definition of abbreviations: ARDS=acute respiratory distress syndrome; COVID-19=coronavirus disease; Hyper= hyperinflammatory
subphenotype; Hypo=hypoinflammatory subphenotype; VFD=ventilator-free days.
P value for mortality represents the Pearson’s chi-square test and for VFDs represents Wilcoxon-rank test.
Data are presented as n (%) or median (interquartile range).
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Figure 2. Alluvial plot showing the crossover
between the COVID-19–related ARDS classes
and the ARDS subphenotypes (percentages
represent the proportion of patients from a
given subgroup that redistributed to the
alternative schema’s phenotypes).
ARDS=acute respiratory distress syndrome;
CARDS=COVID-19–related ARDS;
COVID-19=coronavirus disease.
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Table 4. Differences in Baseline Characteristics and Therapy Use between the Two ARDS Subphenotypes

Variables
Hypoinflammatory

(N=341)
Hyperinflammatory

(N=142) P Value

Age, yr 63615 64614 0.5505
Sex
F 120 (35) 44 (31) 0.4333
M 221 (65) 98 (69)

Race
Non-Hispanic Black 53 (16) 33 (23) ,0.0001
Non-Hispanic White 28 (8) 28 (20)
Hispanic 223 (65) 62 (44)
Other 22 (6) 9 (6)
Unknown (declined to report) 15 (4) 10 (7)

Body mass index 30.066.8 30.767.7 0.3139
Smoker (current or former) 60 (18) 38 (27) 0.0077
Diabetes mellitus 151 (44) 61 (43) 0.8678
Hypertension 228 (69) 104 (73) 0.2042
Preadmission symptom duration, d 7 (3–8) 7 (4–9) 0.6221
Time from admission to intubation, d 1 (0–3) 1 (0–4) 0.572
Temperature, �C 37.761.0 37.861.3 0.3539
Heart rate, beats per min 105621 125619 ,0.0001
Respiratory rate, breaths per min 32 (26–36) 34 (30–41) 0.0001
Systolic blood pressure, mm Hg 91616 80614 ,0.0001
White blood cells, 31029/L 12.96 6.7 15.168.9 0.0031
Absolute lymphocyte count, 31029/L 0.84 (0.6–1.2) 0.81 (0.5–1.2) 0.2067
Platelets, 31029/L 240 (178–310) 208 (137–290) 0.0039
APTT, s 38621 45630 0.0094
International normalized ratio 1.360.4 1.660.8 ,0.0001
PaO2

/FIO2
1486 64 144670 0.5323

VT/PBW, ml/kg 6.561.0 6.561.1 0.5636
PEEP, cm H2O 12 (10–15) 12 (10–16) 0.6721
Compliance, ml/cm H2O 29612 30612 0.5842
Ventilatory ratio 2.060.9 2.261.0 0.0210
Creatinine, mg/dL 1.3 (0.9–1.8) 2.7 (1.7–4.5) ,0.0001
Bicarbonate, mmol/L 21.86 4.1 16.564.3 ,0.0001
Glucose, mg/dL 1856103 2026129 0.1193
Sodium, mmol/L 1396 6 14169 0.0040
Bilirubin, mg/dl 0.6 (0.4–0.8) 0.7 (0.5–1.2) 0.0001
Albumin, g/dl 3.160.5 2.960.6 ,0.0001
Lactate, mg/dl 1.7 (1.2–2.3) 2.8 (1.7–4.8) ,0.0001
Troponin, ng/L 27 (13–76) 81 (37–181) ,0.0001
IL-6, pg/ml 185 (96–314) 315 (145–917) ,0.0001
Procalcitonin, ng/ml 0.6 (0.3–1.4) 2.3 (0.7–7.0) ,0.0001
Ferritin, mg/dl 1,046 (601–2,085) 1,654 (896–2,694) 0.0005
Lactate dehydrogenase, U/L 598 (458–773) 717 (528–1,099) ,0.0001
C-reactive protein, mg/L 231 (142–300) 236 (152–300) 0.6343
D-dimer, mcg/ml 3.0 (1.5–15.9) 9.2 (2.9–20) ,0.0001
Cycle threshold 2765.0 2765.0 0.9482
Selected therapies use*
Any corticosteroids 228 (67) 95 (67) 0.993

Days intubation to steroids 1 (0–7) 1 (0–3) 0.0134
Dexamethasone 5 (1) 2 (1) —
Methylprednisolone 170 (50) 53 (37) —
Hydrocortisone 42 (12) 36 (25) —
Prednisone 11 (3) 4 (3) —

IL-6 antagonist 101 (30) 40 (28) 0.750
Hydroxychloroquine 291 (85) 104 (73) 0.002
Remdesivir 23 (7) 5 (4) 0.167

Vasopressor use 269 (79) 138 (97) ,0.0001
Renal replacement therapy* 87 (26) 63 (45) ,0.0001
Neuromuscular blockade† 107 (32) 53 (37) 0.2640
Prone positioning* 88 (26) 23 (16) 0.0317
ECMO* 5 (1.5) 5 (3.5) 0.2708
SOFA score‡ 9 (7–11) 12 (10–14) ,0.0001

Definition of abbreviations: APTT=activated partial thromboplastin time; ARDS=acute respiratory distress syndrome; ECMO=extracorporeal
membrane oxygenation; PBW=predicted body weight; PEEP=positive end-expiratory pressure; SOFA=Sequential Organ Failure Assessment.
Normally distributed data are presented as mean6SD; nonnormally distributed data are presented as median (interquartile range); and
categorical data are presented as n (%). P values represent Student’s t test for normally distributed data, Wilcoxon-rank test for nonnormally
distributed data, and chi-square or Fisher exact test for categorical values.
*These variables were recorded during the course of the ICU admission and not exclusively at baseline.
†Variable was recorded within 48 hours of ARDS diagnosis.
‡If Glasgow Coma Score missing, imputed as 15.
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corticosteroid exposure for 90-day mortality
was significant (P=0.0295). Corticosteroid
exposure was associated with a trend toward
decreased mortality in the
hyperinflammatory phenotype and increased
mortality in the hypoinflammatory
phenotype (Table 5). The model was
adjusted for SOFA score to account for
indication bias, and the interaction term
remained statistically significant (P=0.0410).
The interaction term for corticosteroid
therapy and COVID-19–related ARDS
classes was also significant, for both the
unadjusted (P=0.0273) and the adjusted
model (P=0.0370).

Discussion

In this study, we used a minimally biased
approach to discover two novel subclasses in

COVID-19–related ARDS. These classes
have distinct biological and clinical
characteristics with divergent clinical
outcomes. Class 2 was associated with
increased markers of inflammation, lower
bicarbonate, and a higher prevalence of
multiorgan failure. Using a previously
validated machine learning model, we were
able to classify patients with COVID-
19–related ARDS into previously described
hypo- and hyperinflammatory ARDS
subphenotypes (9–12, 16, 26). There was
consistent overlap in the characteristics and
clinical outcomes between the two
phenotyping schemes, in which COVID-
19–related ARDS class 2 corresponded to the
hyperinflammatory subphenotype.

Mortality among the entire cohort and
within each subphenotype and COVID-
19–related ARDS class was substantially
higher than that observed in historical

non–COVID-19–related ARDS studies (1–3,
6, 7). Furthermore, we observed an
association of lower PCR-CT, a surrogate for
viral load, with increased mortality in the
cohort overall; however, this finding was
largely driven by the hypoinflammatory
subphenotype (19). We observed a
significant interaction between the
subgroups identified and corticosteroid
exposure, in which treatment was associated
with improved survival in the
hyperinflammatory subphenotype but not
the hypoinflammatory subphenotype.

In the absence of a validation cohort,
the overlap of COVID-19–related ARDS
classes 1 and 2 with the hypo- and
hyperinflammatory subphenotypes,
respectively, is a reassuring finding and lends
validity to the observed differences between
these subgroups. It is likely that class 2
characterizes a more severe or “specific”
subset of the hyperinflammatory
subphenotype given the smaller number of
patients, higher prevalence of multiorgan
failure, and increased mortality. In prior
ARDS phenotyping studies, markers such as
procalcitonin, lactate, and ferritin were not
available (9–11). However, given the
biological characteristics of the
hyperinflammatory subphenotype, it is
unsurprising that these newmarkers were
also elevated. As these biomarkers are more
widely available in clinical laboratories than
research biomarkers such as IL-6, IL-8, and
soluble tumor necrosis factor-1, their use
may facilitate more widespread identification
of ARDS subphenotypes and warrants
further evaluation.

In comparison with a prior study
(n=39) describing the prevalence of the
ARDS subphenotypes in COVID-19–related
ARDS, the proportion of patients in the
hyperinflammatory phenotype was higher in
our study (12). The sample size andmethod
for defining the phenotypes differed between
the studies; nevertheless, the true prevalence
of these subphenotypes in COVID-
19–related ARDS and their key determinants
remains unknown and needs mapping in
future studies. Among these determinants,
the relative influence of race and ethnicity,
genetic polymorphisms, viral variants, and
the use of early immunomodulators also
warrant investigation.

Within this observational cohort, the
main clinical value of the subphenotypes
was to identify an at-risk COVID-
19–related ARDS group with distinct
biological characteristics. Consistent with
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Figure 4. Top 10 most important variables in the XGBoost COVID-19–related ARDS mortality
predictor model. ARDS=acute respiratory distress syndrome; BMI=body mass index;
COVID-19=coronavirus disease; CRP=C-reactive protein; CT=cycle threshold;
INR= international normalized ratio.
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Figure 3. (A and B) Kaplan-Meier survival plots censored at Day 90 stratified by
COVID-19–related ARDS classes (A) and ARDS subphenotypes (B). ARDS=acute respiratory
distress syndrome; CARDS=COVID-19–related ARDS; COVID-19=coronavirus disease.

ORIGINAL ARTICLE

Sinha, Furfaro, Cummings, et al.: Subgroups in COVID-19–related ARDS 1281



several other studies, age was the most
important variable in our supervised
XGBoost mortality-predicting model (1–3,
16). Yet age was not significantly different
between the two ARDS subphenotypes.
Several of the top 10 variables in the
supervised model were not important
partitioning variables in either the
COVID-19–related ARDS classes or the
ARDS subphenotypes, suggesting that the
prognostic information from the
subphenotypes cannot be easily captured
using standard prognostication approaches.

A second advantage of the presented
phenotyping schema is that it stratifies the
COVID-19–related ARDS population into
less heterogeneous subgroups. Although the
etiological insult in COVID-19 may be
uniform, our data support the hypothesis
that at the onset of ARDS, considerable
biological heterogeneity exists within this

population. It stands to reason that
immunomodulatory interventions such as
corticosteroids and IL-6 inhibitors may have
differential efficacy across such biological
subphenotypes, a heterogeneity in treatment
effect. The trend toward improved mortality
with corticosteroid therapy in the
hyperinflammatory subphenotype and worse
outcomes in the hypoinflammatory
subphenotype substantiate this hypothesis.

How do we reconcile the findings of
heterogeneity of treatment effect with
corticosteroids in the ARDS subphenotypes
with the evidence in the literature of
improved outcomes in COVID-19? First, it is
important to acknowledge that ours was a
retrospective observational cohort and
limited to nonrandomized allocation of
treatment. Although we note that
corticosteroid treatment was equally as
common in the hyper- and

hypoinflammatory subphenotypes (67% in
each), the dose and type of steroids used
differed across the population. The
proportion of patients receiving each type of
corticosteroid, however, was insufficiently
large to perform subgroup analyses. Given
the constraints of the study design,
interpretation of the presented findings
should be cautious and limited to hypothesis
generation.

Within this context, in the RECOVERY
(Randomised Evaluation of COVID-19
Therapy)-Dexamethasone trial, there was
evidence of heterogeneity in treatment effect
depending on the severity of illness, with a
signal to harm in those not requiring oxygen
support and the largest benefit in those who
were invasively ventilated (6). In three of the
largest clinical trials that tested the benefit of
corticosteroids specifically in critically ill
patients, no significant reduction in absolute
mortality was observed: CODex (COVID-19
Dexamethasone) (P=0.85), CAPE COVID
(Community-Acquired Pneumonia:
Evaluation of Corticosteroids in Coronavirus
Disease) (P=0.057), and REMAP-CAP
(A Randomised, Embedded, Multi-factorial,
Adaptive Platform Trial for Community-
Acquired Pneumonia) (P values not available
but the confidence intervals for the odds
ratio of mortality crossed unity for both
treatment groups) (27–29). Notably, in all
these trials, there was a signal to morality
benefit with corticosteroid therapy,
suggesting that treating specific
subphenotypes may have resulted in
significantly improved mortality, and that
further evaluation is warranted (30).
Furthermore, in our cohort, the ratio of

Table 5. Comparison of 90-Day Mortality in Subgroups Stratified by Corticosteroid in ARDS Subphenotypes and COVID-19–related
ARDS Classes

Corticosteroid Use

ARDS Subphenotype

P ValueHypoinflammatory Hyperinflammatory

Yes 115/226 (51%) 57/94 (61%) 0.0295
No 51/113 (45%) 37/48 (77%)

Corticosteroid Use

COVID-19–related ARDS Class

P ValueClass 1 Class 2

Yes 120/244 (49%) 52/76 (68%) 0.0273
No 58/127 (46%) 30/34 (88%)

Definition of abbreviations: ARDS=acute respiratory distress syndrome; COVID-19=coronavirus disease.
P value represents the interaction between ARDS subphenotype or COVID-19–related ARDS class and corticosteroid exposure in a logistic
regression model with 90-day mortality as the dependent variable.
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Figure 5. (A and B) Boxplot of the distribution of PCR cycle threshold stratified by mortality at
Day 90 in the hypoinflammatory (A) and hyperinflammatory (B) phenotypes. P value represents
the Student’s t test.
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signal to harm in the hypoinflammatory
subphenotype was small. Given the large
proportion of patients in this subphenotype,
it is highly likely that subsumed within it is a
smaller subset of patients whomay be
harmed with corticosteroid use. Given the
known linkage between corticosteroids and
delayed viral clearance, patients with high
viral load may be an interesting group to
investigate in future studies.

To that end, heterogeneity of treatment
effect may also help explain the modest
absolute reduction in mortality in
immunomodulators such as IL-6 inhibitors
(5, 6, 31–33). Of note, in the recent
RECOVERY trial evaluation of tocilizumab
in COVID-19, mortality among
mechanically ventilated patients approached
50% regardless of the treatment arm, which
is similar to our cohort (5). Although overall
ICUmortality in COVID-19 has declined
over the course of the pandemic, among
invasive mechanically ventilated patients,
case fatality rates in a large meta-analysis
were also similar to those described in our
cohort, albeit with considerable regional
variation (34). The mortality rate in our
cohort was higher than that in some studies
from a similar time period; however, we note
that, unlike our study, these studies included
all intubated patients, not just those whomet
ARDS criteria, and did not report 90-day
mortality (35–37). Several key determinants
of the variance in outcomes in COVID-19
have been described; among these, acute
physiology, socioeconomic factors, and
hospital strain were most pertinent to our
cohort and may explain its high mortality
(38). ICU strain and demand due to the
surge of COVID-19 cases in New York City
during the study period may have been of
particular importance given their association
with worse outcomes (39, 40).

This study also highlights the advantage
of evaluating prognostic markers within
subphenotypes. Consistent with other
reports, SARS-CoV-2 PCR-CT, a surrogate
for viral load, was associated with mortality in
the entire cohort after adjusting for age and
illness severity (18–21). Interestingly, this
association with mortality was primarily
observed in the hypoinflammatory
subphenotype. In view of these findings, we
hypothesize that viral cytotoxicity may be a
primary driver of mortality in the
hypoinflammatory subphenotype, whereas in
the hyperinflammatory subphenotype,
mortality may be driven by excessive
inflammation, as evidenced by higher levels

of proinflammatory markers and increased
prevalence of multiorgan failure. It is also
interesting to note a trend toward increased
mortality with corticosteroids in the
hypoinflammatory phenotype, given that
their use has been implicated in delayed viral
clearance in SARS-CoV-1, Middle East
respiratory syndrome coronavirus, and
influenza pneumonia (41–43). The
subphenotype-specific association of PCR-CT
with mortality reinforces the argument
against a “one-size fits-all approach” to
pharmacotherapies in COVID-19–related
ARDS. Although PCR-CT has been related to
viral load in clinical samples, the precise
relationship between the quantified levels of
PCR-CT and viral load is inconsistently
defined across assays (44). Therefore, the
findings of our study need external validation.

In prior studies, ventilatory and gas
exchange variables such as PaO2

/FIO2
and

compliance have consistently been similar
between the two ARDS subphenotypes. In a
novel analysis in this study comparing
ventilatory ratio (VR), a bedside surrogate for
dead space, we observed higher values in the
hyperinflammatory subphenotype than in the
hypoinflammatory subphenotype (14). In
contrast, the subphenotypes had similar PaO2

/
FIO2

ratios, driving pressures, and compliance,
indicating that the difference in VR is likely
not explained by ARDS severity alone. High
dead space fractions have been reported in
COVID-19–related ARDS, but the difference
compared with ARDS from other etiologies
and its prognostic value in COVID-19 are still
areas of investigation (45, 46). The
pathophysiologic and biologic mechanism
underlying the difference in VR between the
subphenotypes warrants further investigation.
One possible hypothesis could be the higher
incidence of thromboembolism in the lung
microvasculature that has been reported in
COVID-19–related ARDS (47). However,
advanced imaging to confirm the increased
prevalence of _V/ _Q mismatch of the lungs was
not available in our cohort, and this
hypothesis requires substantial further
investigation.

Our study has several strengths. First,
missingness among predictor variables was
low. The primary outcome was 90-day
mortality and therefore captured vital status
over an extended time period. We were able
to identify subphenotypes based on a
composite of clinical and biological features
using minimally biased methods that were
agnostic to outcomes, and most of the
biomarkers used are widely available in

clinical laboratories. To our knowledge, this
is one of the largest studies of COVID-
19–related ARDS that has evaluated PCR-CT
as a predictor of outcome.

The study also has several limitations.
Our study captures data from early in the
pandemic and from a single center;
management strategies have since changed
and overall mortality declined in this rapidly
evolving pandemic. There was high demand
for ICU beds during the study period and
considerable hospital and ICU strain, which
may limit the external validity of the study.
Another limitation is the lack of a second
independent cohort in which to replicate the
COVID-ARDS LCA findings; however, the
substantial overlap with previously validated
ARDS subphenotypes reinforces the likely
generalizability of these findings. PCR-CT
was measured at a single time point, and
thus, we were unable to test its prognostic
value over time. Patients in the cohort all
presented in the early part of the pandemic
in which treatment approaches were less
uniform than current practices, which are
informed by the results of emerging clinical
trials. Use of some therapies, for example,
immunomodulatory drugs, may have had
an influence on the circulating levels of
class-defining variables and thereby had a
confounding influence on the identified
classes. The use of such therapies was
insufficiently prevalent in our population to
adequately define this phenomenon. Finally,
because of resource constraints at our study
site throughout the initial phase of the
pandemic, prone positioning was used
relatively infrequently during the study
period. This practice may have influenced
our outcome data, as prone positioning is
known to improve mortality among patients
with moderate to severe ARDS. It is notable,
however, that the mortality rate observed
was similar to that seen in other studies of
COVID-19–related ARDS (2, 5, 6).

In summary, we identified two
distinct subclasses of COVID-19–related
ARDS that were remarkably similar in
clinical characteristics and outcomes to
previously established ARDS
subphenotypes. COVID-19–related ARDS
class 2 and the hyperinflammatory
subphenotype were associated with
adverse clinical outcomes. We observed
that PCR-CT was associated with
increased mortality in the
hypoinflammatory subphenotype but not
the hyperinflammatory phenotype. Finally,
heterogeneous treatment responses were
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observed with corticosteroid use in the
subphenotypes. Further studies should
focus on replicating distinct
subphenotypes within COVID-19–related
ARDS as well as on identifying factors that

influence differential response to
treatment within severe COVID-19.�
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