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The primary cannabinoid in cannabis, Δ9-tetrahydrocannabinol (THC), causes intoxication and impaired function, with implications
for traffic, workplace, and other situational safety risks. There are currently no evidence-based methods to detect cannabis-impaired
driving, and current field sobriety tests with gold-standard, drug recognition evaluations are resource-intensive and may be prone
to bias. This study evaluated the capability of a simple, portable imaging method to accurately detect individuals with THC
impairment. In this double-blind, randomized, cross-over study, 169 cannabis users, aged 18–55 years, underwent functional near-
infrared spectroscopy (fNIRS) before and after receiving oral THC and placebo, at study visits one week apart. Impairment was
defined by convergent classification by consensus clinical ratings and an algorithm based on post-dose tachycardia and self-rated
“high.” Our primary outcome, prefrontal cortex (PFC) oxygenated hemoglobin concentration (HbO), was increased after THC only in
participants operationalized as impaired, independent of THC dose. ML models using fNIRS time course features and connectivity
matrices identified impairment with 76.4% accuracy, 69.8% positive predictive value (PPV), and 10% false-positive rate using
convergent classification as ground truth, which exceeded Drug Recognition Evaluator-conducted expanded field sobriety
examination (67.8% accuracy, 35.4% PPV, and 35.4% false-positive rate). These findings demonstrate that PFC response activation
patterns and connectivity produce a neural signature of impairment, and that PFC signal, measured with fNIRS, can be used as a
sole input to ML models to objectively determine impairment from THC intoxication at the individual level. Future work is
warranted to determine the specificity of this classifier to acute THC impairment.
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INTRODUCTION
Intoxication with Δ9-tetrahydrocannabinol (THC), the psychoactive
ingredient in cannabis, impairs cognitive and psychomotor perfor-
mance, impairs driving, and at least doubles the risk of fatal motor
vehicle crashes [1]. A pre-specified THC metabolite concentration in
body fluids as a proxy for intoxication or impairment is still used in
many parts of the US, analogous to blood alcohol concentration
limits, but this is prone to false-positive results. THC metabolites can
remain in the bloodstream for weeks after last use, long after the
period of intoxication is over [2] and does not correlate well with
impairment [3]. Accordingly, THC or THC metabolite concentrations in
the breath or body fluids are unlikely to yield an accurate, reliable test
of impairment [2, 4, 5]. In the absence of an accurate biometric,
impairment due to cannabis intoxication has been measured and
defined legally in many places using an enhanced field sobriety test
(eFST) during traffic stops [6]. However, the eFST has been reported to
be insensitive to oral THC [7] and prone to false positive bias [8]. The
need for an objective, reliable method to detect impairment due to
THC is well recognized in view of the absence of a reliable, objective,
quantitative, biological test for impairment due to acute cannabis

intoxication [1, 9, 10]. The present study assesses a brain-based
method for determining impairment as an alternative to eFSTs.
Neural states of impairment from intoxicating substances,

including cannabis, are poorly understood. As cannabinoid 1
(CB1) receptors, the main target of Δ9-THC, the primary intoxicat-
ing cannabinoid in cannabis, are densely localized within the
fronto-limbic circuit [11], prefrontal brain regions are key locations
to examine brain changes that characterize impaired clinical states
associated with acute intoxication. THC increases dopamine
release via activation of presynaptic CB1 receptors in the ventral
tegmental area, via GABAergic and glutamatergic terminals [12],
resulting in less functional connectivity in the mesocorticolimbic
circuit [13] and increased connectivity (via increased glutamater-
gic signaling) in the prefrontal cortex [14, 15]. Indeed, neuroima-
ging studies have shown that THC exposure activates fronto-
striatal reward circuitry, including the medial prefrontal cortex
(PFC) [3, 16], and acute administration of THC increases perfusion
(as assessed with arterial spin labeling) in prefrontal areas [17].
Functional near-infrared spectroscopy (fNIRS), a noninvasive

and inexpensive method for assessing oxygenated hemoglobin
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(HbO) response, can be easily used to query the PFC. We
previously reported that activation-induced changes in cerebral
HbO concentration were significantly altered by THC intoxication
[18]. Participants who reported intoxication after oral THC,
compared with those reporting low or no intoxication after oral
THC, had greater fNIRS-detected prefrontal cortical (PFC) oxyge-
nated HbO response during an n-back working memory task
[18, 19], suggesting that a neural activity signature, detectable
with portable brain imaging, may characterize THC intoxication. To
date, neuroimaging studies of the effect of THC on brain function
have focused on THC exposure rather than impairment associated
with acute intoxication from THC. Further, neuroimaging studies
have compared group-level differences in brain states (e.g. THC vs
placebo), with no study to date examining individual brain scans
to determine impairment.
Here, we aimed to better understand the brain state of

impairment due to THC intoxication rather than the effect of THC
exposure only and to use individual-level data and standard machine
learning (ML) techniques to develop a diagnostic classification tool
for THC impairment. To do so, we conducted a double-blind, cross-
over study, randomized for order, of the effect of a single,
individualized dose of synthetic THC designed to produce intoxica-
tion and identical placebo, approximately 1 week apart, in regular
cannabis users, on PFC hemodynamics during the N-back working
memory task using a 20-channel fNIRS probe (Fig. 1A) with one fNIRS
scan before and two fNIRS scans following study drug at each study
visit. A temporal feature-based ML model [20] (Fig. 1B) and a
recurrent neural network (RNN) connectivity ML model [21] (Fig. 1C)
were developed and used both separately and combined to classify
individual participants as impaired or not clearly impaired from THC.
Ground truth impairment, for the purpose of identifying fNIRS scans
to be used in building the ML models, was operationalized as post-
dose scans conducted when participants were (1) rated as impaired
by two clinical raters, using all but fNIRS data, and (2) identified by an
algorithm using physiologic (heart rate) and psychologic (self-rating
of intoxication) inputs to discriminate those impaired following THC
from not impaired following THC and placebo with a low false
positive rate (FPR).

MATERIALS AND METHODS
Experimental design
Study procedures were approved by the Partners Human Subjects
Committee. All participants provided written informed consent prior to
initiation of study procedures. Participants were compensated for
completion of each study visit. Recruitment started in January 2017 and
was completed in March 2020.

Participants
Adults, aged 18–55 years, who reported at least weekly cannabis use in the
past 90 days were recruited through advertising in the community in the
greater Boston area. Exclusion criteria included a negative urine THC (THC-
COOH) screen (20 ng/mL cutoff; Medimpex United Inc., Bensalem, PA,
USA), serious medical illness, lifetime history of schizophrenia spectrum or
bipolar disorder, current regular use of benzodiazepines or barbiturates,
antihistamines, atropine, scopolamine, or other anticholinergic agents, and
known allergy to dronabinol or its constituents.

Interventions
Participants were randomly assigned for order to receive a single oral
dose of dronabinol (Marinol) capsules, an FDA-approved, synthetic THC,
and single dose of identical appearing placebo capsules, on separate
study visits, conducted at least 7 days apart (mean days apart = 9.3;
SD= 15.5). Dronabinol dose was individualized with the goal of
producing intoxication at a dose that was well tolerated by each
participant up to a maximum of 80 mg, a dose that when given three
times per day has been reported to be safe and generally well tolerated
[22]. Dose was determined by taking a history of participants’ usual use
pattern and estimated dose when used recreationally, and the decision

to allow up to 80 mg dose was chosen to accommodate doses reported
by participants while safely producing intoxication. Participants pro-
vided a detailed history of cannabis use pattern, approximate dose,
route of administration, level of intoxication and adverse effects with
various doses. Study staff used this information together with factors
including sex and BMI to dose dronabinol for the study with the aim of
maximizing the likelihood for intoxication for each individual participant
while minimizing adverse effects such as nausea, anxiety, and
hemodynamic change (see Supplementary Methods).

Assessments
At the screening visit, participants provided a urine sample for quantitative
analysis of 11-nor-9-carboxy-tetrahydrocannabinol (THCCOOH) concentra-
tion, the primary inactive THC metabolite, in order to exclude participants
without recent cannabis use. Urine THCCOOH and creatinine concentra-
tions were determined by liquid chromatography/tandem mass spectro-
metry, with the THCCOOH concentration normalized to the creatinine
concentration (Dominion Diagnostics, Kingstown, RI, USA) [23]. Participants
were asked to use no intoxicating substances the morning of the study
visit. A qualitative urine drug screen was performed at screening and on
each study day assessing for the presence of cannabinoids, opioids,
cocaine, and amphetamines, in order to reschedule study visits for those
with positive screens for opioids, cocaine, amphetamines. Participants
were assessed at the beginning of each study visit. Those who arrived for a
study visit with clinical signs of intoxication were rescheduled.

Intoxication. Subjective ratings of intoxication were collected at study
visits before and at approximately 20-min intervals for approximately 240
min after study drug administration with the Drug Effects Questionnaire
(DEQ; [24]), which consists of five questions assessing subjective drug
effects, in which participants rated answers from 0 (no effects) to 100
(maximum effects).

Physiology. Heart rate (beats per minute; bpm) was measured before and
approximately every 20min for 240min after THC/placebo administration.

fNIRS. Participants performed the n-back task during three fNIRS scans
on each of the two study days; the first before THC/placebo
administration, the second at approximately 100 min after THC/placebo
administration, which corresponded to the estimated median maximum
THC concentration in blood (Solvay Pharmaceuticals, 2004), and the third
at approximately 200 min after THC/placebo administration. Each fNIRS
scan consisted of a 6-minute run of the 0-back and 2-back condition of
the letter n-back working memory (WM) task (six 30-s blocks, alternating
2-back, and 0-back) [18]. All participants practiced the n-back task at
each visit before THC dosing and were given feedback on their
performance. Reported analyses on behavioral task performance and
fNIRS time-series scan data include the 2-back condition only.

Extended Field Sobriety Test. Immediately following the second fNIRS scan,
approximately 120min after THC/placebo dosing, a police officer who was
trained and certified as a Drug Recognition Examiner (DRE), conducted the
structured, extended field sobriety test used during traffic stops for
suspected drugged driving, as described in the Advanced Roadside
Impaired Driving Enforcement manual [6]. This test included all
standardized assessments in the structured, extended field sobriety test
except questioning of drugs used, including horizontal gaze nystagmus,
pupillary response, walk and turn tests, and one leg stand (balance phase
and counting phase), conducted in the specified order, and took
approximately 45–60min to perform.

Defining impairment. As there is no accepted objective definition of
impairment, and because of the reported risk of high false-positive rates
with the eFST [8], replicated in this study with over 21% of participants
considered by the DRE to be impaired on the eFST following receipt of
placebo, we developed a two-stage process for operationalizing ground
truth impairment for the purpose of identifying fNIRS scans to be used in
building the ML models. Post-dose scans were considered to be impaired if
they were conducted when participants were rated as impaired by two
clinical raters, using all but fNIRS data, in participants who were also
identified by an algorithm using physiologic (heart rate) and psychologic
(self-rating of intoxication) inputs to discriminate THC from placebo with a
low FPR (see Supplementary Methods).
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Acquisition of fNIRS imaging data
A continuous wave-NIRS (NIRSport 8-8, NIRx, Medical Technologies LLC,
Glen Head, NY, USA) device simultaneously acquired dual-wavelength
(760 and 850 nm) near-infrared light to calculate relative concentration
changes in oxygenated and deoxygenated hemoglobin (HbO and HbR,
respectively) [25] based on the modified Beer-Lambert law [26]. The
sampling frequency was 7.81 Hz. NIRStar software by NIRx verified the
signal quality before each recording. NIRS data event markers were
displayed, recorded and stored on the recording computer. The NIRS
probe comprised eight sources and seven detectors placed over the PFC
brain region of each participant (see Fig. 1A for a schematic). The mid-
column of the probe was placed over Fpz, with the lowest probes
located along the F5-Fp1-Fpz-Fp2-F6 line, in accordance with the
International 10-20 Placement System [27]. The center of the cap was
placed over the vertex (Cz) of each participant, at a point equidistant
from both nasion (Nz) and inion (Iz) and equidistant from the left and
right preauricular points. The distance between pairs of source and
detector probes ranged from 2.5 to 3 cm. The midpoint of the source-
detector distance was defined as channel (Ch) location.

Statistical analysis
Analysis of fNIRS data. Our primary outcome measure in the study was
HbO concentration. fNIRS analyses were conducted using Homer2 open
source software (MGH-Martinos Center for Biomedical Imaging, Boston,
MA, USA), implemented in MATLAB (Mathworks, Natick, MA, USA) [28];
see Supplementary Methods for detail. We defined five regions on
interest (ROIs) based on channel location. See Fig. 1A.

Machine learning methods. Pre-processed data from impaired and
placebo scans were used to build two models; a temporal feature map
model from time-series data [29] using XGBoost (https://xgboost.
readthedocs.io/en/latest/), an open-source distributed gradient boosting
library that is normally used to train gradient-boosted decision trees and
other models, and a RNN model from connectivity data [30]. See Supple-
mentary Methods for detail. Ensemble learning combined the results of the
XGBoost and RNN model architectures. We utilized boosting to iteratively
fit the RNN model and use the classifier’s predictive results in combination
with the extracted time-series features to fit the XGBoost model.

Cross validation and model construction (Temporal feature maps and
RNN). We constructed and examined all models with repeated five-fold
cross-validation (five repeats), which partitioned the original sample into
five subsets. Four subsets were part of the training process, and predictions
were made for the remaining subset. Stratified k-fold validation ensured
that each subset had an equal distribution of impaired/non-impaired
scans. To avoid opportune data splits, we averaged model performance
metrics across test folds and selected the best performing models by
examining FPR divided by true negative rate.
We measured the significance of the model’s accuracy with a one-tailed

binomial test of model accuracy relative to scrambled data (null-
information rate). We also measured other relevant descriptions of model
discrimination—including sensitivity, specificity, and area under curve
(AUC)—at each stage.

Test (hold-out) dataset. The classifier above was built with scans from 80
impaired participants. As a test set, scans from the 57 participants who

Fig. 1 Design of probe and machine learning models. A The continuous wave near-infrared spectroscopy (NIRS) machine was used to
measure changes in oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (deoxy-Hb). The NIRS probe comprised of eight sources
(red) and seven detectors (yellow) placed over the prefrontal brain region (forehead) of each participant. The mid-column of the probe was
placed over Fpz, with the lowest probes located along the F5-Fp1-Fpz-Fp2-F6 line, in accordance with the International 10–20 Placement
System. The distance between pairs of source and detector probes ranged from 2.5 - 3 cm. The midpoint of the source-detector distance was
defined as channel (Ch) location, labeled numerically (1–20) in the above schematic. The channels were grouped into regions of interest, as
illustrated in the schematic. We defined five regions on interest (ROIs) based on channel location. These ROIs are middle prefrontal cortex
(MPFC, channels 7, 8, 9, 10, 11, 12, 13, 14); right dorsolateral prefrontal cortex (RDLPFC, channels 15, 17, 18); right ventrolateral prefrontal
cortex (RVLPFC, channels 16, 19, 20); left dorsolateral prefrontal cortex (LDLPFC, channels 1, 2, 5); and left ventrolateral prefrontal cortex
(LVLPFC, channels 3, 4, 6). B We extracted 95 numerical values (19 from each of the 5 ROIs): mean HbO values for time segments 0–5, 5–10,
10–15, 15–20, 20–25, 25–30, 30–35, and 35–40 s, slope (5–15 s), skewness (0–15 s), kurtosis (0–15 s), area under the curve (0–15, 15–40 s), time
to first and second extremum of HbO, magnitude of first and second extremum of HbO, and average and standard deviation of HbO after the
first extremum. We used these 95 predictive features to train XGBoost to predict impairment. C We computed pairwise correlations between
the HbO concentration change values of all possible channel pairs. We computed dynamic connectivity matrices with sliding windows of 300
time points, and a skip of 100 time points, so that each window corresponded to a small segment of the scan. We then trained an RNN model
architecture with the sliding-window correlation matrix feature vector as the input. In this RNN, the core component consisted of fully
connected layers that mapped the input to a latent representation, which in turn fed to a hidden state with recurrent connections. A
probabilistic prediction was computed at every time point by applying a fully connected layer to the hidden state. We used tanh for all
nonlinearities and implemented a fully connected neural network with 5 hidden layers and 128, 64, 32, and 16 nodes. The output of this
model was a fully connected neural net with a single hidden layer of 64 dimensions and consisted of recurrent connections that captured
temporal dynamics.
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were given THC but determined by concordant consensus clinical rating
and HR/self-rated high algorithm impairment determination to be “not
clearly impaired” were used to test the classifier. Methods to test these
scans were identical to the methods presented above.

RESULTS
One hundred sixty-nine participants (86 males, 83 females, mean
age 25.2 ± 6.4 years) initiated a study visit at which they received
study drug and had at least one post-drug fNIRS scan (see Table 1,
Supplementary Figure 1). Participants who completed a placebo
study visit but not a THC study visit were excluded from the
analyses.
The clinical consensus ratings (CCR) classified 96 participants

as impaired during a scan, and the HR/self-rated high algorithm
classified 93 participants as intoxicated during a post-dose scan;
80 participants had scans with concordant CCR and algorithm
ratings of impaired/intoxicated and were operationalized as
impaired for building the ML classifier (Fig. 2A). The mean THC
dose for these 80 participants considered to be impaired was
35.6 ± 11.5 mg. Likewise, 57 participants had concordant ratings
of not clearly impaired on the CCR and HR/self-rated high
algorithm (Fig. 2A); the mean dose of THC for these 57
participants rated as not clearly impaired was 34.8 ± 16.1 mg.
The 80 participants operationalized as impaired post-THC had
greater subjective, physiologic and cognitive (N-back perfor-
mance) effects of THC than the 57 participants operationalized
as not clearly impaired after receiving doses of THC that were

not significantly different (Fig. 2B, Supplementary Table 1). On
the n-back task, d’ score (post-dose minus pre-dose) indicated
that impaired participants showed a worsening in performance
(d’ change=−0.22 ± 0.75), but participants who were not
clearly impaired improved, likely benefiting from practice (d’
change = 0.21 ± 0.57), t= 3.70, p < 0.001.
There was 75.5% concordance between the CCR of impairment

and algorithmic determination of impairment (Supplementary
Fig. 2). Only post-THC scans with concordant impairment
determinations and post-placebo scans (n= 80; see Fig. 2A) were
used as ground truth to build the ML classifier of impairment. Of
these 80 impaired participants, 39 were impaired at Scan 2 (100
min post-dose) only, 20 were impaired at Scan 3 (200 min post-
dose) only, and 24 were impaired at both scans.

Extended field sobriety test (eFST)
One hundred ten participants had a DRE-administered eFST after
active THC, and 71 (64.5%) of these were impaired according to
the eFST. Ninety-six participants had an eFST following placebo,
and 21 (21.6%) of these were impaired according to the eFST. Of
the participants who were operationalized as impaired (concor-
dant CCR and algorithm ratings), 82.8% were also determined to
be impaired by the eFST. Of the participants operationalized by
concordant ratings as not clearly impaired post-THC, 60.9% were
also determined to be not impaired by the eFST. THC dose did not
differ significantly between participants determined to be
impaired versus not impaired by the DRE-administered eFST

Table 1. Characteristics of study participants overall and by analysis group.

Variables Overall Impaired post active study
drug (THC)

Not clearly impaired post active
study drug (THC)

Discordant/No
valid scans

Sample size 169 80 57 32

Demographics

Age 25.2 (6.4) 24.4 (5.3) 26.3 (7.5) 25.4 (6.6)

Sex; % Male (n) 50.9% (86) 57.5% (46) 47.4% (27) 40.6% (13)

Race

% White (n) 67.5% (114) 68.8% (55) 70.2% (40) 59.4% (19)

% Black (n) 11.2% (19) 5% (4) 14% (8) 21.9% (7)

% Asian (n) 6.5% (11) 10% (8) 3.5% (2) 3.1% (1)

% Multi-racial (n) 7.7% (13) 10% (8) 5.3% (3) 6.2% (2)

% Other (n) 7.1% (12) 6.2% (5) 7% (4) 9.4% (3)

Ethnicity; % Hispanic (n) 20.1% (34) 25% (20) 17.5% (10) 12.5% (4)

Years of education completed 15.3 (2.1) 15.4 (2.2) 15.3 (2.1) 15 (1.8)

Cannabis use characteristics

Age began regular usea 19 (3.9) 18.6 (3.6) 19.7 (4.6) 18.8 (3.6)

Weekly users; % Yes (n) 42% (71) 48.8% (39) 38.6% (22) 31.2% (10)

Daily users; % Yes (n) 56.2% (95) 51.2% (41) 56.1% (32) 68.8% (22)

Used multiple times per day; %
Yes (n)

45% (76) 36.2% (29) 56.1% (32) 46.9% (15)

Urine THC-COOH (ng/mL) 221.8 (473.2) 98.1 (147.5) 456.2 (795.3) 163 (136.1)

CUDIT score 12 (5.3) 11.6 (5.2) 12.4 (5.2) 12.4 (5.7)

Psychiatric characteristics

STAI - State (Baseline) 31.9 (6) 31.2 (5.1) 32.2 (6.2) 33 (7.7)

Lifetime depression

% Diagnosed (n) 17.2% (29) 12.5% (10) 17.5% (10) 28.1% (9)

Lifetime anxiety

% Diagnosed (n) 18.9% (32) 15% (12) 22.8% (13) 21.9% (7)

Unless otherwise noted, values are means with standard deviations in parentheses.
aSelf-report of approximate first age of at least monthly cannabis use.
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(“eFST impaired” THC dose = 36.0 mg, “eFST not impaired” THC
dose = 32.9 mg, p= 0.28).

Group level effects of THC impairment on brain activation
HbO response during the n-back task pre- and post-THC and
placebo in the five ROIs assessed are shown in Fig. 3.
Participants operationalized as impaired with concordant
impaired CCR and algorithm ratings had increased HbO
following THC in all five ROIs queried. There was no significant
change in HbO concentration during the n-back task in any ROI
in participants with concordant ratings as not clearly impaired
following a similar dose of THC or in participants following
placebo. Participants with self-reported high >50 of 100 on the
DEQ also had significantly increased HbO concentration in all
PFC regions post-THC, while those with self-reported high <50
had no significant HbO change post-THC (Supplementary Fig. 3).
In participants in whom the DRE-administered eFST indicated
impairment, fNIRS signal followed a similar pattern, but with
significantly increased HbO concentration post-THC only in the
MPFC and for a brief 3.6-s interval in the time course of the right
DLPFC (Fig. 3, right 2 columns).

Individual level classification of impairment with machine
learning algorithms using only brain data, using
operationalized determination of impairment by clinical
consensus and HR/self-rating algorithm as ground truth
Impairment classification using pre- and post-dose fNIRS scans
with ensemble learning with fNIRS time series and connectivity
data, using fNIRS scans with concordant consensus clinical rating
and HR/self-rated high algorithm impairment determination as
ground truth, yielded accuracy of 76.4%, a positive predictive
value (PPV) of 69.8%, and a FPR of 10.0% (Fig. 4A; Supplementary
Table 2), and an area under the receiver operating characteristic
(ROC) curve of 0.83 (Fig. 4B). Impairment classification using
only features from the fNIRS time series data classified impairment
with accuracy of 73.0% and a PPV of 75.7%. Using only
fNIRS connectivity data resulted in accuracy of 74.3% and a
PPV of 58.8%. Impairment classification using eFST evaluation
without fNIRS features, with concordant clinical and algorithmic
impairment ratings as ground truth, yielded accuracy of 67.8%,

and a PPV of 35.4%, with a FPR of 35.9%. A two-sample test of
proportions found that the FPR for the eFST evaluation of 35.9%
was significantly higher (p < 0.001) than the 10% rate from the ML
algorithm. Importantly, the ML classifier built using only data from
the post-THC scans (no pre-dosing normative data), performed
with a PPV of 72.6%, accuracy of 77.3%, and a FPR of 17.9%
(Supplementary Table 3).

Using “Not Clearly Impaired” scans as a test (hold-out) set,
machine learning algorithms accurately classified these scans
Scans from the 57 participants who were given THC but
operationalized as not clearly impaired by concordant consensus
clinical rating and HR/self-rated high algorithm were used as a test
dataset, using the above classifier. With ensemble learning with
fNIRS time series and connectivity data, this test dataset yielded
an accuracy of 84.6%, and a FPR of 15.4%. With time series data
only (no connectivity), this test yielded an accuracy of 89.2%, and
a FPR of 10.8%.

Adverse events
All adverse events were considered mild to moderate and were
transient. Asymptomatic severe hypertension (SBP > 180) was
observed in 2 participants, correlating with peak drug effect; see
Supplement.

DISCUSSION
This study replicates literature from fMRI [15], PET [31], EEG [16],
and ASL [17] studies showing increased activation of the PFC after
THC exposure, and extends this literature by showing that such
activation is specific to the state of acute THC impairment. Further,
we demonstrate that standard ML methods, using PFC fNIRS
measurements during a simple memory task, can distinguish indi-
vidual participants who are impaired due to THC intoxication from
those who are not clearly impaired or only mildly intoxicated, with
high accuracy.
At the group level, increased PFC HbO response was observed in

participants considered impaired from THC intoxication with
concordant clinical consensus and algorithmic approaches and not
in those rated not clearly impaired by this method following THC or

Fig. 2 Psychological and physiological measures of participants by impairment and drug status. A Participants were assessed for
impairment via an algorithmic approach and a clinical approach into “Impaired” and “Not Clearly Impaired” groupings, which were then used
to build and test a classifier for impairment using fNIRS data. B Time course of A self-reported high (0–100 scale to answer the question: “Are
you high right now?”, 0 being “Not at all” and 100 being “Extremely”) and B heart rate (beats per minute) were averaged over (1) individuals
identified as impaired post-THC by consensus ratings (red triangles), (2) individuals identified as not clearly impaired post-THC by concordant
ratings (black triangles), and (3) all individuals post-placebo (filled circles). Impairment status post-THC was determined based on concordant
ratings between two rating methods, algorithmic and clinical experts. Error bars are 95% confidence intervals for the mean generated via
bootstrap. Gray bars show time windows for the pre-dose (Scan 1) and post-dose (Scans 2 and 3) fNIRS imaging.
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placebo. PFC HbO response similarly distinguished participants who
rated themselves as feeling quite intoxicated from those rating
themselves less high following THC and following placebo.
These findings suggest PFC activation is a marker for acute THC
intoxication itself, rather than for recent exposure of a similar dose of
THC that did not result in intoxication or of chronic THC exposure
alone. This HbO response alone was used to build an impairment
classifier that performed with higher accuracy, 76.4% vs 67.8%, and,

importantly, significantly lower FPR, 10.0% vs 35.9%, for impairment
than the DRE-administered eFST.
Increased HbO response, observed across all PFC regions in

participants impaired following oral THC, may be caused by
reduced brain efficiency during acute THC intoxication, such that
greater effort is required to complete the simple 2-back working
memory task. This pattern is reported in people with schizo-
phrenia and their siblings during working memory tasks and

Fig. 4 Machine learning metrics. A TS, time series, CONN, connectivity, eFST, extended field sobriety test. B Receiver operative characteristic
(ROC) curve for combined fNIRS models.

Fig. 3 HbO response at pre- and post-dose by consensus rating (columns 1 and 2), placebo (column 3) and eFSR rating (columns 4 and 5).
The time course of mean HbO changes (µM) in each ROI are plotted in those who received THC and were impaired (Col 1), received THC and
were unimpaired (Col 2), received placebo THC (Col 3), received an impaired rating from an eFST (Col 4), and in those who received a not-
impaired rating from an eFST (Col 5). Pre-dose HbO response is shown in blue, and peak dose (Scan 2 or 3, whichever had the higher
intoxication rating) is shown in red. Blue and red lines represent the mean and the standard error of the mean in each group. Yellow lines
represent single timepoints in which the group differences between pre and peak HbO were significant (using a paired t-test with Benjamini-
Hochberg FDR correction and p < 0.05). For statistical purposes, only matched pre and post-dose scans were included, which resulted in a
sample size of 77 (out of 80) concordant impaired subjects and 55 (out of 57) concordant not clearly impaired subjects. MPFC middle
prefrontal cortex, RDLPFC right dorsolateral prefrontal, RVLPFC right ventrolateral prefrontal cortex, LDLPFC left dorsolateral prefrontal cortex,
and LVLPFC left ventrolateral prefrontal cortex.
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interpreted to represent increased neural effort for normative
performance [32, 33]. That we observed increased HbO across the
PFC sub-regions, suggests this effect is driven by a global, task-
based increase in HbO in the PFC.
fNIRS time series features have been used in ML classifiers of

mild cognitive impairment that perform with reported 83%
accuracy [20], suggesting that an fNIRS imaging approach, using
time-course features, may detect biomarkers for such clinical
states such as dementia and intoxication. We further showed,
using a recurrent neural net that explored dynamic connectivity
during the n-back task, that an entirely different ML approach
could also accurately classify those who were impaired from THC
from those who were not clearly impaired following THC and
placebo. Dynamic connectivity is a relatively new method of
assessing temporally correlated activation states of discrete brain
regions over time [34], assessing variability in the strength and
spatial organization of functional connectivity across brain
regions, here across regions of the PFC. Dynamic connectivity is
associated with vigilance [35], arousal [36], and emotional state
[34]. Thus, it is not surprising that PFC dynamic connectivity was
different in those who were impaired from those who were not
clearly impaired following similar THC doses.
There are limitations to this study. Whereas most acute cannabis

administration trials use fixed dosing and examine group effects
[3, 37, 38], here we used individually tailored dosing to account for
the wide variability in tolerance to cannabis, while aiming to
achieve impairment due to intoxication in all participants while
minimizing adverse experiences for participants. Future studies
could develop pharmacokinetic models for individualized oral
cannabis administration that would result in a target exposure, as
has been done with alcohol [39] or use vaped cannabis which
would allow participants to self-titrate their dose to intoxication.
Even with flexible dosing, only approximately half of participants
achieved such significant intoxication that we were confident that
performance in such activities as driving would be impaired. It
is worth noting that participants who, even with individualized
dosing, did not experience significant intoxication with active
study drug were generally heavier users, as suggested by
the difference in urine THCCOOH concentration between the
impaired and not clearly impaired groups (Table 1). This under-
scores the idea that for many heavier users who have developed
marked tolerance to impairing effects of THC, a low legal
cutoff for THC in saliva or blood may not capture impairment as
intended.
Second, assessing impairment is challenging, as there is no

accepted objective definition of impairment. In this trial, we tried
to differentiate mild intoxication that may not impair performance
(which was seen in nearly all participants) from impairment due to
significant intoxication that would almost certainly result in
compromised driving ability. We assessed impairment via
physiologic signs (heart rate change), self-reported ‘high,’ clinical
assessment by study staff, nurses, and physicians who interacted
with the participants and the eFST by a trained evaluator. While
the eFST classified 21.6% of participants as impaired following
placebo dosing, chronic cannabis exposure has been associated
with deficits in neurocognitive performance [40]; these may be
mistaken for effects of acute intoxication on the eFST.
Third, since this trial began, effects of cannabis have been

shown on with the Digit Symbol Substitution Task (DSST), Divided
Attention Task (DAT), and Paced Auditory Serial Addition Task
(PASAT) [37, 38, 41–43], as well as the DRUID Smartphone/Tablet
Application [44]. Future trials could incorporate these validated
tasks into assessments of impairment. The n-back task was chosen
here because it is widely used in fNIRS as well as fMRI to reliably
activate the PFC [33]. While those who were impaired from THC
demonstrated expected decrements in n-back task performance,
this task was not intended to be an objective measure of
impairment.

Fourth, we did not collect biological samples before and after
administration of study drug on study days for THC assay that
would have allowed for objective comparison of THC exposure in
addition to dronabinol dose. Although there is an extensive
literature describing poor correlation between blood and saliva
THC levels and impairment [1, 37, 38], without such bioassays, this
trial cannot independently replicate those findings or understand
how the fNIRS method compares to per se concentration cutoffs
being used in some places as the legal standard for driving.
Further, we cannot verify that no participant had THC in their
system prior to dosing, which would have been detected with
blood or saliva THC concentrations pre-dosing.
Finally, we did not ascertain whether change in PFC activation

ascertained with fNIRS with impairment is specific to THC
impairment due to THC intoxication. Studies underway will assess
the impact of alcohol, sleep deprivation, and other sources of
impairment on this fNIRS signature.
Here we report feasibility of fNIRS as a potential method as assess

impairment from cannabis. fNIRS has several characteristics that
make it suitable for real-world utility, such as roadside application.
There are now portable, lightweight, wireless, battery-powered
fNIRS devices that allow data to either be stored on wearable
recording units or transmitted wirelessly to a laptop [45]. fNIRS can
be performed without sedation, and while a participant is moving,
making it suitable for use in real-world settings across the lifespan
[46]. Finally, set-up time for fNIRS is minimal compared to other
portable imaging modalities such as EEG measurements, particu-
larly when using optodes only on the forehead, obviating the need
to adjust optodes to get a good signal in the presence of hair [47].
Indeed, fNIRS experiments are increasingly performed outside the
laboratory and in everyday life situations [48–50].
Challenges to fNIRS use in the field exist. Although fNIRS is quite

tolerant to movement, specific movements like raising of
eyebrows cause significant motion artifacts. In outdoor environ-
ments, optical detectors must be shielded from sunlight which
can saturate detectors [49]. Further, physiological confounding of
fNIRS signals by cardiovascular and respiratory function may be a
significant issue if used in a law enforcement environment where
people may be anxious. Short-separation channels, created by
placing a light source close to a detector to record data from
extracerebral tissue, can identify physiological and hemodynamic
signals. Such extracerebral signal components (e.g., superficial skin
blood flow) can then be removed to isolate brain signal [51]. The
most significant barrier to the use of fNIRS as a real-world tool for
detecting impairment is not likely to be limitations of technology,
but rather the complexity of physiology, whereby blood flow in
the PFC may be influenced by factors such as other medications,
neurological/ psychological comorbidities, or a combination of
these factors. Thus, in the field, fNIRS measurements may be most
useful in conjunction with saliva, breath, or urine bioassays
showing presence of the drug, and fNIRS assessment showing
probable impairment from the drug. Even so, this may present a
significant advantage compared with either oral fluid THC tests,
which only assess the presence of the cannabis, not impairment,
or with DRE evaluations, which are resource-intensive, time-
consuming, and have been reported to be subject to bias [8].
In summary, impairment due to THC intoxication was associated

with increased PFC activation on a simple memory task assessed
with fNIRS. These measures alone classified participants as
impaired vs exposed but not clearly impaired with high PPV and
accuracy. Combining time course and connectivity methods of
assessing brain activation improved impairment detection. As we
showed that there was no difference in THC dose between those
who became impaired from those who did not following THC, it is
likely that a brain- or behavior-based metric (e.g. eye tracking or
cognitive testing [52]), rather than a per se blood or oral fluid limit
of THC, is required to distinguish THC impairment from simple
exposure [1]. Future work is warranted to determine if observed
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brain signatures are specific to THC intoxication-related impair-
ment or are a more general signature of impairment.

DATA AND MATERIALS AVAILABILITY
All data, code, and materials used in the analyses can be provided by Jodi Gilman and
Massachusetts General Hospital pending scientific review and a completed data use
agreement/material transfer agreement. Requests for all materials should be
submitted to Jodi Gilman.
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