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Decision-making with multiple
correlated binary outcomes
in clinical trials

Xynthia Kavelaars1 , Joris Mulder1,2 and Maurits Kaptein2

Abstract

Clinical trials often evaluate multiple outcome variables to form a comprehensive picture of the effects of a new

treatment. The resulting multidimensional insight contributes to clinically relevant and efficient decision-making about

treatment superiority. Common statistical procedures to make these superiority decisions with multiple outcomes have

two important shortcomings, however: (1) Outcome variables are often modeled individually, and consequently fail to

consider the relation between outcomes; and (2) superiority is often defined as a relevant difference on a single, on any,

or on all outcome(s); and lacks a compensatory mechanism that allows large positive effects on one or multiple outcome

(s) to outweigh small negative effects on other outcomes. To address these shortcomings, this paper proposes (1) a

Bayesian model for the analysis of correlated binary outcomes based on the multivariate Bernoulli distribution; and (2) a

flexible decision criterion with a compensatory mechanism that captures the relative importance of the outcomes. A

simulation study demonstrates that efficient and unbiased decisions can be made while Type I error rates are properly

controlled. The performance of the framework is illustrated for (1) fixed, group sequential, and adaptive designs; and (2)

non-informative and informative prior distributions.
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1 Introduction

Clinical trials often aim to compare the effects of two treatments. To ensure clinical relevance of these compar-
isons, trials are typically designed to form a comprehensive picture of the treatments by including multiple
outcome variables. Collected data about efficacy (e.g. reduction of disease symptoms), safety (e.g. side effects),
and other relevant aspects of new treatments are combined into a single, coherent decision regarding treatment
superiority. An example of a trial with multiple outcomes is the CAR-B (Cognitive Outcome after WBRT or SRS
in Patients with Brain Metastases) study, which investigated an experimental treatment for cancer patients with
multiple metastatic brain tumors.1 Historically, these patients have been treated with radiation of the whole brain
(Whole Brain Radiation Therapy; WBRT). This treatment is known to damage healthy brain tissue and to
increase the risk of (cognitive) side effects. More recently, local radiation of the individual metastases (stereotactic
surgery; SRS) has been proposed as a promising alternative that saves healthy brain tissue and could therefore
reduce side effects. The CAR-B study compared these two treatments based on cognitive functioning, fatigue, and
several other outcome variables.1
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Statistical procedures to arrive at a superiority decision have two components: (1) A statistical model for the
collected data; and (2) a decision rule to evaluate the treatment in terms of superiority based on the modelled data.
Ideally, the combination of these components forms a decision procedure that satisfies two criteria: Decisions
should be clinically relevant and efficient. Clinical relevance ensures that the statistical decision rule corresponds
to a meaningful superiority definition, given the clinical context of the treatment. Commonly used decision rules
define superiority as one or multiple treatment difference(s) on the most important outcome, on any of the
outcomes, or on all of the outcomes.2–5 Efficiency refers to achieving acceptable error rates while minimizing
the number of patients in the trial. The emphasis on efficiency is motivated by several considerations, such as
small patient populations, ethical concerns, limited access to participants, and other difficulties to enroll a suf-
ficient number of participants.6 In the current paper, we address clinical relevance and efficiency in the context of
multiple binary outcomes and propose a framework for statistical decision-making.

In trials with multiple outcomes, it is common to use a univariate modeling procedure for each individual
outcome and combine these with one of the aforementioned decision rules.2,3 Such decision procedures can be
inefficient since they ignore the relationships between outcomes. Incorporating these relations in the modeling
procedure is crucial as they directly influence the amount of evidence for a treatment difference as well as the
sample size required to achieve satisfactory error rates. A multivariate modeling procedure takes relations
between outcomes into account and can therefore be a more efficient and accurate alternative when outcomes
are correlated.

Another interesting feature of multivariate models is that they facilitate the use of decision rules that combine
multiple outcomes in a flexible way, for example via a compensatory mechanism. Such a mechanism is charac-
terized by the property that beneficial effects are given the opportunity to compensate adverse effects. The flex-
ibility of compensatory decision-making is appealing, since a compensatory mechanism can be naturally extended
with impact weights that explicitly take the clinical importance of individual outcome variables into account.3

With impact weights, outcome variables of different importances can be combined into a single decision in a
straightforward way.

Compensatory rules do not only contribute to clinical relevance, but also have the potential to increase trial
efficiency. Effects on individual outcomes may be small (and seemingly unimportant) while the combined treat-
ment effect may be large (and important),7–9 as visualized in Figure 1 for fictive data of the CAR-B study. The two
displayed bivariate distributions reflect the effects and their uncertainties on cognitive functioning and fatigue for
SRS and WBRT. The univariate distributions of both outcomes overlap too much to clearly distinguish the two
treatments on individual outcome variables or a combination of them. The bivariate distributions, however,
clearly distinguish between the two treatments. Consequently, modeling a compensatory treatment effect with
equal weights (visualized as the diagonal dashed line) would provide sufficient evidence to consider SRS superior
in the presented situation.

Figure 1. Separation of two bivariate distributions (diagonally) versus separation of their univariate distributions (horizontally/
vertically) for the CAR-B study. The dashed diagonal line represents a Compensatory decision rule with equal weights. Each dis-
tribution reflects the plausibility of the treatment effects on cognitive functioning and fatigue after observing fictive data..
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In the current paper, we propose a decision procedure for multivariate decision-making with multiple (correlated)

binary outcomes. The procedure consists of two components. First, we model the data with a multivariate Bernoulli

distribution, which is a multivariate generalization of the univariate Bernoulli distribution. The model is exact and

does not rely on numerical approximations, making it appropriate for small samples. Second, we extend multivariate

analysis with a compensatory decision rule to include more comprehensive and flexible definitions of superiority.
The decision procedure is based on a Bayesian multivariate Bernoulli model with a conjugate prior distribution.

The motivation for this model is twofold. First, the multivariate Bernoulli model is a natural generalization of the

univariate Bernoulli model, which intuitively parametrizes success probabilities per outcome variable. Second, a

conjugate prior distribution can greatly facilitate computational procedures for inference. Conjugacy ensures that

the form of the posterior distribution is known, making sampling from the posterior distribution straightforward.
Although Bayesian analysis is well known to allow for inclusion of information external to the trial by means of

prior information,10 researchers who wish not to include prior information can obtain results similar to frequent-

ist analysis. The use of a non-informative prior distribution essentially results in a decision based on the likelihood

of the data, such that (1) Bayesian and frequentist (point) estimates are equivalent; and (2) the frequentist p-value

equals the Bayesian posterior probability of the null hypothesis in one-sided testing.11 Since a (combined) p-value

may be difficult to compute for the multivariate Bernoulli model, Bayesian computational procedures can exploit

this equivalence and facilitate computations involved in Type I error control.12,13

The remainder of the paper is structured as follows. In section 2, we present a multivariate approach to the

analysis of multiple binary outcomes. Subsequently, we discuss various decision rules to evaluate treatment

differences on multiple outcomes in section 3. The framework is evaluated in section 4, and we discuss limitations

and extensions in the section 5.

2 A model for multivariate analysis of multiple binary outcomes

2.1 Notation

We start the introduction of our framework with some notation. The joint response for patient i in treatment j on

K outcomes will be denoted by xj;i ¼ xj;i;1; . . . ; xj;i;Kð Þ, where i 2 f1; . . . ; njg and j 2 fE;Cg (i.e. Experimental and

Control). The response on outcome k xj;i;k 2 f0; 1g (0 ¼ failure, 1 ¼ success), such that xj;i can take on Q ¼ 2K

different combinations f1 . . . 11g; f1 . . . 10g; . . . ; f0 . . . 01g; 0 . . . 00f g. The observed frequencies of each possible

response combination for treatment j in a dataset of nj patients are denoted by vector sj of length Q. The elements

of sj add up to nj,
XQ

q¼1
sj;q ¼ nj.

Vector hj ¼ ðhj;1; . . . ; hj;KÞ reflects success probabilities of K outcomes for treatment j in the population. Vector

d ¼ ðd1; . . . ; dKÞ then denotes the treatment differences on K outcomes, where dk ¼ hE;k � hC;k. We use /j ¼
ð/j;1...11;/j;1...10; . . . ;/j;0...01;/j;0...00Þ to refer to probabilities of joint responses in the population, where /j;q denotes

the probability of joint response combination xj;i with configuration q. Vector /j has Q elements, and sums to unity,XQ

q¼1
/j;q ¼ 1. Information about the relation between outcomes k and l is reflected by /j;kl, which is defined as the

sum of those elements of /j that have the kth and lth elements of q equal to 1, e.g. /j;11 for K¼ 2. Similarly, marginal

probability hj;k follows from summing all elements of /j with the kth element of q equal to 1. For example, with

three outcomes, the success probability of the first outcome is equal to hj;1 ¼ /j;111 þ /j;110 þ /j;101 þ /j;100.

2.2 Likelihood

The likelihood of joint response xj;i follows a K-variate Bernoulli distribution14

p xj;ij/j

� � ¼ multivariate Bernoulliðxj;ij/jÞ
¼ /

xj;1�...�xj;K
j;1...11 /

xj;1�...�xj;K�1ð1�xj;KÞ
j;1...10 � . . .

� /
ð1�xj;1Þ�...�ð1�xj;K�1Þxj;K
j;0...01 /

ð1�xj;1�...�1�xj;KÞ
j;0...00

(1)

The multivariate Bernoulli distribution in equation (1) is a specific parametrization of the multinomial distri-

bution. The likelihood of nj joint responses summarized by cell frequencies in sj follows a Q-variate multinomial

distribution with parameters /j
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p sjj/j

� � ¼ multinomial sjj/j

� �
/ /

sj;1...11
j;1...11/

sj;1...10
j;1...10 � . . .� /

sj;0...01
j;0...01/

sj;0...00
j;0...00

(2)

Conveniently, the multivariate Bernoulli distribution is consistent under marginalization. That is, marginaliz-

ing a K� variate Bernoulli distribution with respect to p variables results in a (K� p)-variate Bernoulli distribu-

tion.14 Hence, the univariate Bernoulli distribution is directly related and results from marginalizing (K� 1)

variables.
The pairwise correlation between variables xj;k and xj;l is reflected by qxj;k;xj;l

14

qxj;kxj;l ¼
hj;kl � hj;khj;lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hj;k 1� hj;kð Þhj;l 1� hj;lð Þp (3)

This correlation is over the full range, i.e. �1 � qxj;k;xj;l � 1.15

2.3 Prior and posterior distribution

A natural choice to model prior information about response probabilities /j is the Dirichlet distribution, since a

Dirichlet prior and multinomial likelihood form a conjugate combination. The Q-variate prior Dirichlet distri-

bution has hyperparameters a0j ¼ ða0j;11...11; a0j;11...10; . . . ; a0j;00...01; a0j;00...00Þ

p /j

� � ¼ Dirichlet /jja0j
� �

/ /
a0
j;1...11�1

j;1...11 /
a0
j;1...10�1

j;1...10 � . . .� /
a0
j;0...01�1

j;0...01 /
a0
j;0...00�1

j;0...00

(4)

where each of the prior hyperparameters a0j should be larger than zero to ensure a proper prior distribution.
The posterior distribution of /j results from multiplying the likelihood and the prior distribution and follows a

Dirichlet distribution with parameters anj ¼ a0j þ sj

p /jjsj
� � ¼ Dirichlet /jja0j þ sj

� �
/ /

sj;1...11
j;1...11/

sj;1...10
j;1...10 � . . .� /

sj;0...01
j;0...01/

sj;0...00
j;0...00

� /
a0
j;1...11�1

j;1...11 /
a0
j;1...10�1

j;1...10 � . . .� /
a0
j;0...01�1

j;0...01 /
a0
j;0...00�1

j;0...00

/ /
an
j;1...11�1

j;1...11 /
an
j;1...10�1

j;1...10 � . . .� /
an
j;0...01�1

j;0...01 /
an
j;0...00�1

j;0...00

(5)

Since prior hyperparameters a0j impact the posterior distribution of treatment difference d, specifying them

carefully is important. Each of the hyperparameters contains information about one of the observed frequencies sj
and can be considered a prior frequency that reflects the strength of prior beliefs. Equation (5) shows that the

influence of prior information depends on prior frequencies a0j relative to observed frequencies sj. When all

elements of a0j are set to zero, anj ¼ sj. This (improper) prior specification results in a posterior mean of

/j;qjsj;q ¼
anj;qXQ

p¼1
anj;p

, which is equivalent to the frequentist maximum likelihood estimate of /j;q ¼ sj;qXQ

p¼1
sj;p

.

To take advantage of this property with a proper non-informative prior, one could specify hyperparameters

slightly larger than zero such that the posterior distribution is essentially completely based on the information

in the data (i.e. anj � sj).

To include prior information – when available – in the decision, a0j can be set to specific prior frequencies to

increase the influence on the decision. These prior frequencies may, for example, be based on results from related

historical trials. We provide more technical details on prior specification in Supplementary Appendix Specification

of prior hyperparameters. There we also highlight the relation between the Dirichlet distribution and the multi-

variate beta distribution, and demonstrate that the prior and posterior distributions of hj are multivariate beta

distributions.
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The final superiority decision relies on the posterior distribution of treatment difference d. Although this

distribution does not belong to a known family of distributions, we can approach the distribution of d via a

two-step transformation of the posterior samples of /j. First, a sample of /j is drawn from its known Dirichlet

distribution. Next, these draws can be transformed to a sample of hj using the property that joint response

frequencies sum to the marginal probabilities. Finally, these samples from the posterior distributions of hE and

hC can then be transformed to obtain the posterior distribution of joint treatment difference d, by subtracting

draws of hC from draws of hE, i.e. d ¼ hE � hC. Algorithm 1 in section 3.3 includes pseudocode with the steps

required to obtain a sample from the posterior distribution of d.

3 Decision rules for multiple binary outcomes

The current section discusses how the model from the previous section can be used to make treatment superiority

decisions. Treatment superiority is defined by the posterior mass in a specific subset of the multivariate parameter

space of d ¼ ðd1; . . . ; dKÞ. The complete parameter space will be denoted by S � ð�1; 1ÞK, and the superiority

space will be denoted by SSup � S. Superiority is concluded when a sufficiently large part of the posterior distri-

bution of d falls in superiority region SSup

P d 2 SsupjsE; sC
� �

> pcut (6)

where pcut reflects the decision threshold to conclude superiority. The value of this threshold should be chosen to

control the Type I error rate a.

3.1 Four different decision rules

Different partitions of the parameter space define different superiority criteria to distinguish two treatments. The

following decision rules conclude superiority when there is sufficient evidence that:

1. Single rule: an a priori specified primary outcome k has a treatment difference larger than zero. The superiority

region is denoted by

SSingleðkÞ ¼ djdk > 0f g (7)

Superiority is concluded when

P d 2 SSingleðkÞjsE; sC
� �

> pcut (8)

2. Any rule: at least one of the outcomes has a treatment difference larger than zero. The superiority region is a

combination of K superiority regions of the Single rule

SAny ¼ fSSingle1 [ . . . [ SSingleKg

Superiority is concluded when

maxkP d 2 SSingleðkÞjsE; sC
� �

> pcut (9)

3. All rule: all outcomes have a treatment difference larger than zero. Similar to the Any rule, the superiority

region is a combination of K superiority regions of the Single rule: The superiority region is denoted by

SAll ¼ fSSingle1 \ . . . \ SSingleKg
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Superiority is concluded when

minkPðd 2 SSingleðkÞjsE; sCÞ > pcut (10)

Next to facilitating these common decision rules, our framework allows for a Compensatory decision rule:

4. Compensatory rule: the weighted sum of treatment differences is larger than zero. The superiority region is
denoted by

SCompensatory wð Þ ¼ dj
XK
k¼1

wkdk > 0

( )
(11)

where w ¼ ðw1; . . . ;wKÞ reflect the weights for outcomes 1; . . . ;K;

0 � wk � 1 and
XK

k¼1
wk ¼ 1

Superiority is then concluded when

P d 2 SCompensatoryðwÞjsE; sC
� �

> pcut (12)

Figure 2 visualizes these four decision rules.
From our discussion of the different decision rules, a number of relationships between them can be identified.

First, mathematically the Single rule can be considered a special case of the Compensatory rule with weight wk¼ 1
for primary outcome k and wl¼ 0 for all other outcomes. Second, the superiority region of the All rule is a subset
of the superiority regions of the other rules, i.e.

SAll � SSingle;SCompensatory;SAny (13)

The Single rule is in turn a subset of the superiority region of the Any rule, such that

SSingle � SAny (14)

These properties can be observed in Figure 2 and translate directly to the amount of evidence provided by data
sE and sC. The posterior probability of the All rule is always smallest, while the posterior probability of the Any
rule is at least as large as the posterior probability of the Single rule

PðSAnyjsE; sCÞ � PðSSinglejsE; sCÞ > PðSAlljsE; sCÞ
PðSCompensatoryjsE; sCÞ > PðSAlljsE; sCÞ

(15)

The ordering of the posterior probabilities of different decision rules (equation (15) implies that superiority
decisions are most conservative under the All rule and most liberal under the Any rule. In practice, this difference
has two consequences. First, to properly control Type I error probabilities for these different decision rules, one
needs to set a larger decision threshold pcut for the Any rule than for the All rule. Second, the All rule typically
requires the largest sample size to obtain sufficient evidence for a superiority decision.

Additionally, the correlation between treatment differences, qdk;dl , influences the posterior probability to
conclude superiority. The correlation influences the overlap with the superiority region, as visualized in
Figure 3. Consequently, the Single rule is not sensitive to the correlation. A negative correlation requires a
smaller sample size than a positive correlation under the Any and Compensatory rules, and vice versa for the
All rule.
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3.2 Specification of weights of the Compensatory decision rule

To utilize the flexibility of the Compensatory rule, researchers may wish to specify weights w. The current sub-
section discusses two ways to choose these weights: Specification can be based on the impact of outcome variables
or on efficiency of the decision.

Specification of impact weights is guided by substantive considerations to reflect the relative importance of

outcomes. When w ¼ 1
K ; . . . ;

1
K

� �
, all outcomes are equally important and all success probabilities in hj exert an

identical influence on the weighted success probability. Any other specification of w that satisfies
XK

k¼1
wk ¼ 1

Figure 3. Influence of the correlation between two treatment differences on the proportion of overlap between the bivariate
distribution of treatment differences d and the superiority regions.

(a) (b)

(c) (d)

Figure 2. Superiority regions of various decision rules for two outcome variables (K¼ 2). The Any rule is a combination of the two
Single rules. The Compensatory rule reflects w ¼ ð0:5; 0:5Þ.
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implies unequal importance of outcomes. To make the implications of importance weight specification more
concrete, let us reconsider the two potential side effects of brain cancer treatment in the CAR-B study: cognitive
functioning and fatigue.1 When setting ðwcognition;wfatigueÞ ¼ ð0:50; 0:50Þ, both outcomes would be considered

equally important and a decrease of (say) 0.10 in fatigue could be compensated by an increase on cognitive
functioning of at least 0.10. When wcognition> 0.50, cognitive functioning is more influential than fatigue; and
vice versa when wcognition< 0.50. If wcognition¼ 0.75 and wfatigue¼ 0.25 for example, the treatment difference of
cognitive functioning has three times as much impact on the decision as the treatment difference of fatigue.

Efficiency weights are specified with the aim of optimizing the required sample size. As the weights directly
affect the amount of evidence for a treatment difference, the efficiency of the Compensatory decision rule can be
optimized with values of w that are a priori expected to maximize the probability of falling in the superiority
region. This strategy could be used when efficiency is of major concern, while researchers do not have a strong
preference for the substantive priority of specific outcomes. The technical details required to find efficient weights
are presented in Supplementary Appendix Specification of efficiency weights.

3.3 Implementation of the framework

The procedure to arrive at a decision using the multivariate analysis procedure proposed in the previous sections is
presented in Algorithm 1 for a design with fixed sample size nj of treatment j. We present the algorithm for designs
with interim analyses in Algorithm 2 in Supplementary Appendix Implementation of the framework in group
sequential and adaptive designs.

Algorithm 1 Decision procedure for a fixed design

1. Initialize
a Choose decision rule
if Compensatory then specify weights w
if Single then specify k
end if

for each treatment j 2 fE;Cg do
b Choose prior hyperparameters a0j
end for
c Choose Type I error rate a and power 1� b
d Determine decision threshold pcut
if Any rule then 1� 1

2 a
else 1� a
end if

e Determine sample size nj based on anticipated treatment differences dn

2. Collect data and compute evidence
for each treatment j 2 fE;Cg
a Collect nj joint responses xj;i
b Compute joint response frequencies sj
c Compute posterior parameters anj ¼ sj þ a0j
d Sample L posterior draws, /l

j; /jjanj�Dirichletð/jjanj Þ
e Sum draws /l

j to hlj
end for
f Transform draws hlj to dl via dlk ¼ hlE;k � hlC;k
g Compute posterior probability of treatment superiority Pðd 2 SSupjsE; sCÞ as the proportion of posterior
draws in superiority region SSup

3. Make final decision
if Pðd 2 SSupjsE; sCÞ > pcut then conclude superiority
else conclude non-superiority
end if
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4 Numerical evaluation

The current section evaluates the performance of the presented multivariate decision framework by means of

simulation in the context of two outcomes (K¼ 2). We seek to demonstrate (1) how often the decision procedure

results in an (in)correct superiority conclusion to learn about decision error rates; (2) how many observations are

required to conclude superiority with satisfactory error rates to investigate the efficiency of different decision

rules, and (3) how well the average estimated treatment difference corresponds to the true treatment difference to

examine bias. The current section is structured as follows. We first introduce the simulation conditions, the

procedure to compute sample sizes for each of these conditions, and the procedure to generate and evaluate

data. We then discuss the results of the simulation.

4.1 Conditions

The performance of the framework is examined as a function of the following factors:

1. Data generating mechanisms: We generated data of eight treatment difference combinations dT and three

correlations between outcomes qhj;1;hj;2 . An overview of these 8� 3¼ 24 data generating mechanisms is given

in Table 1. In the remainder of this section, we refer to these data generating mechanisms with numbered

combinations (e.g. 1.2), where the first number reflects treatment difference dT and the second number refers to

correlation qThj;1;hj;2 .

2. Decision rules: The generated data were evaluated with six different decision rules. We used the Single (for

outcome k¼ 1), Any, and All rules, as well as three different Compensatory rules: One with equal weights w ¼
ð0:50; 0:50Þ and two with unequal weights w ¼ ð0:76; 0:24Þ and w ¼ ð0:64; 0:36Þ. The weight combinations of

the latter two Compensatory rules optimize the efficiency of data generating mechanisms with uncorrelated (i.e.

8.2) and correlated (i.e. 8.1) treatment differences, respectively, following the procedure in Supplementary

Appendix Specification of efficiency weights. We refer to these three Compensatory rules as Compensatory-

Equal (C-E), Compensatory-Unequal Uncorrelated (C-UU) and Compensatory-Unequal Correlated (C-UC),

respectively.

Table 1. Data generating mechanisms (DGM) used in numerical evaluation of the framework.

DGM dT1 dT2 qThj;1;hj;2 hTE;1 hTE;2 /T
E;11 hTC;1 hTC;2 /T

C;11

1.1 �0.20 �0.20 �0.30 0.40 0.40 0.09 0.60 0.60 0.29

1.2 0.00 0.16 0.36

1.3 0.30 0.23 0.43

2.1 0.00 0.00 �0.30 0.50 0.50 0.17 0.50 0.50 0.17

2.2 0.00 0.25 0.25

2.3 0.30 0.32 0.32

3.1 0.10 0.10 �0.30 0.55 0.55 0.23 0.45 0.45 0.13

3.2 0.00 0.30 0.20

3.3 0.30 0.38 0.28

4.1 0.20 0.20 �0.30 0.60 0.60 0.29 0.40 0.40 0.09

4.2 0.00 0.36 0.16

4.3 0.30 0.43 0.23

5.1 0.40 0.40 �0.30 0.70 0.70 0.43 0.30 0.30 0.03

5.2 0.00 0.49 0.09

5.3 0.30 0.55 0.15

6.1 0.40 0.00 �0.30 0.70 0.50 0.28 0.30 0.50 0.08

6.2 0.00 0.35 0.15

6.3 0.30 0.42 0.22

7.1 0.20 �0.40 �0.30 0.60 0.30 0.11 0.40 0.70 0.21

7.2 0.00 0.18 0.28

7.3 0.30 0.25 0.35

8.1 0.24 0.08 �0.30 0.62 0.54 0.26 0.38 0.46 0.10

8.2 0.00 0.33 0.17

8.3 0.30 0.41 0.25
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4.2 Sample size computations

To properly control Type I error and power, each of the 24� 6 conditions requires a specific sample size. These

sample sizes nj are based on anticipated treatment differences dn, that corresponded to the true parameters of each

data generating mechanism in Table 1 (i.e. dn ¼ dT and qnhj;1;hj;2 ¼ qThj;1;hj;2 ). Procedures to compute sample sizes per

treatment group for the different decision rules were the following:

1. For the Single rule, we used a two-proportion z� test, where we plugged in the anticipated treatment difference

on the first outcome variable (i.e. dn1).
2. Following Sozu et al.,5,16 we used multivariate normal approximations of correlated binary outcomes for the

All and Any rules.
3. For the Compensatory rule, we used a continuous normal approximation with mean

XK

k¼1
wkhj;k and varianceXK

k¼1
w2
kr

2
j;k þ 2

PP
k< l wkwlrj;kl. Here, r2j;k ¼ hj;kð1� hj;kÞ and rj;kl ¼ /j;kl � hj;khj;l.

The computed sample sizes are presented in Table 3. Conditions that should not result in superiority were

evaluated at sample size nj ¼ 1000.

4.3 Data generation and evaluation

Of each data generating mechanism presented in Table 1, we generated 5000 samples of size 2� nj. These data

were combined with a proper uninformative prior distribution with hyperparameters a0j ¼ ð0:01; . . . ; 0:01Þ to

satisfy anj � sj, as discussed in Section 2. We aimed for Type I error rate a ¼ :05 and power 1� b ¼ :80, which

corresponds to a decision threshold pcut of 1� a ¼ 0:95 (Single, Compensatory, All rules) and 1� 1
2 a ¼ 0:975

(Any rule).4,5,11 The generated datasets were evaluated using the procedure in steps 2 and 3 of Algorithm 1.
The proportion of samples that concluded superiority reflects Type I error rates (when false) and power (when

correct). We assessed the Type I error rate under the data generating mechanism with the least favorable pop-

ulation values of dT under the null hypothesis in frequentist one-sided significance testing. These are values of dT

outside SSup that are most difficult to distinguish from values of dT inside SSup. Adequate Type I error rates for the

least favorable treatment differences imply that the Type I error rates of all values of dT outside SSup are properly

controlled. The least favorable values of dT were reflected by treatment difference 2 for the Single, Any, and

Compensatory rules, and treatment difference 6 for the All rule. Bias was computed as the difference between the

observed treatment difference at sample size nj and the true treatment difference dT.

4.4 Results

The proportion of samples that concluded superiority and the required sample size are presented in Tables 2

and 3, respectively. Type I error rates were properly controlled around a ¼ :05 for each decision rule under its

least favorable data generating mechanism. The power was around .80 in all scenarios with true superiority.

Moreover, average treatment differences were estimated without bias (smaller than 0.01 in all conditions).
Given these satisfactory error rates, a comparison of sample sizes provides insight in the efficiency of the

approach. We remark here that a comparison of sample sizes is only relevant when the decision rules under

consideration have a meaningful definition of superiority. Further, in this discussion of results we primarily focus

on the newly introduced Compensatory rule in comparison to the other decision rules. The results demonstrate

that the Compensatory rule consistently requires fewer observations than the All rule, and often – in particular

when treatment differences are equal (i.e. treatment differences 3� 5) – than the Any and the Single rule.

Similarly, the Any rule consistently requires fewer observations than the All rule and could be considered an

attractive option in terms of sample sizes. Note, however, that the more lenient Any rule may not result in a

meaningful decision for all trials, since the rule would also conclude superiority when the treatment has a small

positive treatment effect and large negative treatment effect (i.e. treatment difference 7); a scenario that may not

be clinically relevant.
The influence of the relation between outcomes is also apparent: Negative correlations require fewer observa-

tions than positive correlations. The variation due to the correlation is considerable: The average sample size

almost doubles in scenarios with equal treatment differences (e.g. data generating mechanisms 3.1 vs. 3.3 and 4.1

vs. 4.3).
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Table 2. P(Conclude superiority) for different data generating mechanisms (DGM) and decision rules.

DGM Single Any All C-E C-UU C-UC

1.1 0.000 0.000 0.000 0.000 0.000 0.000

1.2 0.000 0.000 0.000 0.000 0.000 0.000

1.3 0.000 0.000 0.000 0.000 0.000 0.000

2.1 0.051 0.048 0.000 0.049 0.052 0.051

2.2 0.046 0.045 0.003 0.056 0.048 0.054

2.3 0.051 0.045 0.008 0.049 0.049 0.049

3.1 0.810 0.796 0.801 0.807 0.804 0.790

3.2 0.799 0.801 0.804 0.806 0.788 0.791

3.3 0.799 0.807 0.809 0.800 0.797 0.803

4.1 0.794 0.784 0.806 0.811 0.789 0.784

4.2 0.808 0.802 0.814 0.813 0.804 0.803

4.3 0.804 0.801 0.816 0.804 0.796 0.800

5.1 0.807 0.806 0.830 0.881 0.817 0.857

5.2 0.807 0.814 0.838 0.831 0.813 0.813

5.3 0.809 0.847 0.822 0.809 0.798 0.802

6.1 0.811 0.779 0.053 0.824 0.798 0.819

6.2 0.813 0.777 0.045 0.805 0.808 0.820

6.3 0.803 0.758 0.051 0.801 0.788 0.803

7.1 0.799 0.789 0.000 0.000 0.863 0.002

7.2 0.804 0.792 0.000 0.000 0.857 0.003

7.3 0.807 0.794 0.000 0.000 0.867 0.005

8.1 0.787 0.782 0.789 0.808 0.804 0.805

8.2 0.777 0.797 0.807 0.804 0.799 0.804

8.3 0.785 0.811 0.807 0.805 0.805 0.806

Note: Bold-faced values indicate the conditions with least favorable values.

Table 3. Average sample size to correctly conclude superiority for different data generating mechanisms (DGM) and decision rules.

DGM Single Any All C-E C-UU C-UC

1.1 – – – – – –

1.2 – – – – – –

1.3 – – – – – –

2.1 – – – – – –

2.2 – – – – – –

2.3 – – – – – –

3.1 307 191 424 108 157 119

3.2 307 217 418 154 192 162

3.3 307 247 406 199 226 206

4.1 75 47 105 26 39 29

4.2 75 53 103 38 47 40

4.3 75 60 101 49 55 50

5.1 17 11 25 6 9 7

5.2 17 12 25 9 11 9

5.3 17 14 24 11 12 11

6.1 17 21 – 25 15 17

6.2 17 21 – 36 19 24

6.3 17 21 – 47 22 30

7.1 75 95 – – 608 –

7.2 75 95 – – 733 –

7.3 75 95 – – 858 –

8.1 51 56 482 41 38 36

8.2 51 60 482 59 46 49

8.3 51 63 482 76 55 62

Note: Bold-faced values indicate the lowest sample size per data generating mechanism. Conditions with a hyphen should not result in treatment

superiority.
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Comparison of the three different Compensatory rules further highlights the influence of weights w and

illustrates that a Compensatory rule is most efficient when weights have been optimized with respect to the

treatment differences and the correlation between them. The Compensatory rule with equal weights (C-E) is

most efficient when treatment differences on both outcomes are equally large (treatment differences 3� 5),

while the Compensatory rule with unequal weights for uncorrelated outcomes (C-UU) is most efficient under

data generating mechanism 8.2. The Compensatory rule with unequal weights, optimized for negatively correlated

outcomes (C-UC) is most efficient in data generating mechanism 8.1. The Compensatory is less efficient than the

Single rule in the scenario with an effect on one outcome only (treatment difference 6). Effectively, in this situation

the Single rule is the Compensatory rule with optimal weights for this specific scenario w ¼ ð1; 0Þ. Utilizing the

flexibility of the Compensatory rule to tailor weights to anticipated treatment differences and their correlations

thus pays off in terms of efficiency.
Note that in practice it may be difficult to accurately estimate treatment differences and correlations in

advance. This uncertainty may result in inaccurate sample size estimates, as demonstrated in Supplementary

Appendix Numerical evaluation: Comparison of trial designs. The simulations in this appendix also show that

the approach can be implemented in designs with interim analyses as well, which is particularly useful under

uncertainty about anticipated treatment differences. Specifically, we demonstrate that (1) both Type I and Type II

error rates increase, while efficiency decreases in a fixed design when the anticipated treatment difference does not

correspond to the true treatment difference; and (2) designs with interim analyses could compensate for this

uncertainty in terms of error rates and efficiency, albeit at the expense of upward bias.
Further, Supplementary Appendix Numerical evaluation: Comparison of prior specifications shows how prior

information influences the properties of decision-making. Informative priors support efficient decision-making

when the prior treatment difference corresponds to the treatment difference in the data. In contrast, evidence is

influenced by dissimilarity between prior hyperparameters and data, and may either increase or decrease (1) the

required sample size; and (2) the average posterior treatment effect, depending on the nature of the non-

correspondence.

5 Discussion

The current paper presented a Bayesian framework to efficiently combine multiple binary outcomes into a clin-

ically relevant superiority decision. We highlight two characteristics of the approach.
First, the multivariate Bernoulli model has shown to capture relations properly and support multivariate

decision-making. The influence of the correlation between outcomes on the amount of evidence in favor of a

specific treatment highlights the urgency to carefully consider these relations in trial design and analysis in

practice.
Second, multivariate analysis facilitates comprehensive decision rules such as the Compensatory rule. More

specific criteria for superiority can be defined to ensure clinical relevance, while relaxing conditions that are not

strictly needed for clinical relevance lowers the sample size required for error control; a fact that researchers may

take advantage of in practice where sample size limitations are common.6

Several other modeling procedures have been proposed for the multivariate analysis of multiple binary out-

comes. The majority of these alternatives assume a (latent) normally distributed continuous variable. When these

models rely on large sample approximations for decision-making (such as methods presented by Whitehead

et al.,17 Sozu et al.,5,16 and Su et al.18; see for an exception Murray et al.3), their applicability is limited, since

the validity of z-tests for small samples may be inaccurate. A second class of alternatives uses copula models,

which is a flexible approach to model dependencies between multiple univariate marginal distributions. The use of

copula structures in discrete data can be challenging, however.19 Future research might provide insight in the

applicability of copula models for multivariate decision-making in clinical trials.
Two additional remarks concerning the number of outcomes should be made. First, the modeling procedure

becomes more complex when the number of outcomes increases, since the number of cells increases exponentially.

Second, the proposed Compensatory rule has a linear compensatory mechanism. With two outcomes, the out-

comes compensate each other directly and the size of a negative effect is maximized by the size of the positive

effect. A decision based on more than two outcomes might have the – potentially undesirable – consequence of

compensating a single large negative effect by two or more positive effects. Researchers are encouraged to care-

fully think about a suitable superiority definition and might consider additional restrictions to the Compensatory

rule, such as a maximum size of individual negative effects.
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