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Abstract 

Background:  The determination of specific kinase substrates in vivo is challenging due to the large number of 
protein kinases in cells, their substrate specificity overlap, and the lack of highly specific inhibitors. In the late 90s, 
Shokat and coworkers developed a protein engineering-based method addressing the question of identification of 
substrates of protein kinases. The approach was based on the mutagenesis of the gatekeeper residue within the bind-
ing site of a protein kinase to change the co-substrate specificity from ATP to ATP analogues. One of the challenges 
in applying this method to other kinase systems is to identify the optimal combination of mutation in the enzyme 
and chemical derivative such that the ATP analogue acts as substrate for the engineered, but not the native kinase 
enzyme. In this study, we developed a computational protocol for estimating the effect of mutations at the gate-
keeper position on the accessibility of ATP analogues within the binding site of engineered kinases.

Results:  We tested the protocol on a dataset of tyrosine and serine/threonine protein kinases from the scientific 
literature where Shokat’s method was applied and experimental data were available. Our protocol correctly identified 
gatekeeper residues as the positions to mutate within the binding site of the studied kinase enzymes. Furthermore, 
the approach well reproduced the experimental data available in literature.

Conclusions:  We have presented a computational protocol that scores how different mutations at the gatekeeper 
position influence the accommodation of various ATP analogues within the binding site of protein kinases. We have 
assessed our approach on protein kinases from the scientific literature and have verified the ability of the approach 
to well reproduce the available experimental data and identify suitable combinations of engineered kinases and ATP 
analogues.
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Background
Phosphorylation is an important mechanism for the 
post-translational regulation of cellular activity of pro-
teins. The phosphorylation reaction is catalyzed by kinase 
enzymes by transferring a phosphate group to a specific 
residue of the protein substrate—typically a serine, thre-
onine or tyrosine—with ATP acting as phosphodonor. 

Kinases are key regulators for many crucial biochemi-
cal pathways, such as the glycogen metabolism [1], cell 
proliferation, cell division, or apoptosis [2]. The central 
role of kinases in numerous diseases is extensively doc-
umented [3]. For instance the tyrosine protein kinase 
JAK3 is known being involved in a form of severe com-
bined immunodeficiency [4], the anaplastic lymphoma 
kinase, ALK, is involved in neuroblastoma development 
and make ALK an interesting drug target for rationally 
designed ALK-inhibition therapies for the treatment 
of human cancers [5]. The identification of the protein 
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substrates of kinase enzymes is therefore of great impor-
tance for elucidating their functional role in the cell and 
to develop disease-specific therapies. However, the iden-
tification of specific kinase substrates is highly challeng-
ing due to the large number of protein kinases in cells, 
their substrate specificity overlap and the lack of absolute 
specificity of inhibitors [6, 7].

The majority of protein kinases share a bilobal kinase 
domain fold, where the N-lobe is formed by five β-strands 
and a single α-helix and the C-lobe is predominantly 
α-helical [6, 8]. These domains are connected by a short 
segment called the hinge region [9]. The C-lobe con-
tains the activation segment that is typically composed of 
20–30 residues. This lobe is composed of the activation 
loop that activates protein kinase when a specific residue 
is phosphorylated (usually a Tyr or a Thr) and the loop 
that is involved in substrate binding [8] (Fig.  1a). The 
ATP binding pocket is located in the cleft between the 
N-lobe and the C-lobe of the kinase domain. It contains 
a highly conserved Asp which has a significant role in the 
phosphorylation reaction catalyzed by kinase enzymes. 
The Asp acts as catalytic base to free up the hydroxyl 
oxygen of a Ser, Thr or Tyr on the protein substrate. 
The deprotonated residue is involved in a nucleophilic 
attack on the terminal (γ) phosphoryl group (PO2−

3
) of 

ATP [10]. The ATP binding site is made up of five areas, 
the “adenine region” which corresponds to the hinge 
region, the “ribose region”, the “phosphates region”, the 
“solvent accessible region”, and the “buried region” [11, 
12] (Fig. 1). The “buried region” is a hydrophobic region 
located in the back of the ATP pocket and is not occupied 

by ATP. The size and the shape are controlled by the first 
amino acid of the hinge region—this amino acid act as a 
‘molecular gate’ controlling the accessibility to the buried 
region. A residue with a small side chain ‘opens the gate’ 
to the buried region whereas a large side chain effectively 
‘closes the gate’ making the buried region inaccessible. 
For that reason, this residue has been termed the ‘gate-
keeper’ residue [13–16] (Fig. 1b). The gatekeeper residue 
is generally preceded by two hydrophobic residues and 
followed by an acidic residue and another hydropho-
bic amino acid. In 73% of human kinases a hydrophobic 
amino acid with a bulky side chain (Met, Phe or Leu) is 
observed at that position, 22% have a small residue, such 
as Thr or Val and the remaining 5% have one of the other 
amino acids [11, 12, 17, 18].

By using isotope radiolabeled ATP (P32 or P33) as co-
substrate, the phosphorylation reaction can be moni-
tored with high sensitivity in vitro. However, in an in vivo 
context this approach is not feasible due to the large 
number of kinases present. Therefore, Shokat and cow-
orkers developed a protein engineering-based approach 
to enlarge the ATP binding pocket of a specific kinase 
to accommodate a chemically modified ATP as co-sub-
strate, which would not bind to native kinase enzymes 
[19]. They engineered the nucleotide binding pocket of 
the prototypical viral proto-oncogene tyrosine protein 
kinase Src (v-Src) by mutating the gatekeeper residue Iso-
leucine at position 338 to Glycine. This point mutation 
enlarged the binding pocket making the buried region 
accessible to ATP-competitive analogues with non-polar 
substituents at the N6 position of the adenine base. The 

Fig. 1  Structure representation of c-Src in complex with ANP (PDB: 2SRC). a Ribbon representation of the kinase domain of c-Src in complex with 
ANP [38]. Tyr belonging to the activation segment is represented as stick. b Surface representation of a kinase ligand-binding pocket. The ATP is 
represented as stick. The five regions belonging to the ATP binding pocket are represented in different colors with the buried region behind the ATP



Page 3 of 12Romano et al. BMC Res Notes  (2017) 10:104 

ATP analogue preferentially used by the engineered v-Src 
kinase as phosphodonor was N6-benzyl-adenosine-5′-
triphosphate (N6-(benzyl) ATP). The use of γ-phosphate 
radiolabeled [γ-32P] N6-(benzyl) ATP resulted in the 
v-Src substrates being specifically radiolabeled and iden-
tified in the presence of other protein kinases and all 
other kinase substrates [13, 20]. This approach allowed 
the identification of cofilin and calumenin as specific 
v-Src substrates [21]. The conservation of the ATP bind-
ing site between different protein kinases makes the 
approach widely applicable for identifying specific kinase 
substrates. The gatekeeper residue is identified by the 
sequence alignment of the kinase of interest with v-Src. 
In a similar approach, other kinases were engineered 
to bind specifically modified inhibitors [22–28]. One of 
the challenges in applying this method to other kinase 
systems is to identify the optimal combination of kinase 
binding pocket mutations and ATP derivatives such that 
the ATP analogue acts as substrate for the engineered, 
but not the native or other cellular kinases. The mutation 
should modify size and shape of the ATP binding pocket 
while the engineered kinases have to remain catalytically 
active. The ATP analogue has to bind to the engineered 
kinase at sufficient affinity and in a suitable geometry to 
accomplish its role as phosphodonor. It needs to enter 
the engineered binding site, provide the γ-phosphate and 
leave the binding site in order to allow the engineered 
protein to perform catalysis. An ATP analogue bound too 
tight or in the wrong geometry would decrease or abolish 
the activity of the engineered enzyme.

In this study, we developed a computational protocol 
that evaluates how mutations within the ATP binding 
site of protein kinases influence the accommodation of 
various ATP analogues. The protocol explores pairings 
of potential mutations and ligand analogues by identify-
ing which residues within the binding pocket could be 
mutated to accommodate a specific ATP analogue. We 
tested the protocol on data for different protein kinases 
from the scientific literature where the Shokat’s method 
was applied to mutate the gatekeeper position.

Methods
Computational protocol
The computational protocol is organized in two main 
parts (Fig. 2). Computational models of ligand analogues 
(N6-(benzyl) ATP, N6-(1methylbutyl)adenosine-5′-
triphosphate (N6-(1-methylbutyl) ATP), N6-cyclopentyl-
adenosine-5′-triphosphate (N6-(cyclopentyl) ATP), 
N6-(2-phenythyl)adenosine-5′-triphosphate (N6-(2-phe-
nythyl) ATP), and 1-tert-butyl-3-(4-methylphenyl)-1H-
pyrazolo[3,4-d]pyrimidin-4-amine (PP1); Fig.  3) were 
modelled in Maestro (version 9.5, Schrödinger, LLC, 
New York, NY, 2013). For each molecule, an ensemble 

of low energy conformers was generated by performing 
an in vacuo conformational search keeping the adenine 
base, the ribose ring, the phosphates and the pyrazo-
lopyrimidine core of PP1 fixed and allowing the bonds 
of each substituent group to rotate freely. We used the 
Monte Carlo multiple minimum (MCMM) method [29] 
for 10,000 steps and OPLS_2005 as force field [30, 31]. 
During the conformational search, new structures gen-
erated were retained if they exhibited conformational 
energies lower than 100 kJ/mol. The conformation energy 
cutoff was chosen at 100  kJ/mol to allow for the vari-
ous geometric approximations made in the force field. It 
serves as a proxy for the estimated protein–ligand inter-
action energy. To obtain an ensemble of non-redundant 
conformations, each conformer was compared with the 
previous ones and only retained if the root mean square 
deviation (all atoms) exceeds 0.5 Å. The conformational 
search was performed with the MacroModel module 
implemented in the Schrödinger suite (version 10.1, 
Schrödinger, LLC, New York, NY, USA, 2013).

For each analogue, the ensemble was superposed onto 
the adenine moiety of the native ATP ligand within the 
binding pocket of the reference protein. If the distance 
between an atom of a protein residue and any atom of the 
substituent group of a ligand analogue in the ensemble 
is shorter than the sum of their van der Waals [32] radii, 
the corresponding residue is considered a potential can-
didate for single-point mutagenesis. If no residues were 
identified by this approach, the analogue was considered 
to act as substrate for the native target and thus not fur-
ther considered. The method was implemented in Python 
2.5.4 and contains functions from the OpenStructure 
software framework [33].

In the second step, the interaction between poten-
tial protein mutants and ligand analogues was evaluated 
using a protein–ligand scoring function. Amino acids 
at positions identified in the first step were replaced in 
silico to generate mutant proteins. When a residue was 
changed into Gly or Ala, the entire structure was relaxed 
by a minimization step performed using OPLS_2005 as 
force field in Maestro [34]. When a residue was mutated 
into an amino acid with a larger side chain, such as Met 
or Thr, a rotamer scan was performed to identify the 
most probable rotamer state using Rapid Torsion Scan 
tool available in Maestro. The kinase mutant-ligand 
conformer pairs were evaluated and ranked by the pro-
tein–ligand scoring function GlideScore [35]. The kinase 
mutant-ligand conformer structure with the lowest 
GlideScore was selected and the corresponding Glide 
energy was computed. The Glide energy is the sum of 
the Coulomb and van der Waals terms and represents an 
estimate for the protein–ligand interaction energy. Typi-
cally, predicted energies of interaction (Glide energies) 
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correlate better with protein–ligand binding affinities or 
experimental IC50 values than GlideScore [36]. We arbi-
trarily limited all positive energies to zero as we were 
only interested in identifying favorable interactions. In 
the case of engineered kinases and ATP analogue pairs, 
only the adenine base and the substituent group were 
scored by GlideScore.

Kinase data set
A set of 7 protein kinases and 15 mutants for which 
experimental data were available in literature was used 
as test set (Table  1). Unless stated otherwise, in silico 
mutagenesis was performed using Maestro and the struc-
ture was prepared with the Protein Preparation Wizard 

tool [34]. Residues are numbered as as in PDB struc-
tures. The crystal structure of JNK bound to ANP (an 
ATP analogue with an amino group in place of the oxy-
gen between the β and γ phosphates that mimics the 
natural cofactor) and Mg2+ was solved in 1998 (Homo 
sapiens, PDB:1JNK, resolution 2.30  Å, [37]). The crys-
tal structure was prepared for molecular modelling by 
adding hydrogen atoms, optimizing the hydrogen bond-
ing network, the orientation of the amide groups of Asn 
and Gln, and the orientation and protonation state of 
the imidazole ring of His. This optimization allowed for 
improving interactions between charged groups as well 
as hydrogen bonds within the structure. The optimiza-
tion was performed at pH of 7. Finally, a minimization 

Fig. 2  Workflow of the computational protocol. The protocol is organized in two parts, the first part identifies residues to mutate and the 2nd 
part evaluates mutant-analogue interactions. The specific inputs are depicted in circles, steps of the workflow are shown in rectangles and outputs 
are depicted in rectangles with dashed lines. In case all analogue conformations are scored as having favorable interactions with the wild type, the 
analogue is considered to act as substrate for the wild-type protein and thus not further considered
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step was applied to relax the entire structure. OPLS_2005 
was used as force field and the termination criterion was 
based on the rmsd of the heavy atoms relative to their 
initial location (rmsd less than or equal to 0.30  Å). The 
M108GL168A mutant was obtained by in silico replacing 
Met108 to Gly and Leu168 to Ala and the structure was 
prepared as described above.

The kinase domain of v-Src differs from that of the 
cellular protein kinase c-Src at position 338 within the 
binding pocket (Ile338 in v-Src and Thr338 in c-Src). The 
crystal structure of c-Src in complex with ANP has been 
solved (Homo sapiens, PDB:2SRC, resolution 1.50  Å, 

[38]). To obtain a model of v-Src bound to its natural 
cofactor, we substituted in silico Thr338 into Ile. The 
v-SrcI338A and v-SrcI338G mutants were obtained in the 
same way.

To obtain a model of v-Src in complex with a pyrazo-
lopyrimidine inhibitor, PP1, the structure of v-Src bound 
to ANP was superposed onto the structure of the hemat-
opoietic cell kinase (Hck, a homologous protein) in com-
plex with PP1 (Homo sapiens, PDB:1QCF, resolution 
2.00  Å, [39]). The superposition was based on residues 
belonging to the hinge regions (residues 338–341 in both 
v-Src and Hck). The coordinates of PP1 were copied into 

Fig. 3  Chemical structures of ATP and ATP-competitive analogues used in this study. For N6-(substituent) ATPs only the structures of the adenine 
ring and the hydrophobic groups are shown
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the v-Src binding site and the complex was then prepared 
and minimized as described before. The same procedure 
was used for all other protein kinases and mutants stud-
ied in the same paper, proto-oncogene c-Fyn (Fyn, Homo 
sapiens, PDB:2DQ7, resolution 2.80  Å, [40]), abelson 
murine leukemia viral oncogene homolog 1 (Abl, Homo 
sapiens, PDB:2G1T, chain D, resolution 1.80 Å, [41]), 
calcium/calmodulin-dependent protein kinase type II 
subunit alpha (CamKII, Homo sapiens, PDB: 2VZ6, chain 
B, resolution 2.30  Å, [42]), cyclin-dependent kinase 2 

(Cdk2, Homo sapiens, PDB:1HCK, resolution 1.90  Å, 
[43]), and mitogen-activated protein kinase p38 alpha 
(P38, Homo sapiens, PDB:1DI9, resolution 2.60 Å, [44]).

The complex of Fyn bound to the PP1 conformer with 
the best GlideScore was minimized in vacuo without 
constraints. We used the Polak-Ribier Conjugate Gra-
dient (PRCG) as method for 2500 steps [45]. The same 
procedure was used for the complexes of FynT339A, 
Abl and AblT334A. The procedure was performed using 
MacroModel.

Table 1  Substrate phosphorylation by ATP, kcat/Km, IC50 and predicted interaction energy for protein–ligand pairs

a  Interaction energies of 0 kcal/mol represent positive interaction energies

Kinases Ligands Experimental data Predicted interaction  
energies (kcal/mol)

JNK kinase % Substrate phosphorylation

JNK N6-(benzyl) 99 0a

N6-(2-phenythyl) 98 0a

N6-(cyclopentyl) 97 0a

N6-(1-methylbutyl) 93 0a

JNKM108GL168A N6-(benzyl) 62 −17.34

N6-(cyclopentyl) 59 −14.42

N6-(1-methylbutyl) 47 −20.42

N6-(2-phenythyl) 8 −33.0

v-Src tyrosine kinase kcat/Km (min−1 M−1)

v-Src ATP 1.6*105 −21.35

v-SrcI338A 1.4*104 −19.91

v-SrcI338G 1*104 −19.01

v-Src N6-(benzyl) ATP 0 0a

v-SrcI338A 2.5*104 −14.92

v-SrcI338G 4.0*104 −29.17

Tyrosine and serine/threonine kinases IC50 (μM)

v-Src PP1 5 ± 2 0a

v-SrcI338F 8 ± 2 0a

v-SrcI338 M 8 ± 1 0a

v-SrcI338S 0.4 ± 0.05 −28.78

v-SrcI338T 0.1 ± 0.02 −33.32

v-SrcI338 V 0.1 ± 0.02 −27.41

v-SrcI338C 0.07 ± 0.02 −27.44

v-SrcI338A 0.005 ± 0.002 −39.26

v-SrcI338G 0.005 ± 0.002 −38.56

Fyn 0.05 ± 0.02 −36.81

FynT339A 0.005 ± 0.002 −36.21

Abl 0.3 ± 0.03 −32.93

AblT334A 0.03 ± 0.005 −33.86

CamKII 80 ± 10 0a

CamKIIF89G 0.5 ± 0.1 −15.74

Cdk2 50 ± 10 0a

Cdk2F80G 0.16 ± 0.03 −24.85

P38 0.82 ± 0.2 −34.61

P38T106A 0.0027 ± 0.005 −33.43

P38T106G 0.0027 ± 0.005 −32.78
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Data comparison
All plots reported in this paper were made using the 
Matplotlib [46] and NumPy packages [47]. In the plot of 
JNKM108GL168A, the interaction energies were scaled 
between 0 and 100 to fit the same range of observed 
phosphorylation values (expressed as percentage of phos-
phorylation). The lowest Glide energy was set to 0 and 
the highest to 100. The plots of v-Src, v-SrcI338A and 
v-SrcI338G in complex with ATP and N6-(benzyl) ATP 
were created by comparing the experimental catalytic 
efficiency (kcat/Km) and the predicted interaction ener-
gies (Glide energies). To correlate experimental and pre-
dicted data, we computed the negative logarithm of the 
kcat/Km ratio. The plots of tyrosine kinases and serine/
threonine kinases in complex with PP1 were made meas-
uring the linear correlation between the predicted inter-
action energies and the experimental measured pIC50 
(−log(IC50)). For each family, the Pearson correlation 
coefficient was computed.

Results and discussion
The gatekeeper position in protein kinases controls the 
accessibility to a buried region at the end of the ATP 
binding pocket. Shokat has demonstrated that by mutat-
ing the gatekeeper residue, the size and shape of the ATP 
binding site can be modified such that the engineered 
kinases can use specific chemically modified ATP mol-
ecules as co-substrates. The gatekeeper residues of the 
kinases in our test set equivalent to position Ile338 in 
v-Src are shown in Fig. 4. Kinases with large gatekeeper 
residues, such as Ile or Met, do not allow for binding of 
ligand analogues with bulky side chains (e.g. v-Src or 
JNK) whereas those with smaller gatekeeper residues, 
e.g. Thr, can accommodate analogues within the binding 
pocket (for instance Fyn or Abl).

We tested the performance of our computational pro-
tocol on a data set containing 7 wild-type protein kinases 
and 15 mutants (Table  1). The ATP-competitive ligands 
used in the test set are N6-(substituent) ATPs with bulky 
hydrophobic groups at the N6 position of the adenine 
ring and the pyrazolopyrimidine PP1 (Fig. 3). The pyra-
zolopyrimidine core of PP1 mimics the adenine ring of 
ATP in binding within the nucleotide pocket [39]. The 

proteins belonging to the data set are from three inde-
pendent experimental studies where Shokat’s method 
was applied and tested. For JNK, the ability of the ATP-
competitive ligands to bind kinase mutants was tested by 
measuring their ability to inhibit the phosphorylation of a 
given substrate in presence of ATP (% substrate phospho-
rylation) [26]. For v-Src, the kinetic efficiency (kcat/Km) 
was used to measure the preference of protein kinases 
and/or mutants for different co-substrates [20]. For 
kinases belonging to tyrosine and serine/threonine fami-
lies, the potency of PP1 to inhibit protein kinases and/or 
mutants (IC50) was measured [48]. We applied our com-
putational approach to identify residues to mutate within 
the ATP binding pocket of these protein kinases, and 
the predicted protein–ligand interaction energies (Glide 
energies) were then compared to the published experi-
mental data.

JNK and N6‑(substituted) ATPs
Habelhah and coworkers modified the JNK ATP bind-
ing site so that it binds N6-(substituted) ATPs that can-
not be accommodated by the wild-type binding pocket. 
The designed JNK mutant-ATP analogue pair allowed for 
the identification of novel JNK substrates [26]. To deter-
mine the ATP analogue with the highest affinity for the 
engineered JNK, they compared four N6-(substituent) 
ATP analogues. Their efficiency as phosphodonor was 
tested by measuring their ability to prevent phosphoryla-
tion of substrates by ATP when they are added in excess 
with respect to ATP. For wild-type JNK and the ATP 
analogues the percentage of substrate phosphorylation 
ranged from 99 to 93%, showing the inability of the wild-
type kinase to accommodate any of the four ATP ana-
logues. On the other hand, the JNKM108GL168A mutant 
was able to accommodate N6-(substituent) ATPs and 
N6-(2-phenythyl) was the ligand with the highest affinity 
to the mutant (the percentage of substrate phosphoryla-
tion is 8%) (Table 1).

We applied the computational protocol to JNK and the 
four N6-(substituent) ATPs. For the wild-type we could 
not identify a low energy binding conformation with-
out steric hindrance, indicating that none of the ATP 
analogues can fit into the wild-type JNK ligand binding 

Fig. 4  Sequence alignment of the N-lobe and hinge region of the seven wild-type protein kinases belonging to our data set. The alignment is 
build using the T-Coffee web server [52]. Residues are colored by percentage of identity. Secondary structure elements are represented as follows: β 
strands as arrows, α helixes as cylinders, and coils as lines
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pocket (Table  1). The computational protocol identified 
two residues within the JNK binding site as potential can-
didates for double mutagenesis in order to enlarge the 
binding pocket, the gatekeeper Met108 and Leu168. We 
in silico replaced them with Gly and Ala, respectively, 
and evaluated the interaction of the engineered JNK with 
each ATP analogue. The complex of JNKM108GL168A 
and N6-(2-phenythyl) ATP shows the lowest Glide 
energy, implying that N6-(2-phenythyl) ATP is the sub-
strate with the best ability to bind the engineered JNK 
in a constructive manner (Table 1). Employing our com-
putational protocol, in first instance we reproduce the 
experimental findings that identify Met108 and Leu168 
as amino acids to mutate within the JNK binding pocket 
in order to enlarge it. Furthermore, we correctly repro-
duce the relative ranking of the four ATP analogues as 
substrates for the engineered JNK classifying N6-(2-phe-
nythyl) ATP as the best substrate (Fig. 5).

v‑Src and N6‑(benzyl) ATP
Shokat and coworkers engineered v-Src to produce a 
kinase mutant that preferentially used N6-(benzyl) ATP 
as co-substrate instead of the natural nucleotide (ATP) 
[20]. They performed kinetic measurements revealing 
that wild-type v-Src had a substrate preference for ATP 
over the ATP analogue (1.6*105 min−1 M−1 vs 0) and the 
I338G mutant preferentially used N6-(benzyl) ATP as co-
substrate over the natural ATP (the kcat/Km ratio is 4–1).

We used our approach and identified the gatekeeper 
Ile338 as being a good candidate for point mutation to 
enlarge the v-Src ligand-binding site, in agreement with 

Shokat’s experimental findings. We scored mutant mod-
els I338A and I338G in complex with N6-(benzyl) ATP 
and both had negative energy of interaction with the 
ATP analogue implying their ability to accommodate it 
within their engineered binding pocket. The predicted 
interaction energies well reproduced the trend of the 
experimental kinetic constants (Table  1). Wild-type 
v-Src, v-SrcI338A and v-SrcI338G are able to interact 
with ATP with almost equal interaction energies (Fig. 6a). 
Wild-type v-Src cannot accommodate N6-(benzyl) ATP 
because of the steric overlaps between the side chain of 
Ile338 and the benzyl group attached at the N6 position 
of the ATP analogue. V-SrcI338A and v-SrcI338G have 
enlarged binding pockets that accommodate the ATP 
analogue in a constructive interaction. V-SrcI338G has 
the best predicted energy of interaction and is confirmed 
as the best binder to the ATP analogue (Fig. 6b).

Tyrosine and serine/threonine protein kinases and PP1
A study conducted by Liu and coworkers analyzed how 
the gatekeeper residue controls the ability of PP1 to 
inhibit protein kinases [48]. The gatekeeper amino acid 
corresponds to Ile338 in v-Src, Thr339 in Fyn, Thr334 in 
Abl, Phe89 in CamKII, Phe80 inCdk2, and Thr106 in P38. 
The study showed that residues equal to or larger than 
Ile, such as Phe and Met, make PP1 a less potent inhibi-
tor (IC50 ≥ 1 μM) whereas residues smaller than Ile, such 
as Ser, Thr, Val, Cys and especially Ala and Gly increase 
the potency of PP1 (IC50 values ranging from 0.05 to 
0.82 μM).

We mutated the gatekeeper residues to obtain struc-
tural models of the engineered kinases and analyzed 
the correlation between predicted energies of interac-
tion of wild-type and engineered kinases with PP1 and 
inhibition data (IC50). For both tyrosine kinase and ser-
ine/threonine kinase families the predicted interaction 
energies reproduced the trend of the inhibitor potency 
(Table  1). A positive correlation between the experi-
mental −log(IC50) (pIC50) and the predicted interaction 
energies was found for both families, with a Pearson cor-
relation of 0.85 for the Src tyrosine kinases and of 0.75 for 
the serine/threonine kinases (Fig. 7). Our computational 
protocol discriminated well between protein variants 
that are inhibited by PP1 (negative interaction energies, 
e.g. v-SrcI338S or CamKIIF89G) and proteins that are 
not inhibited (positive interaction energies, e.g. v-Src, 
v-SrcI338F or Cdk2). In the specific case of v-Src, the pro-
tocol is able to reproduce the ranking of the mutants and 
identify which engineered kinases are the best binders to 
PP1, with v-SrcI338A and v-SrcI338G being identified as 
the best in agreement with IC50 values (Table 1). Despite 
the overall good correlation between inhibition data and 
predicted interaction energies, in some cases GlideScore 

Fig. 5  Comparison of experimental and predicted data for 
engineered JNKM108GL168A and ATP analogues. Plot shows the 
percentage of substrate phosphorylation by ATP in presence of 
ATP analogues and the scaled predicted interaction energies for 
the engineered JNK and the four ATP analogues. The percentage of 
phosphorylation and the predicted binding energies scaled between 
0 and 100 are shown for the different ATP analogues
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does not discriminate between a good and very good 
binder to PP1, such as wild-type Fyn and FynT339A or 
wild-type Abl and FynT334A. Threonines within the 
binding sites of wild-type Fyn and Abl allow the binding 
of PP1 with an IC50 of 0.05 and 0.3 μM, respectively. The 
mutagenesis of Thr into the smaller Ala results, in both 
cases, in an increase of the IC50 by a factor of 10 (from 
0.05 to 0.005  μM for Fyn and from 0.3 to 0.03  μM for 
Abl). The predicted interaction energies do not mirror 
that increase. For Fyn and FynT339A the predicted ener-
gies of interaction with PP1 are almost the same, 36.81 
and 36.21  kcal/mol, respectively and the same result is 
obtained for Abl and AblT334A in complex with PP1 
with interaction energies of 32.93 and 33.86  kcal/mol, 
respectively.

We explored to which extend energy minimization of 
the complex models before scoring would lead to bet-
ter correlation between experimental and predicted 
data. For both Fyn and Abl and the respective mutants 

we considered the protein-PP1 complexes with the best 
GlideScore and minimize them without constraints. 
Although the introduction of a minimization step results 
in lower predicted protein-inhibitor interaction energies 
(Table  2), GlideScore was not capable of differentiating 
relative affinity between generally strong protein-inhibi-
tor interactions. The use of scoring functions more sensi-
tive to the subtle changes in protein–ligand interactions, 
or scoring functions tailored to specific binding site 
properties [49] might help to overcome the inability of 
GlideScore in discriminating relative binding affinity for 
good binders.

The main goal of this study is to identify, which bind-
ing-site residues of the target kinase could be mutated to 
accommodate a specific ATP analogue as co-substrate 
without interfere with the catalytic activity of the kinase 
protein. To reach this goal, we used a protein struc-
ture derived by X-ray crystallography in complex with 

Fig. 6  Comparison of the catalytic efficiency and predicted interac-
tion energy for v-Src, v-SrcI338A, and v-SrcI338G with ATP (a) and with 
N6-(benzyl) ATP (b). Plots show the trend of the kcat/Km ratio and the 
predicted interaction. Shown on the x-axis are the wild-type protein 
and the two mutants. The primary y-axis (on the left) is the predicted 
negative interaction energies and the secondary y-axis (on the right) 
is the log of the kcat/Km ratio

Fig. 7  Correlation plots of the predicted interaction energies versus 
the experimental pIC50. a Src family tyrosine kinase with PP1. The cor-
relation coefficient is 0.85. b Serine/threonine kinases with PP1. The 
correlation coefficient is 0.75. Data from Table 1
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the natural ATP substrate as starting point. In order to 
be able to act as co-substrate in catalysis, a ligand was 
assumed to be able to bind in place of the natural sub-
strate in a low-energy conformation. We therefore 
modelled each modified ATP with adenine, ribose and 
phosphates geometry identical to the native ATP within 
the kinase binding site, and sampled the conformational 
ensemble of substituents for low energy conformations 
which could be accommodated in the binding site. Our 
computational approach reproduces the experimental 
data available in literature. The method is able to dis-
criminate between residues that have to be mutated into 
smaller ones to allow the accommodation of ligand ana-
logues, (e.g. Ile338 in v-Src) and residues that instead 
allow for the binding of specific analogues within the wild 
type enzyme (e.g. Thr339 of Fyn).

Shokat and coworkers tested 12 N6-(substituent) 
ATPs with 7 v-Src mutants in order to identify the opti-
mal combination of a mutation within the v-Src ligand-
binding pocket and a chemical derivative of ATP to use 
for identifying the specific v-Src substrates [19, 20], and 
identified N6-(benzyl) ATP as suitable substrate for 
an engineered v-Src with an enlarged binding pocket, 
v-SrcI338G. Their approach was based on the ‘bump-
and-hole’ model [50, 51]. The gatekeeper residue was 
mutated into a small amino acid generating a ‘hole’ 
within the ligand-binding site that can accept ligands 
with bulky substituent groups, ‘bumps’. The method was 
based on exploring shape complementarity between the 
enlarged kinase binding pocket and the ATP derivative.

The computational protocol we developed in this 
work can help to rationalize the experimental procedure 
to identify the substrates of a specific kinase: It aims to 
prescreen a large number of computationally modelled 
mutant-analogue complexes, in order to reduce the num-
ber of pairs to test in vitro and/or in vivo. Furthermore, in 
our procedure the gatekeeper position could be replaced 
into each of the other 19 amino acids. This would allow 
identifying new residues for mutation based on shape 
complementarity as well as specific protein–ligand inter-
actions between side chains of mutated residues and sub-
stituent groups of ATP analogues.

Conclusions
We developed a computational protocol for evaluat-
ing how mutations at the gatekeeper position influence 
the accessibility of ATP-competitive ligands within the 
binding site of kinase mutants. Shokat and coworkers 
have experimentally identified the gatekeeper position 
as suitable for engineering kinases with modified co-
substrate specificity. Our computational protocol allows 
further exploration of this approach via two routes. The 
first route is able to provide a relative rank of various 
ATP analogues for a given gatekeeper residue mutation. 
The second route provides a way to evaluate for given 
ligand analogue, which mutations at the gatekeeper 
residue position would be compatible. The computa-
tional screen of a large ensemble of potential mutant-
analogue pairs can reduce the number of experimental 
essays to perform resulting in a significant reduction of 
the time and the cost of the whole experiment. Besides 
protein–ligand shape complementarity, our computa-
tional protocol allows the evaluation of different types 
of interactions between an engineered kinase and an 
ATP derivative. This will allow exploring gatekeeper 
mutations exhibiting specific polar interactions with the 
ATP analog, which have not yet been explored in the 
literature.
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Table 2  IC50 and predicted energies computed before and after minimization for four kinase-PP1 complexes

Protein-PP1  
complexes

IC50 (μM) Predicted interaction  
energies (kcal/mol)

Predicted interaction energies  
after minimization (kcal/mol)

Fyn-PP1 0.05 ± 0.02 −36.81 −44.30

FynT339A-PP1 0.005 ± 0.002 −36.21 −45.83

Abl-PP1 0.3 ± 0.03 −32.93 −43.54

AblT334A-PP1 0.03 ± 0.005 −33.86 −42.95
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