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Abstract

Lichens form a critical portion of barren ground caribou (Rangifer tarandus groenlandicus)

diets, especially during winter months. Here, we assess lichen mat volume across five herd

ranges in the Northwest Territories and Nunavut, Canada, using newly developed compos-

ite Landsat imagery. The lichen volume estimator (LVE) was adapted for use across 700

000 km2 of barren ground caribou habitat annually from 1984–2012. We subsequently

assessed how LVE changed temporally throughout the time series for each pixel using

Theil-Sen’s slopes, and spatially by assessing whether slope values were centered in local

clusters of similar values. Additionally, we assessed how LVE estimates resulted in changes

in barren ground caribou movement rates using an extensive telemetry data set from 2006–

2011. The Ahiak/Beverly herd had the largest overall increase in LVE (median = 0.033),

while the more western herds had the least (median slopes below zero in all cases). LVE

slope pixels were arranged in significant clusters across the study area, with the Cape Bath-

urst, Bathurst, and Bluenose East herds having the most significant clusters of negative

slopes (more than 20% of vegetated land in each case). The Ahiak/Beverly and Bluenose

West had the most significant positive clusters (16.3% and 18.5% of vegetated land respec-

tively). Barren ground caribou displayed complex reactions to changing lichen conditions

depending on season; the majority of detected associations with movement data agreed

with current understanding of barren ground caribou foraging behavior (the exception was

an increase in movement velocity at high lichen volume estimates in Fall). The temporal

assessment of LVE identified areas where shifts in ecological conditions may have resulted

in changing lichen mat conditions, while assessing the slope estimates for clustering identi-

fied zones beyond the pixel scale where forage conditions may be changing. Lichen volume

estimates associated with barren ground caribou movement metrics in an expected manner

and, as such, show value for future habitat assessments.
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Introduction

Barren ground caribou (Rangifer tarandus groenlandicus) represent one of the most numerous

large mammals in arctic and sub-arctic environments [1–3]. Barren ground caribou are com-

monly grouped into herds based on high fidelity to calving grounds [4–6]. In Canada, barren

ground caribou herds are important culturally, ecologically, and economically, as well as for

local food security [3, 7, 8]. As foragers, barren ground caribou diets are variable throughout

the year depending on forage availability [9]; however, terricholous lichen mats (primarily

formed by circumpolar Cladonia lichens) form a part of barren ground caribou diet through-

out the year [5] and represent the majority of barren ground caribou forage in lean winter

months [10]. Terricholous lichens are high in digestible energy, making them excellent (and

highly available) winter forage when energy demands are high [9, 10]. Conversely, when ani-

mals are adding fat, especially cows during spring and summer, lichen are less desirable owing

to their low protein and fat content and availability of alternative forage [10, 11].

Terrestrial arctic and sub-arctic environments are experiencing some of the most rapid cli-

mate driven changes on Earth [12–14]. The Arctic tundra is increasing in vegetation greenness

[15, 16] (i.e. the Normalized Difference Vegetation Index; used as a proxy for vegetation bio-

mass) and wetness (i.e. the Normalized Difference Moisture Index; used as a proxy for the

amount of moisture contained in vegetation biomass) which is likely a result of lengthening

growing seasons and warmer summer months [17–19]. Shrub ingress in certain tundra envi-

ronments is occurring in a rapid fashion, replacing forb/moss/lichen dominated communities

with shrub dominated ones which can overtop and out-compete the lower forb/moss/lichen

communities [20–22]. Additionally, there is evidence of lichen mat declines in certain tundra

regions which have experienced high barren ground caribou densities, where overgrazing and

trampling led to reduced lichen abundance [23–25]. Understanding the spatial patterns and

temporal dynamics of lichen mats is a critical piece of information for barren ground caribou

conservation and management; as such, considerable effort has been focused on this question.

Colpaert et al. [26] mapped both terricholous lichen and arboreal lichen resources across Fin-

land while Théau et al. [27] tested multiple methods for classifying lichen land cover across

barren ground caribou herd ranges.

Historically, acquiring remotely sensed data in arctic environments has been challenging

owing to issues with short growing seasons, snow/ice, and weather. These challenges have

been addressed in the past by using coarse spatial resolution imagery (250 m to 1 km spatial

resolution) from sensors such as MODIS with rapid (1–2 day) revisit times. Finer spatial reso-

lution satellite programs such as Landsat (30 m spatial resolution) have been less commonly

utilised in arctic environments due to the challenge of acquiring images free of cloud (related

shadow), haze, and smoke from boreal fires. This challenge is exacerbated by longer revisit

times between image acquisitions for Landsat (16 days when only 1 sensor is in operation).

However, following the 2008 opening of the United States Geological Survey Landsat archive

[28, 29], rapid developments in the application of Landsat TM, ETM and OLI, have taken

place [29, 30]. Recent advances in Landsat data processing have included the production of

large area annual pixel-based composites [31, 32], and seamless gap free surface reflectance

composites of Canada [33, 34]. The developments surrounding Landsat compositing are mak-

ing assessments of barren ground caribou habitat, including lichen condition, possible at spa-

tial scales appropriate for individual barren ground caribou movement analyses [35].

Recently, Falldorf et al. [36] developed an algorithm (the lichen volume estimator or LVE)

for estimating lichen volume from Landsat data, which was successfully applied to Landsat

imagery in Norway and is the first ever successful attempt at estimating lichen volume using

remotely sensed spectral data. The LVE was built using an in-situ data set of 1345, 50x50 m
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plots which measured lichen mat volume and were designed to match Landsat spatial resolu-

tion (30x30 m) and avoid mixed pixel issues. The LVE is based off two previously developed

metrics, the normalized differenced moisture index (NDMI; [37]) and the normalized differ-

enced lichen index (NDLI; [38]), both of which have been previously shown to effectively

assess lichen’s spectral signatures. The LVE had an average adjusted R squared of 0.67 using

ten-fold cross validation of two dimensional Gaussian regression.

The objectives of this study were to (1) apply the lichen volume estimator developed by Fall-

dorf et al. [36] across the ranges of five barren ground caribou herds in northern Canada from

1985 to 2011, thereby allowing us to (2) assess changes in lichen mat volume both spatially and

temporally for five barren ground caribou herds and to (3) assess how changes in lichen mat

volume are associated with barren ground caribou movement rates across different seasons.

The opening of the Landsat archive allows for the extension of the work of Falldorf et al. [36]

both spatially and temporally. Moreover, we have access to a barren ground caribou telemetry

data set with over 300 000 individual data points covering five barren ground caribou herds

from 2006 to 2011, allowing us to assess how LVE values associate with barren ground caribou

movement metrics. We expect an overall decrease in lichen mat volume to have occurred since

1985, especially across the ranges of the more western herds, which have experienced signifi-

cant expansion of shrubs [20–22]. We also expect that barren ground caribou will exhibit

more foraging type behavior in locations with higher lichen mat volume estimates as lichen

mats for a critical portion of barren ground caribou diets throughout the year [5, 10].

Materials and methods

Study location

Lichen mat volume was estimated across the range of five herds located in the Northwest Ter-

ritories and Nunavut, Canada. The tundra portion each herd’s range occurs in the northern

portion above the boreal treeline. From east to west these herds are known as: The Ahiak/Bev-

erly, Bathurst, Bluenose East, Bluenose West, and Cape Bathurst (see Fig 1 for generalized

herd ranges developed using 95% minimum convex polygons). Collectively, the ranges of

these herds encompass approximately 700 00 km2 of terrestrial habitat.

There is considerable debate regarding the current status of the Beverly herd, estimated at

276 000 individuals (SE = 43 100) in 1994. By 2009, however, the Beverly herd had almost

completely abandoned its traditional inland calving grounds south of Garry Lakes [39]. The

current gap in knowledge regarding the fate of the Beverly herd is whether the abandonment

of its calving grounds was due to a large-scale shift to the traditional calving grounds of the

Ahiak (or Queen Maude Gulf) herd beginning in the 1990s [40, 41] or a large numerical reduc-

tion in Beverly herd size after which the remnant herd shifted to the Ahiak calving grounds to

maintain the advantage of gregarious calving in 2006–2009 [39]. The GPS collar data here do

not distinguish between Beverly and Ahiak caribou as the record begins in 2008; the herd

range delineated using the collar data is mostly representative of the Beverly range as defined

by [40].

Landsat spectral data

Following a review of supporting concepts and approaches, White et al. [32] describe a pixel-

based image compositing method that identifies best-available-pixels (BAP) using a series of

pixel scoring functions appropriate to conditions present in Canada. These functions score

each pixel observation based upon (i) Landsat sensor, (ii) acquisition day of year, (iii) distance

to clouds and cloud shadows, and (iv) atmospheric opacity (related to presence of haze,

smoke). For instance, measures from Landsat-5 are prioritized over Landsat-7; acquisition day

Lichen mat volume and barren ground caribou movement
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of year is prioritized to target August 1 (within a plus / minus 30 day possible acquisition win-

dow); with scoring to avoid pixels near clouds or haze. Pixels with the highest scores are

selected to produce the BAP image composites for a particular year. Pixels where no observa-

tions meet the BAP criteria are labelled as data gaps. These composites were further refined

using pixel-level temporal screening to identify noise and remove remaining sources of possi-

ble atmospheric contamination (e.g., haze or unscreened clouds). Using the temporal series

for each pixel (1984–2012), proxy infill values are generated for data gaps and noisy pixels, fol-

lowing the methods presented in Hermosilla et al. [33], to create gap-free surface reflectance

image composites (Fig 2A). This results in Canada-wide, annual, Landsat surface reflectance

composites with no spatial or temporal data gaps from 1984 to 2012 [34].

Using this Landsat-derived surface reflectance dataset we computed the lichen volume esti-

mate (LVE) (Fig 2B) on an annual basis by applying the algorithm developed by Falldorf et al.

[36]. The LVE product was developed in Norway on an extensive in-situ lichen volume data

set on a single Landsat scene (34 225 km2). The algorithm employs a multi-dimensional Gauss-

ian curve and two Landsat indices: the Normalized Differenced Lichen Index [38] ([Band 5—

Band 2] / [Band 5 + Band 2]; Band 2 representing reflectance in the green portion of the spec-

trum while Band 5 represents shortwave infrared reflectance) and the Normalized Difference

Moisture Index [37] ([Band 4 –Band 5] / [Band 4 + Band 5]; Band 4 representing reflectance

in the blue portion of the spectrum). These two indices were combined in the LVE algorithm

using the mean parameters calculated by Falldorf et al. [36] through ten-fold cross validation.

The scene-wide mean NDMI and NDLI values required in the LVE algorithm were calculated

by masking all non-lichen pixels and taking a mean across all combined herd ranges. Lichen

tundra pixels were identified using the Canada Center for Remote Sensing’s annual MODIS

land cover product, which describes 19 land cover classes across Canada at 250 m spatial reso-

lution from 2001 to 2011 [42]. The 2011 year was used to represent current conditions and

tundra classes (tundra grassland and tundra moss/lichen/sparse vegetation classes) were sim-

plified to produce a tundra containing lichen product at 250 m spatial resolution which was

then resampled to a 30 spatial resolution to match the Landsat data (Fig 2A). We applied the

LVE algorithm across more than 700 000 km2 of barren ground caribou habitat (that is, the

spatial equivalent of approximately twenty 185 x 185 km Landsat scenes) for every year from

1984 to 2012.

Fig 1. (A) A false-color 2011 Landsat composite proxy image of Canada (Bands 5, 4, 3) with the combined herd ranges of all fiver

herds shown in red outline. (B) The five separate ranges of the herds examined here with the same false color image displayed.

https://doi.org/10.1371/journal.pone.0172669.g001
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We caution against interpreting the LVE estimates as absolute values of lichen mat volume

across our study area, as no in-situ data was available for parameter estimation or validation.

However, even using the mean coefficients (which were shown to be stable through cross-vali-

dation) established by Falldorf et al. [36] should provide useful information when evaluating

the LVE values spatially or through time as potential directional biases resulting in over or

under-estimation of actual lichen mat volumes should be consistent. Additionally, Scandina-

vian and Canadian tundra ecosystems share dominant lichen types (genus Cladonia primarily)

which are expected to have largely similar spectral reflectance characteristics in the different

environments and both indices employed in the LVE (NDMI and NDLI) have been shown to

Fig 2. (A) The tundra–lichen map derived from the Canadian Centre for Remote Sensing MODIS land cover data set. (B) 2009 LVE

estimates for the five herd ranges. (C) the Theil-Sen slopes estimating change per year for each pixel. (d) significant increases, decreases,

and non-significant slopes determined using Mann-Kendall tests.

https://doi.org/10.1371/journal.pone.0172669.g002

Lichen mat volume and barren ground caribou movement

PLOS ONE | https://doi.org/10.1371/journal.pone.0172669 March 22, 2017 5 / 16

https://doi.org/10.1371/journal.pone.0172669.g002
https://doi.org/10.1371/journal.pone.0172669


be associated with lichen cover. Despite this, we recommend treating our application of the

LVE as a relative index of lichen mat condition rather than a direct, absolute, measurement of

volume.

Barren ground caribou telemetry data

Depending on the herd, GPS collar data collection was initiated between 2006 and 2008 and

continued to 2012 matching our most recent composite Landsat data. GPS telemetry data pro-

vides latitude/longitude coordinates as well as a time stamp for each data point. GPS error in

Canada’s north is typically less than 20 m (less than one 30 x 30 m Landsat pixel). Animals

were used here if they had at least one complete year of tracking and a minimum of three GPS

points per day, resulting in a maximum time step of eight hours (some individuals were

tracked at five hour time steps). In total, 258 animals (223 cows and 35 bulls) have been tracked

across all five herds (resulting in 325 388 GPS data points), with a maximum of 66 individuals

for the Bluenose West herd and a minimum of 30 individuals for the Ahiak/Beverly herd.

Animal behaviour has been described using proxy measures derived from animal tracking

data [43–46]. Foraging behavior in animals such as barren ground caribou can often be recog-

nized by reduced movement speeds as compared to more rapid movement when the animal is

travelling [43, 47]. There are numerous other factors that should also be considered which can

affect barren ground caribou movement patterns (see Hebblewhite and Haydon [48] for a gen-

eral summary of GPS collar limitations), including but not limited to: predator and insect

avoidance, rutting, and landscape features such as impassable terrain and water. By relating

velocity (used here due to the use of two different time steps; [44, 45]) to lichen volume esti-

mates we were able to characterize how differing lichen conditions influence barren ground

caribou foraging and movement type behaviors.

Analysis approach

Temporal changes in lichen mat volume. Changes in annual LVE were examined using

Theil-Sens (TS) non-parametric regression [22, 49, 50] (Fig 2C). The TS analysis calculated all

pairwise slopes for the LVE through time for each pixel throughout the image stack (1984–

2012), returning the median slope as the estimate of yearly LVE change. TS slopes are less sen-

sitive to outliers than traditional linear regression and, as a result, are becoming more com-

monly used in time series analyses at the pixel level [18, 50]. Slope significance was determined

using non-parametric Mann-Kendall tests (Fig 2D) [22, 51].

Local spatial autocorrelation characteristics of temporal changes in lichen mat vol-

ume. The Getis-Ord Gi
� statistic [52, 53] was used to assess the spatial dependence of the

LVE Theil-Sen’s slope pixels. This allowed us to determine whether pixels representing change

in change in LVE over time were spatially organized into local groupings of positive or nega-

tive change, and whether or not the degree of spatial clustering observed in the LVI Theil-

Sen’s slope raster is less than or greater than chance [54]. The Gi
� statistic evaluates a particular

pixel against neighbouring pixels and calculates a weighted variate value for the group of pixels

which is expressed as a proportion of the sum of the entire data set’s variate value, derived in

this case from the entire LVE TS slope raster. This can be compared against an expected value

under the assumption of no local spatial autocorrelation [55, 56]. Here, we applied a Queen’s

case kernel, with all neighbouring pixels considered, including diagonals. The Gi
� analysis pro-

duces "a standardized value which indicates both the degree of spatial autocorrelation in the

values of the digital numbers centered on a given pixel and the magnitude of these values in

relation to those of the entire image" ([55], p. 2224). This can be considered a z score hence sta-

tistical significance is determined using the area under the z curve. The end result is an

Lichen mat volume and barren ground caribou movement
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assessment of all pixels relative to their neighbours to determine whether each pixel is centered

in a cluster of more positive or negative values than would likely occur randomly, or con-

versely, whether the pixel is centered in a cluster displaying no spatial organization.

Temporal changes in lichen mat volume across herd ranges. To examine spatial varia-

tion in LVE TS slopes, 1000 random samples were taken from each herd’s range ensuring a

spatially stratified random sample. This sample was then analyzed in single factor generalized

least squares regression (GLS) with a maximum-likelihood iterator, built using the package

“nlme” [57] in R [58]. GLS was used, as it allows for the inclusion of spatial autocorrelation

functions to account for issues with spatially structured model residuals [59]. The GLS model

was assessed for spatially structured residuals using a semi-variogram which did indeed indi-

cate spatial structuring of residuals. A Gaussian spatial correlation structure was added to the

GLS model and the model was subsequently re-examined using Likelihood Ratio test with the

best model being retained [59]. If significant differences between groups were detected in the

final model, a Tukey’s HSD test [60] was used to assess where differences were significant (an

alpha value of 0.05 was used for all statistics).

Lichen mat volume estimates and barren ground caribou behavior. Barren ground cari-

bou behavior was inferred using velocity estimates derived from the telemetry data which

were, in turn, associated with LVE values based on the year in which the telemetry data was

collected. Models were built for each season (Seasons were defined using a generalized version

of Nagy’s [61] analysis of differing movement rates of barren-ground caribou throughout the

year) with the same randomly sampled data set used for the herd range analysis described in

the section above. Generalized additive mixed models (GAMM) with a negative binomial link

were built to account for over-dispersion in the data. GAMMs allow for non-linear responses

to be appropriately estimated while assigning unique animal identifiers as a random effect

accounted for repeated measures per animal [35, 46]. All model residuals were examined for

spatial autocorrelation using semi-variograms [59]. Since all models displayed evidence of spa-

tially autocorrelated residuals, Gaussian spatial correlation structures were added to the

GAMM models [59].

Results

The Ahiak/Beverly herd was found to have the largest percentage of land with increasing

lichen volume estimates (17.1%, Table 1). The Bathurst and Bluenose West were found to have

relatively similar percentages of increasing and decreasing lichen containing tundra (7.7 vs.

8.0% and 6.7 vs. 7.2% respectively). The Bluenose East had slightly more than double the per-

centage of decreasing than increasing lichen containing tundra (10.9 vs. 5.4%) while the Cape

Bathurst had almost five times the percentage of decreasing vs. increasing lichen containing

tundra (13.0 vs. 2.9%).

The LVE slopes by herd range model which incorporated a Gaussian spatial correlation

structure out-performed the model lacking one (L. Ratio = 262.84; P< 0.001). A significant

difference between classes was detected (F = 4.27; P = 0.002). The Ahiak/Beverly herd range

was found to have larger positive slopes than all other herd ranges save the Bathurst (Fig 4).

Movement velocities varied by herd and season (Fig 5). Caribou moved fastest in summer

(except for the Ahiak/Beverly herds which had slightly higher movement rates in Fall) and

slowest in winter across all herds. Fall movement rates were faster than spring movement rates

in all herds except the Bathurst. As expected, herds with smaller overall range sizes and lesser

distances between their winter habitat and calving grounds (i.e. the Cape Bathurst) tended to

move more slowly than herds with large distances between their calving and winter grounds

and larger herd ranges (i.e. the Ahiak/Beverly and Bathurst herds).

Lichen mat volume and barren ground caribou movement
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Significant smoothing terms were detected across all seasons for the movement velocity ver-

sus LVE GAMMs (Fig 6). A nearly linear negative association between mean movement veloc-

ity and LVE was detected in spring (F = 5.121; P = 0.02). A reduction in mean movement

velocities was detected at approximately LVE values of 16 and then again after LVE values of

45 in summer (F = 5.92; P< 0.001). Mean movement velocity reached a minimum at LVE val-

ues of 25 in fall (F = 10.52; P < 0.001). Mean movement velocities remained relatively constant

in winter until LVE values of 25 after which mean movement velocities declined rapidly

(F = 3.17; P = 0.02).

Discussion

In this research, we applied the lichen volume estimator across more than 700 000 km2 of bar-

ren ground caribou habitat in northern Canada, providing unique information on lichen mat

condition and potential barren ground caribou habitat quality. By accessing data available in

the Landsat archive and applying novel processing techniques to generate gap-free, time series,

Table 1. The percentage of significantly increasing, significantly decreasing, and no significant change lichen containing tundra pixels detected

by herd range over all lichen containing tundra.

Change Ahiak/Beverly Bathurst Bluenose East Bluenose West Cape Bathurst

Increasing 17.0 7.7 5.4 6.7 2.9

Decreasing 4.0 8.0 10.9 7.2 13.0

No Change 79.0 84.3 83.7 86.1 84.1

Our analysis of the local spatial autocorrelation contained within the LVE TS slope raster (Fig 3A) revealed that the Bluenose West herd had the largest

percentage of its lichen containing tundra pixels centered in clusters of increasing LVE slopes (18.5%; Table 2, Fig 3B), followed closely by the Ahiak/

Beverly herd (16.3%). The Cape Bathurst, Bluenose East, and Bathurst herds all had more than 20% (21.0, 20.9, and 20.9% respectively) of their lichen

containing tundra pixels centered in clusters of declining LVE slopes.

https://doi.org/10.1371/journal.pone.0172669.t001

Fig 3. (A) The Gi* z scores for the LVE Theil-Sen’s slopes. (B) Significant positive, negative, and non-significant Gi* z score values

indicating a pixel was centered in a cluster of positive, negative, or non-significant LVE Theil-Sen’s slope values.

https://doi.org/10.1371/journal.pone.0172669.g003
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reflectance composites we were able to evaluate change in LVE across multiple decades. We

detected significant temporal changes in lichen mat volume across the study area and identi-

fied significant spatial clusters of positive and negative changes in lichen mat volume. Finally,

by incorporating an extensive barren ground caribou telemetry data set we were able to detect

subtle changes in barren ground caribou movement rates relative to LVE values.

The Ahiak/Beverly herd experienced significantly larger temporal increases in LVE values

when compared with all other herds expect the Bathurst. Conversely, the Cape Bathurst herd

experienced the largest overall decline in LVE values, although not statistically different from

the Bluenose East, Bluenose West, and Bathurst. The Cape Bathurst herd has declined from 12

516 (SE = 3504) individuals in 1987 to 2427 (a complete herd census therefore no SE estimate

is provided) individuals in 2012 (see Boulanger et al. [62] for details of herd count methods).

Both Stow et al. [63] and Lantz et al. [20, 21] documented shrub proliferation in the Mackenzie

delta/Tuktoyaktuk Coastlands which occur in the western portion of the study area and corre-

sponds with our documented declines in LVE values. This is a product of low productivity

lichen/moss/grass communities shifting towards birch- and alder-dominated communities

and becoming more productive in the process [22]. Conversely, the continentality of the

Fig 4. Boxplot of the lichen volume estimate Theil-Sen’s slopes by herd range (west to east). Shared letters indicate non-significant

differences.

https://doi.org/10.1371/journal.pone.0172669.g004

Table 2. The results of the Gi* analysis, showing the percentage of pixels which were centered in significant clusters of increasing and decreasing

LVE TS slope values, as well as pixels displaying no slope clustering, by herd range.

Change Cluster Ahiak Bathurst Bluenose East Bluenose West Cape Bathurst

Increasing 16.3 8.4 13.2 18.5 7.4

Decreasing 12.8 20.9 20.9 12.1 21.0

No Change 70.9 70.8 65.9 69.4 71.6

https://doi.org/10.1371/journal.pone.0172669.t002
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eastern herd ranges, which results in colder temperatures, may play a role in limiting shrub

recruitment [20].

Assessing the LVE TS slope raster for spatial clusters of slope values offers a complementary

analysis for assessing LVE changes through time. While the results of the Theil-Sen’s test are

pixels occurring in space, the analysis is purely temporal in nature in that the only consider-

ation is one particular pixel. And while this approach is likely of more interest to ecologists

Fig 5. Boxplot of barren ground caribou movement velocities by herd (west to east) and season.

https://doi.org/10.1371/journal.pone.0172669.g005

Fig 6. Mean predicted movement velocities (m/hour) predicted using LVE values by season. Dashed lines represent one standard

error.

https://doi.org/10.1371/journal.pone.0172669.g006
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examining changing environmental conditions which may be driving changes in lichen mat

condition, testing pixels for evidence of local clustering of positive or negative LVE TS slopes

allows managers to move beyond the 30x30 m Landsat pixel. As a data capture technology,

remote sensing, by nature, partitions the earth’s surface into a grid of regularly sized and

shaped cells. When considered independently, ecological and contextual information can be

lost. The detailed depiction of landscapes available from the 30 x 30 m spatial resolution of

Landsat may be too fine to inform on the larger landscape conditions present. Meaningful spa-

tial aggregation of pixels based upon spatial dependence allows for trend insights that are sized

and shaped based upon the conditions present. As an example, spatial clusters of declining

LVE values could indicate zones of shrub proliferation [20, 21] or intensive barren ground car-

ibou grazing [24, 25]. In a more applied sense, assessing the landscape by individual Landsat

pixel may be a prohibitively small spatial scale for management across herd ranges and testing

changes for spatial clustering may identify larger zones of positive or negative change indicat-

ing a likely change in barren ground caribou habitat condition.

LVE values were associated with variation in barren ground caribou movement rates in all

seasons and these associations changed throughout the year, supporting the need to assess

LVE–movement associations by season. Winter movement velocities were lower for all herds,

likely a result of individuals moving through snow and having to crater for terricholous

lichens. In contrast, summer movement velocities, when cows and calves are moving from

calving grounds to summer ranges, were among the highest velocities for each herd.

Summer and winter displayed relatively consistent movement velocities across low and

medium LVE values followed by declining movement rates at high LVE values. The summer

association did have a reduction in movement velocities that occurred at mean LVE values of

18. When investigated further it was apparent that the summer telemetry points with slow

movement rates (velocities less than 450 m/hour) which associated with low LVE values

(between LVE = 10 to 25) occurred on calving grounds in the northern portion of each herd’s

range. Barren ground caribou use calving grounds primarily as a predator avoidance tactic as

these locations are not overly productive or nutritious [64]. This decline in movement at low

LVE values is likely associated with calving–barren ground caribou cows with recently

dropped calves slow considerably for up to a week or more post calving–and likely does not

represent foraging type behavior.

The points during summer and winter where movement velocities slowed consistently

allowed us to determine at which point LVE values seem to result improved forage conditions

at these times of year (LVE values greater than 45 in summer and 25 in winter). Since lichens

make up a greater proportion of barren ground caribou diet in winter [10] it is perhaps not

surprising that improved foraging conditions in winter occur at lower LVE values when com-

pared with summer. Spring movement velocities were nearly linearly negatively associated

with LVE values, indicating consistent improvement in forage conditions with increasing LVE

value. Surprisingly, barren ground caribou movement reached a minimum at intermediate

LVE values in fall and movement rates increased at high LVE values. The increased rate of

movement through areas with high estimated lichen mat volume is unexpected and unex-

plained at this point.

Barren ground caribou movement rates are undoubtedly affected by more than lichen avail-

ability. Seasonal spring, post-calving, and fall migrations to and from calving grounds can

result in elevated movement rates [61], while snow and difficulties accessing terricholous

lichens in winter can result in lowered movement rates. Insect harassment, which tends to

peak in July, can force individuals to more wind prone areas like eskers and ridges, or north

aspect slopes which may have retained snow, and in both cases this can reduce move rates [65,

66]. These factors support our decision to assess movement by season, eliminating a potentially
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confounding factor in movement variation. We do acknowledge, however, that binning by

season will not address factors affecting movement on shorter time frames (i.e. snow depth,

insect harassment, calving) nor address spatial variation in these factors.

Access to spatially and temporally expansive Landsat composites allowed for the extension

of Falldorf et al.’s [36] assessment of lichen mat volume across five herd ranges for 26 years.

Statistically significant temporal changes were detected in lichen mate volume estimates, and

these changes varied depending on the herd in question. Temporal LVE TS slopes formed

clusters of positive or negative change across the study area, revealing more spatially expansive

patterns in increasing and decreasing LVE values when compared with the temporal assess-

ment. Barren ground caribou movement velocities were shown to react to LVE values, with

foraging type behavior occurring in a manner consistent with our knowledge regarding barren

ground caribou dietary requirement throughout the year; the increase in movement velocities

at high fall LVE values being the only exception to this. The lichen volume estimate proved to

be a promising method for assessing potential lichen mat volume changes through time across

expansive herd ranges and warrants further use. Furthermore, as a relative indicator the LVE

showed capacity as a predictor of barren ground caribou behavior; future work describing

how landscapes affect how barren ground caribou movement and foraging should incorporate

this estimate.

The application of the LVE algorithm here highlights both the strength and weakness of

using remote sensing for terrestrial ecosystem assessment in northern environments. The abil-

ity to collect synoptic remotely sensed terrestrial data repeatedly through time at a reasonable

cost is undoubtedly a benefit to northern research. Conversely, the lack of appropriate in-situ

data makes the transition from an index to an estimate challenging. In this case, the spectral

responses being measured here led to a valuable assessment of spatial and temporal patterns in

lichen mat condition. However, if we wish to fully utilize the LVE and produce lichen mat vol-

ume estimates, an in-situ ground campaign with a data collection design appropriate for

remotely sensed data needs to be carried out, which is an expensive and challenging

endeavour.
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