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Abstract

There is anexpectation thatanalysesofmolecular sequencesmightbeable todistinguishbetweenalternativehypotheses forancient

relationships, but the phylogenetic methods used and types of data analyzed are of critical importance in any attempt to recover

historical signal. Here, we discuss some common issues that can influence the topology of trees obtained when using overly simple

models toanalyze molecular data thatoftendisplay complicated patternsof sequence heterogeneity. To illustrate our discussion, we

have used three examples of inferred relationships which have changed radically as models and methods of analysis have improved.

In twoof theseexamples, the sister-group relationshipbetween thermophilic Thermusandmesophilic Deinococcus, and theposition

of long-branch Microsporidia among eukaryotes, we show that recovering what is now generally considered to be the correct tree is

critically dependent on the fit between model and data. In the third example, the position of eukaryotes in the tree of life, the

hypothesis that is currently supportedby thebestavailablemethods is fundamentally different fromtheclassical viewof relationships

between major cellular domains. Since heterogeneity appears to be pervasive and varied among all molecular sequence data, and

even the best available models can still struggle to deal with some problems, the issues we discuss are generally relevant to phylo-

genetic analyses. It remains essential to maintain a critical attitude to all trees as hypotheses of relationship that may change with

more data and better methods.
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Significance

Phylogenetics can help to test hypotheses of ancient relationships, but the model used is critically important in

recovering historical signal. Here, we review three case studies that demonstrate how improvements in phylogenetic

modeling can lead to radical change in the inferred trees and their biological interpretations. Model selection is a

fundamental step in phylogenetic analysis, and trees are hypotheses that may change with new data and better

methods.
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Introduction

Phylogenetic trees provide a framework for understanding

the evolution of life’s diversity. However, the phylogenetic

methods and data that are best to use when attempting to

infer relationships between the major groups of life are still

being keenly debated (Pisani et al. 2015; Williams et al. 2020).

In this review, we discuss some of the key issues that can

cause phylogenetic inferences to be misled when insufficient

attention is given to the fit between the patterns in molecular

sequence data and the models used to analyze them.

The first trees inferred from molecular data were inferred

using maximum parsimony (MP) or distance-matrix

approaches coupled with fairly simple site and time-

homogeneous models of sequence evolution (Jukes and

Cantor 1969; Tavar�e 1986). A site- and time-homogeneous

model assumes that the process of evolution remains constant

over the sites of the alignment and the branches of the tree.

These assumptions are unrealistic because sites evolve under

different functional constraints (Liberles et al. 2012), and real

molecular data are heterogeneous across the branches of a

tree and across the different sites and genes of sequence

alignments. For example, orthologous sequences from differ-

ent species often manifest very different amino acid or nucle-

otide compositions because they are evolving in different

ways. A failure to accommodate heterogeneity in phyloge-

netic models results in model misspecification (that is, the use

of an inadequate substitution model) and can potentially lead

to the recovery of trees that display spurious phylogenetic

relationships, sometimes with strong support (Felsenstein

1978; Woese et al. 1990; Kuhner and Felsenstein 1994;

Swofford et al. 2001; Philippe et al. 2011).

Over time, new phylogenetic models have been developed

to try and better accommodate the kinds of heterogeneity

that affect real data. These models contain parameters that

describe the process of evolution in terms of the exchange-

ability of different nucleotides or amino acids, the long-term

expected frequencies of the different character states, and the

underlying phylogenetic tree. To learn about the evolutionary

process and tree, the models are fit to the data using maxi-

mum likelihood (ML) or Bayesian methods. Since these anal-

yses are performed in a probabilistic framework, standard

tools from statistics can be used to choose and evaluate mod-

els and trees, and to determine which parameters most im-

prove the fit of the model to the data. A clear strength of the

model-based approach is that models can be updated as sta-

tistical practice and computational methods improve or as

new aspects of the evolutionary process are discovered.

Although it is not expected that any model will ever fit real

data perfectly, empirical work and simulations have shown

that the newer models generally perform better than MP and

simpler site and time-homogeneous models at recovering the

correct tree under a variety of realistic conditions (Foster 2004;

Ho and Jermiin 2004; Jermiin et al. 2004; Lartillot et al. 2007;

Schrempf et al. 2020).

As methods have improved, it is not surprising that some

previously accepted relationships have been challenged and

replaced by new trees and new hypotheses. Here, we discuss

three case studies where model misspecification appears to

have misled the field. For two of these examples—the rela-

tionship between Thermus and Deinococcus, and the place of

Microsporidia parasites in the eukaryotic tree—there is now

consensus about what the true tree should look like, so we

can evaluate the performance of different methods at miti-

gating problems. In the third example, the topology of the

tree of life, the hypothesis currently considered to be best-

supported by phylogenomics (Williams et al. 2013, 2020; Eme

et al. 2017) is different to the classical view (Woese and Fox

1977; Woese et al. 1990) of relationships between bacteria,

archaea, and eukaryotes. An important take-home message

from these case studies is that real data sets often contain

different types of heterogeneity affecting different parts of an

alignment or tree. Although individual types of variation can

be accommodated by carefully chosen models, joint effects

can be extremely difficult to diagnose or overcome, especially

when a mixture of long external branches and short internal

branches are present. Since all of these phenomena are per-

vasive in studies investigating early evolution, the issues we

discuss have relevance beyond our chosen examples. It

remains essential to maintain a critical attitude to trees as

hypotheses that may change with more data and better

methods.

Different Sites in Genes, and the Same Genes in Different
Species, Can All Evolve at Different Rates

Early models for inferring trees from nucleic acid sequences

such as the Jukes and Cantor model (JC69; Jukes and Cantor

1969; see table 1 for an overview of all of the models we

discuss and apply in this review) assumed that all sites evolve

at the same rate. But in real sequence data, different sites

evolve at different rates due to variation in site-specific selec-

tive constraints. Some sites have not changed across large

evolutionary distances whereas others evolve at high rates

(Fitch and Margoliash 1967; Dickerson 1971; Uzzell and

Corbin 1971; Miyamoto et al. 1996). When performing phy-

logenetic inference, among-site rate variation (ASRV) can be

beneficial because it means that individual gene and protein

sequences can contain information about different levels of

phylogenetic relationships. Fast-evolving sites are useful for

resolving close relationships but may quickly lose signal

through overwriting by new substitutions, whereas slowly

evolving sites can retain signal for more distant relationships

(Woese et al. 1991; Penny et al. 2001; Foster et al. 2009).

Across-site rate variation (ASRV) can be modeled using a
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Table 1

Features of the Phylogenetic Methods Discussed in This Article

Model

Across-Branch Compositional

Heterogeneity

Across-Site Compositional

Heterogeneity Reference Notes

JC69 No No Jukes and Cantor (1969) Equal character (nucleotide)

frequencies and exchange

rates

JC2 No No Jukes and Cantor (1969) (As above, for binary data)

TIM2 No No AC/AT and CG/GT exchange

rates the same.

GTR (General time

reversible)

No No Tavar�e (1986) Exchange rates and composi-

tions inferred from the data

NDCH (node-discrete

compositional

heterogeneity)

Yes (node-discrete) No Foster (2004) More than one branch compo-

sition vector; compositions

can change at speciation

events

NDCH2 Yes (node-discrete) Foster (2004); Williams

et al. (2020)

Each branch has its own com-

position, constrained by a

hyperparameter

CAT No Yes Lartillot and Philippe

(2004)

Nonparametric modeling of

site-specific compositions; all

exchange rates equal

(Poisson)

CATþGTR No Yes Lartillot and Philippe

(2004)

As CAT but with different ex-

change rates among

characters

CATþBP Yes Yes Blanquart and Lartillot

(2008)

As CAT but with composition

changing at discrete break-

points (BP) that can be placed

anywhere on the tree

WAG No No Whelan and Goldman

(2001)

Fixed exchange rates between

amino acids, inferred from a

database of sequence

alignments

LG No No Le and Gascuel (2008) Fixed exchange rates between

amino acids, inferred from a

database of sequence

alignments

LGþC60 No Yes Le and Gascuel (2008);

Quang et al. (2008);

Yang (1995)

Fixed exchange rates and 60-site

compositions inferred from

alignment database; weights

of mixture components in-

ferred during analysis.

UDM128 (Universal dis-

tribution mixture)

No Yes Schrempf et al. (2020) 128 fixed site compositions in-

ferred from alignment data-

base; weights of mixture

components inferred.

GHOST No Yes Crotty et al. (2020) Models heterotachy via a mix-

ture of substitution processes

and branch lengths across

sites

LogDet distance Yes No Lockhart et al. (1994);

Lake (1994); Steel

(1994)

Additive distance measure con-

sistent with a model in which

compositions can change

anywhere on the tree

(continued)
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gamma distribution whose shape parameter is estimated

from the data (Uzzell and Corbin 1971; Golding 1983;

Yang 1993, 1996; which we denote with þG below) or by

estimating a set of site rate categories directly (Yang 1995;

Susko et al. 2003; Kalyaanamoorthy et al. 2017). This gener-

ally improves the fit between model and data and can help to

ameliorate phylogenetic artifacts such as long-branch attrac-

tion (LBA).

LBA occurs when two or more long branches in a tree

group together irrespective of their true relationships, and

was first recognized as a problem for maximum parsimony

(Felsenstein 1978). Long-branched taxa have a higher proba-

bility of sharing the same character state because of parallel or

convergent changes along long branches. Since outgroup

sequences are often on long branches, long-branching

ingroup sequences will often be attracted to the base of the

ingroup (Olsen 1987; Holland et al. 2003; Shavit et al. 2007).

Models that ignore ASRV will systematically underestimate

the amount of change that has occurred at variable sites

and may be particularly susceptible to LBA (Felsenstein

1978, 1982; Olsen 1987; Hendy and Penny 1989;

Huelsenbeck 1995; Hirt et al. 1999; Tourasse and Gouy

1999; Sullivan and Swofford 2001; Swofford et al. 2001).

Conventional ASRV models assume that each site main-

tains its characteristic rate throughout time and in all lineages

(Penny et al. 2001). In other words, some sites always evolve

quickly whereas others always evolve slowly. However, early

studies already demonstrated that the evolutionary rates of

homologous sites in cytochrome c differed between Metazoa

and Fungi (Fitch and Markowitz 1970; Fitch 1971a). The

“concomitantly variable codon” or “covarion model” was

proposed (Fitch and Markowitz 1970; Fitch 1971b) to explain

the observed distributions of variable sites by suggesting that

at any one time only a small fraction of sites are free to vary,

with the identity of variable sites able to change over time and

in different lineages. In the original implementations of the

covarion model, sites in proteins were only allowed to shift

between two states over time, either invariable (“off”) or

variable (“on”), with all variable sites sharing a common sub-

stitution model and rate (Fitch and Markowitz 1970; Tuffley

and Steel 1998; Penny et al. 2001). Probabilistic models imple-

menting covarion-like processes of evolution have extended

the original concept to allow sites to switch between a num-

ber of different rates as well as an invariable state as they

evolve across the tree (Galtier 2001; Huelsenbeck 2002;

Wang et al. 2007; Zhou et al. 2007, 2010). The property

whereby the evolutionary rate of a site can vary over time

and in different lineages has also been called heterotachy

(Philippe and Lopez 2001; Lopez et al. 2002), and it is this

term that is now generally used to describe models aiming to

accommodate this apparently common property of sequence

data (Kolaczkowski and Thornton 2008; Crotty et al. 2020).

Simulation studies (Wang, Susko, et al. 2008) and empirical

analyses (Yang 1996) suggest that failure to model ASRV or

heterotachy can result in the inference of an incorrect tree.

Attempts to resolve the phylogenetic position of

Microsporidia provide a good example of how failing to suf-

ficiently consider rate variation can mislead attempts to re-

cover accurate phylogenetic relationships for extremely long-

branched taxa.

Long-Branch Attraction and the Position of Microsporidia
in the Eukaryotic Tree

Microsporidia are obligate intracellular parasites of animals

(Vavra and Lukes 2013) and gregarines (Mikhailov et al.

2017). They are now thought to represent highly derived

fungi, a phylogenetic position supported by shared genes

and cell biological traits including the presence of a chitinous

cell wall (Capella-Guti�errez et al. 2012; James et al. 2013; Bass

et al. 2018). However, their molecular sequences are highly

divergent compared with free-living eukaryotes (Vossbrinck

and Woese 1986; Kamaishi, Hashimoto, Nakamura,

Masuda, et al. 1996; Kamaishi, Hashimoto, Nakamura,

Nakamura, et al. 1996), and early analyses of SSU rRNA and

protein sequences using methods that did not model ASRV

resolved Microsporidia near the base of the eukaryotic tree

(Vossbrinck et al. 1987; Sogin et al. 1989; Leipe et al. 1993;

Hashimoto and Hasegawa 1996; Kamaishi, Hashimoto,

Nakamura, Masuda, et al. 1996; Kamaishi, Hashimoto,

Nakamura, Nakamura, et al. 1996). These analyses provided

important support for the influential Archezoa hypothesis for

eukaryotic evolution, which proposed that Microsporidia and

other long-branched anaerobic and parasitic protists were

Table 1 Continued

Model

Across-Branch Compositional

Heterogeneity

Across-Site Compositional

Heterogeneity Reference Notes

COaLA Yes (node-discrete) No Groussin et al. (2013) Models branch heterogeneity

using a small number of

parameters that describe the

main axes of compositional

variation in a data set

NOTE.—There are several add-ons to the basic models, includingþF (amino acid frequencies inferred from the data, rather than those specified by the model);þI (models a
proportion of invariant sites); þG (ASRV modeled with a mixture of gamma-distributed rates across sites, usually approximated by four or eight rate categories); þRx (ASRV
modeled with a mixture of x free rates that are not constrained to be drawn from a gamma distribution).
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primitively without mitochondria, having branched from the

eukaryotic tree before the mitochondrial endosymbiosis

(Cavalier-Smith 1987).

The first gene trees to suggest that Microsporidia might

not be early branching eukaryotes (“Microsporidia early”),

were trees for alpha- and beta-tubulin sequences which sug-

gested that Microsporidia could instead be related to fungi

(“MþF”; Edlind et al. 1996; Keeling and Doolittle 1996).

These data were quickly followed by discoveries that

Microsporidia contained orthologs of mitochondrial

(mt)Hsp70, a protein of alphaproteobacterial origin that per-

forms essential functions inside mitochondria (Germot et al.

1997; Hirt et al. 1997; Lill 2009). In gene trees, microsporidian

mtHsp70 grouped weakly with fungal orthologs, suggesting

that if Microsporidia really lacked mitochondria then this was

the result of secondary loss rather than primitive absence.

Subsequent analyses of the largest subunit of RNA polymer-

ase II for the microsporidians Variomorpha necatrix and

Nosema locustae strongly supported MþF (Hirt et al. 1999).

The two alternative positions of Microsporidia in different

gene trees provided competing hypotheses for which support

could be compared as data were analyzed using better mod-

els. Hirt et al. (1999) reanalyzed the original EF-2 alignments

used to place “Microsporidia early” (Hashimoto and

Hasegawa 1996; Kamaishi, Hashimoto, Nakamura,

Nakamura, et al. 1996) and demonstrated that this was due

to a failure to model ASRV, combined with the presence of

long-branch archaeal outgroup sequences. Thus, the removal

of the long-branch archaeal outgroup sequences and a

partial-correction for ASRV by removing the fastest evolving

sites (fast site removal or FSR; Waddell and Steel 1997), gave

an unrooted ingroup tree in which Microsporidia formed a

clan (Wilkinson et al. 2007) with Fungi consistent with MþF

(Hirt et al. 1999).

Understanding why “Microsporidia early” was recovered

from EF1-alpha sequences proved more challenging, al-

though support was reduced after FSR (Hirt et al. 1999).

Subsequent work demonstrated that site rates varied be-

tween the EF1-alpha sequences of eukaryotes and Archaea

(Inagaki et al. 2003; Wang et al. 2007), violating the ASRV

assumption that site rates are constant over the tree and

suggesting that heterotachy might be contributing to model

misspecification (Stiller and Hall 1999; Inagaki et al. 2003).

EF1-alpha from the microsporidian Glugea plecoglossi also

contains many nonconservative amino acid substitutions at

otherwise universally conserved positions (Kamaishi,

Hashimoto, Nakamura, Masuda, et al. 1996; Hirt et al.

1999; Inagaki et al. 2004). Removal of a proportion of the

sites that contributed most to the across-tree site-rate varia-

tion between eukaryotic and archaeal sequences reduced

support for “Microsporidia early” but did not recover MþF

(Inagaki et al. 2004).

To investigate further, Kolaczkowski and Thornton (2008)

reanalyzed the EF1-alpha data set from Inagaki et al. (2004)

using a mixed branch-length model for heterotachy. This mix-

ture model incorporates site-specific changes in evolutionary

rates by summing likelihoods over multiple sets of branch

lengths on the same tree (Kolaczkowski and Thornton

2008). The model recovered MþF with strong support sug-

gesting that support for “Microsporidia early” from EF1-alpha

was indeed due to a failure to sufficiently model heterotachy

in previous analyses. Consistent with that result, analysis of a

concatenated alignment of 133 single-copy protein-coding

genes using a covarion model allowing for site rate shifts

across the tree (Wang et al. 2007) recovered strong support

for MþF (Wang et al. 2009). By contrast, previous analyses

modeling ASRV for the same data had recovered a

“Microsporidia early” tree (Brinkmann et al. 2005; Wang

et al. 2009).

The first studies to use models including ASRV to analyze

the influential SSU and LSU rRNA data sets recovered reduced

support for “Microsporidia early” but did not recover MþF

(Kumar and Rzhetsky 1996; Peyretaillade et al. 1998; Stiller

and Hall 1999). All of these analyses included long-branch

outgroup taxa and it appears that modeling ASRV was not

sufficient to eliminate LBA under these conditions.

Subsequent analyses of concatenations of LSU and SSU

rRNA sequences using a range of increasingly sophisticated

models incorporating both ASRV and covarion-like structure

also failed to consistently recover MþF in the presence of

long-branch outgroups (Fischer and Palmer 2005; Cox et al.

2008; Foster et al. 2009). It thus appears to be extremely

difficult to recover MþF from rRNA sequences in the presence

of long-branch outgroup sequences and short internal

branches, even when ASRV or covarion structure is modeled.

Consistent with this conclusion, an analysis of LSU rRNA

sequences from a selection of crown taxa including fungi,

but excluding long-branch taxa like Giardia and prokaryotic

outgroups, recovered MþF with weak support in an unrooted

tree (Van de Peer et al. 2000). These results suggest that in-

vestigating whether the removal of long-branch outgroups

affects the stability of ingroup relationships is a useful general

check for difficult data sets (Van de Peer et al. 2000; Shavit

et al. 2007; Cox et al. 2008).

Compositional Heterogeneity among Sequences Can
Mislead Phylogenetic Inference: The Case of Thermus and
Deinococcus

Most of the substitution models in wide use, including the LG

model (Le and Gascuel 2008) for amino acids and the GTR

model (Tavar�e 1986) for nucleotides, make the assumption

that the frequencies of the 20 amino acids or four nucleotides

remain constant over time in homologous sequences. But real

genes and proteins do not evolve like this (Steel et al. 1993;

Foster et al. 1997) and across-tree variation in nucleotide and

amino acid composition is a common feature of molecular

data (Lake 1994; Lockhart et al. 1994). Nevertheless, many
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studies continue to use models that assume stationarity of

nucleotide or amino acid composition over time and this

can cause sequences with similar compositions to group to-

gether regardless of their true relationships. A classic example

of this phenomenon is the difficulty that homogeneous mod-

els have in recovering the correct sister-group relationship

between the thermophilic and mesophilic sister taxa

Thermus and Deinococcus from SSU rRNA sequences.

A relationship between Thermus and Deinococcus was

originally proposed based upon similarities in their membrane

lipids, cell wall composition and rRNA oligonucleotide

cataloguing data (Hensel et al. 1986) and is supported by

phylogenies made using broadly distributed single-copy genes

(Wang and Wu 2013). Based upon the congruence between

these different types of evidence, they are now classified to-

gether in a Deinococcus–Thermus phylum. However, when

full-length SSU rRNA sequences were first analyzed using the

JC69 model (Weisburg, Giovannoni, et al. 1989; Weisburg,

Tully, et al. 1989), a sister-group relationship between

Thermus and Deinococcus was only recovered when the anal-

ysis was limited to slowly evolving sequence positions where

one nucleotide accounted for at least 50% of the composi-

tion. Slowly evolving positions have a lower %GC content

than more variable positions and are less saturated by multiple

changes. These early analyses suggested that compositional

heterogeneity among sequences (that is, across the tree)

might have impacted the inferred relationships among

Thermus, Deinococcus, and other thermophilic and meso-

philic taxa. To illustrate these effects and how they can be

mitigated, we used a variety of models and data treatments

(fig. 1) to analyze a small SSU rRNA data set including

Thermus and Deinococcus. When considering the results

from these analyses, it is worth remembering that across-

tree compositional heterogeneity affects most other data

sets, including those used to investigate the phylogenetic po-

sition of Microsporidia (Cox et al. 2008) and the conserved

proteins used in tree of life phylogenomic studies (Williams

et al. 2020).

Figure 1a shows the tree recovered for the SSU rRNA

sequences of six taxa: Thermus thermophilus, Meiothermus

ruber, Deinococcus radiodurans, an unrelated mesophilic bac-

terium Bacillus subtilis, and two thermophiles, Aquifex aeoli-

cus and Thermotoga maritima, that are not closely related to

Thermus. Their SSU rRNA %GC varies between 51 and 76 for

variable positions in the alignment. Meiothermus ruber

(Hensel et al. 1986; Embley et al. 1993; Nobre et al. 1996)

previously classified as Thermus ruber, has a lower optimal

growth temperature (�60 �C) and its SSU rRNA sequence

has a lower GC content (57%) compared with Thermus ther-

mophilus. Phylogenetic analysis of the SSU rRNA data for the

six taxa produces an unrooted tree whereby Thermus and

Meiothermus together with Deinococcus are recovered as a

clan (Embley et al. 1993; Wilkinson et al. 2007) with moderate

bootstrap support (fig. 1). The support for what is considered

to be the correct topology is obtained even though four of the

six taxa fail the composition v2 test individually (P ranging

from 0.0084 to 0.044), and nine of the 15 sequence pairs

also fail Stuart’s test (Ababneh et al. 2006) for marginal sym-

metry (P< 1e-6). Thus, despite not fitting the data for com-

position, all four methods including parsimony can recover

the true tree when Meiothermus ruber is included. By con-

trast, when the analysis is repeated after removing

Meiothermus ruber (fig. 1b), neither MP nor the ML models

were able to recover the clanship of Thermus and

Deinococcus, and the five taxa separate according to shared

nucleotide composition, with the two lowest %GC taxa,

Deinococcus and Bacillus, grouping together in the tree.

This result clearly demonstrates that taxon sampling, that is,

the inclusion of a mesophilic relative of Thermus, can some-

times facilitate the recovery of the correct tree even when

there is an inadequate fit between the models used and the

data being analyzed.

Data can also be recoded to ameliorate problems caused

by across-tree compositional heterogeneity. For example, RY

recoding (transversion analysis) involves recoding nucleotides

as either purines (R) or pyrimidines (Y) (Woese et al. 1991;

Phillips and Penny 2003; Phillips et al. 2004). Transversions

accumulate more slowly than transitions in most DNA and

rRNA sequences and so are less saturated, and their compo-

sition is more balanced thereby improving model fit (Brown

et al. 1982; Woese et al. 1991; Phillips and Penny 2003;

Phillips et al. 2004). In our example, RY recoding allowed

the successful recovery of Thermus plus Deinococcus, even

in the absence of Meiothermus (fig. 1c). Data recoding has

also been used to ameliorate compositional heterogeneity in

amino acid data and several general recoding schemes have

been proposed (Hrdy et al. 2004; Kosiol et al. 2004; Susko

and Roger 2007). Software is available for inferring optimal

recoding schemes for a given sequence alignment (Kosiol

et al. 2004; Susko and Roger 2007). The removal of fast-

evolving (Brinkmann and Philippe 1999) or compositionally

biased (Viklund et al. 2012; Martijn et al. 2018; Mu~noz-

G�omez et al. 2019) sites from sequence alignments has also

been used to explore how these types of sites affected the

trees recovered. For example, the removal of the 90 fastest-

evolving sites from the Deinococcus–Thermus data set using

TIGER (Cummins and McInerney 2011) reduced the level of

compositional heterogeneity in the data: the v2 statistic re-

duced from 48.9 on 1,273 sites (P¼ 2e-6) to 27.6 on 1,183

sites (P¼ 0.006). This treatment allowed the branch-

homogeneous TIM2þFþI model to recover the correct

Deinococcus–Thermus sister relationship with moderate

(74%) bootstrap support.

Data recoding and site removal can have a positive effect

on the accuracy of the tree recovered, but come at the cost of

losing some information. The LogDet transformation

(Lockhart et al. 1994; Steel 1994) and the related Paralinear

Distance transformation (Lake 1994) do not assume across-
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tree homogeneity in nucleotide composition, and can often

recover the correct tree without recoding or data editing. The

LogDet is a distance measure that is based on the General

Markov model of sequence evolution (Barry and Hartigan

1987) which is both nonstationary and heterogeneous; that

is, in which exchangeabilities and sequence compositions can

change at any time across the tree. In its original formulation,

the LogDet method did not model ASRV, but removing a

(a) (d)

(b)
(e)

(c)

(f)

(g)

FIG. 1..——Investigating the relationship between Thermus and Deinococcus. (a) Phylogeny of six taxa inferred from an alignment of SSU rRNA under

maximum parsimony (MP) and three simple commonly used substitution models (JC69þG, GTRþG, TIM2þFþG; see table 1 for a description of these

models and their differences). All three models assume that sequence composition is constant over the sites of the alignment and branches of the tree. A clan

comprising Thermus, Meiothermus, and Deinococcus is recovered with moderate bootstrap support, as indicated (MP/JC69/GTR/TIM2). This is believed to be

the correct tree. (b) When the analysis is repeated after removing the mesophile Meiothermus ruber, none of these methods recover the correct tree. Instead,

the sequences group according to composition, with the two moderate %GC mesophiles (Deinococcus and Bacillus) forming a clan. (c) RY recoding of the

data recovers the correct DeinococcusþThermus tree under both MP and two ML models for two-state data (JC2þG and GTR2þG). (d) Distance-based

analysis using the LogDet distance recovers the correct relationship (DeinococcusþThermus) with increasing support as constant sites are progressively

removed as an incremental correction for ASRV; the composition of constant sites is distinct from that of variable positions. (e) Arrangement of composition

vectors on the (correct) Deinococcus–Thermus and (incorrect) Deinococcus–Bacillus trees in the NDCHþG model in (f) and (g). The dotted composition vector

(moderate %GC) is placed on branches leading to mesophile tip taxa; the solid composition vector (high %GC) is placed on all other branches and the root.

(f) ML analysis of the two fixed trees under the composition-homogeneous GTRþG model does not distinguish between the two trees (AU>0.05;

Shimodaira 2002), whereas the composition-heterogeneous NDCHþG model rejects the incorrect Deinococcus–Bacillus tree. The TAMCFT (tree and model

composition fit test; Foster 2004) results indicate that the NDCHþG model, but not the GTRþG model, fits the data adequately with respect to compo-

sitional heterogeneity. (g) Free topology analysis using MCMC to search tree space. The NDCHþG and NDCH2þG models fit the data better (higher

marginal likelihood) and provide maximal support (PP¼1) to the correct DeinococcusþThermus tree; the GTRþG model fits worse and provides moderate

support for the incorrect DeinococcusþBacillus tree. Sequence data simulated using the parameters of the NDCHþG and NDCH2þG models are similar to

the real data (posterior predictive test using the v2 statistic, P>0.05), but data simulated under GTRþG are not (P¼0), providing additional evidence that

NDCHþG and NDCH2þG, but not GTRþG, adequately fit the data with respect to composition.
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proportion of constant sites (i.e., the slowest evolving sites)

has been shown to provide an effective partial site-rate cor-

rection (Waddell and Steel 1997; Hirt et al. 1999; Sullivan and

Swofford 2001). In simulations, the LogDet is much better at

recovering the correct tree under realistic conditions of com-

positional heterogeneity than either MP or the JC69 model

(Ho and Jermiin 2004; Jermiin et al. 2004). Indeed, it was only

when pronounced compositional heterogeneity was com-

bined with very short internal branches that successful phylo-

genetic recovery fell below 100% in simulations using LogDet

(Jermiin et al. 2004). These results are consistent with earlier

observations (Lake 1994; Conant and Lewis 2001; Phillips and

Penny 2003) that artifacts due to convergence in composition

or unequal rate effects are exacerbated by short internal

branches. As shown in figure 1d, rate-corrected LogDet was

able to recover the clanhood of Thermus and Deinococcus in

the absence of Meiothermus ruber.

Substitution models that allow for nucleic acid or amino

acid compositions to change over the tree, and which also

model ASRV, are now available within an ML or Bayesian

framework (Yang and Roberts 1995; Galtier and Gouy

1998; Foster 2004; Jayaswal et al. 2005, 2011, 2014;

Gowri-Shankar and Rattray 2007; Blanquart and Lartillot

2008; Groussin et al. 2013; Heaps et al. 2014; Williams

et al. 2015). These models take one of three basic

approaches: they implement the General Markov Model of

evolution (Barry and Hartigan 1987) introduced above, in

which both exchangeabilities and compositions can change

at any point across the tree (Jayaswal et al. 2005, 2011); they

model changes in composition at discrete breakpoints that

can occur anywhere on the tree (Blanquart and Lartillot

2008); or they model composition changes at speciation

events, such that different branches can have different com-

positions (Foster 2004; Heaps et al. 2014; Williams et al.

2015). With some exceptions such as the COaLA model

(Groussin et al. 2013), in which correspondence analysis is

used to identify the main axes of compositional variation,

these approaches all require a substantial number of addi-

tional parameters compared with data-homogeneous mod-

els, and so to avoid problems with optimizing a large number

of parameters by ML, they are now generally implemented

using Bayesian Markov Chain Monte Carlo (MCMC) methods

(Gowri-Shankar and Rattray 2007; Cox et al. 2008; Foster

et al. 2009; Heaps et al. 2014; Williams et al. 2020). The

number of compositions, their respective nucleotide or amino

acid proportions, and the number and position of breakpoints

on the tree are sampled by the MCMC chain.

In the node-discrete compositional heterogeneity (NDCH)

model (Foster 2004) a number of independent composition

vectors are arranged on the tree, generally with composition

vectors shared among some branches. Composition vectors

describe the long-term expected composition (frequency of A,

C, G, and T states) of sequences evolving on a branch, and

can be estimated from the data by ML or Bayesian methods.

Standard phylogenetic models fit a single composition vector

to all branches of the tree; NDCH relaxes that assumption and

allows different branches to be fit by different composition

vectors, so the model can accommodate (and learn about)

changes in composition across the tree. The number of com-

position vectors is kept small to avoid overparameterization in

an ML framework and for computational tractability.

Figure 1e and f illustrates the performance of NDCHþG under

ML on the Deinococcus–Thermus alignment. ML analysis of

the two fixed trees under the composition-homogeneous

GTRþG model does not distinguish between the two trees

(AU> 0.05; Shimodaira 2002), whereas the composition-

heterogeneous NDCHþG model rejects the incorrect

Deinococcus–Bacillus tree. The TAMCFT (tree and model com-

position fit test) results indicate that the NDCHþG model, but

not the GTRþG, fits the data adequately with respect to com-

positional heterogeneity.

In a Bayesian analysis (fig. 1g), model adequacy can be

assessed using posterior predictive tests (Bollback 2002;

Foster 2004). The v2 test statistic quantifies compositional

fit. To ask whether the model fits the data with respect to

composition, we can compare the v2 value for the real data

(48.9 in this case) to a null distribution generated by simula-

tions from posterior samples under each model. For the sta-

tionary GTRþG model all the posterior simulations had small

v2 values (0.43–10.2) compared with the test quantity from

the original data (P¼ 0), indicating that the model does not fit

the data. By contrast, simulations under the NDCHþG model

generated v2 values from 13.6 to 84.6, of which 35%

exceeded the test quantity from the original data, meaning

that the composition of this model fits the data. Inference

under the NDCH2þG model, in which every branch and

the root have their own composition vector (Foster 2004;

Williams et al. 2020), gave similar results (fig. 1g). Thus, use

of a branch-heterogeneous model (NDCHþG or NDCH2þG)

improved model fit (as assessed by marginal likelihoods esti-

mated using the Stepping Stone method; Xie et al. 2011) and

model adequacy (as assessed by posterior predictive tests),

and allowed inference of the correct DeinococcusþThermus

tree.

Compositional Heterogeneity across Sites Is Also a
Common Feature of Molecular Data

Many of the variable positions in proteins can only tolerate a

limited number of different amino acids, because of structural

and functional constraints (Miyamoto and Fitch 1995). As a

consequence, most site changes are within classes (acidic,

aromatic, basic, polar, or nonpolar amino acids: Dayhoff

et al. 1978), rather than between them. Models that recog-

nize these site-specific biochemical preferences generally fit

data much better (Koshi and Goldstein 1998; Lartillot and

Philippe 2004; Lartillot et al. 2007; Quang et al. 2008;

Wang et al. 2008; Lartillot 2015; Williams et al. 2020) than
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site-homogeneous empirical amino acid replacement models

like LG (Le and Gascuel 2008) and WAG (Whelan and

Goldman 2001). A full Bayesian treatment of site composi-

tional variation is provided by the CAT model (Lartillot and

Philippe 2004; Lartillot et al. 2007, 2013) which is often the

best-fitting of the available substitution models for proteins.

The CAT model effectively clusters the sites of the alignment

into biochemically specific categories, each of which is de-

scribed by its own amino-acid profile of equilibrium frequen-

cies. The number of different compositions, their constituent

proportions, and the assignment of alignment sites to com-

positions are sampled during a Bayesian MCMC analysis. In

principle, each site in the alignment might merit its own com-

positional profile under CAT. However, a Dirichlet process

prior is used to tune the required number of distinct compo-

sitional profiles to match the level of site compositional het-

erogeneity observed in the data. One potential drawback is

that Bayesian analyses using CAT may sometimes take a long

time to converge for large data sets, and a lack of conver-

gence has also been reported for some alignments (Da Cunha

et al. 2017; Whelan et al. 2017).

The CAT model is reported to be relatively resistant to LBA

compared with site-homogeneous models (Lartillot and

Philippe 2004; Lartillot et al. 2007; Williams et al. 2020).

However, the CATþGTRþG model was unable to recover

Microsporidia plus Fungi (MþF) when used to analyze

concatenated SSU and LSU rRNA sequences in the presence

of archaeal and bacterial outgroup sequences (Cox et al.

2008; Foster et al. 2009). Applying the same model to a con-

catenation of 45 conserved proteins involved in DNA replica-

tion, transcription, or translation, from all three domains of

life, also failed to recover MþF; the Microsporidia were recov-

ered at the base of eukaryotes (“Microsporidia early”) with

strong posterior probability values (�95% support). However,

after removing the prokaryotic outgroups MþF was recov-

ered (Cox et al. 2008). As mentioned earlier, the conserved

proteins used in these studies show marked across-tree com-

positional heterogeneity (Cox et al. 2008), suggesting that a

failure to model or mitigate this heterogeneity may be part of

the problem for CATþGTRþG in the presence of the out-

groups (Cox et al. 2008). To investigate further, the full amino

acid data set was recoded according to the six “Dayhoff

groups” of chemically related amino acids that commonly

replace one another (Hrdy et al. 2004; Susko and Roger

2007). Analysis of these recoded data using the

CATþGTRþG model recovered MþF even when the prokary-

otic outgroups were included in the tree (Cox et al. 2008). The

recovery of MþF using CATþGTRþG on Dayhoff-recoded

data and including an increased taxonomic sampling of out-

group Archaea, was also reported by Foster et al. (2009).

The CAT model accounts for variation in composition

across sites but not across branches, in that the same site-

specific composition is applied to all of the sites in the same

column of the alignment. A model that could accommodate

both features of the data at the same time would be ex-

tremely useful. An extension of CAT that allows for changing

compositions across the tree, termed CAT-BP (breakpoint),

has been published (Blanquart and Lartillot 2008). This allows

the joint modeling of site- (CAT) and branch- (BP) heteroge-

neity and hence it can potentially recover the correct tree in

situations where individual modeling of one of these two

properties of data does not. For example, CAT-BP correctly

recovered the monophyly of insects from a concatenation of

mitochondrial proteins for which CAT, BP, and homogeneous

GTR each incorrectly placed the fast-evolving, AT-rich honey-

bee sequences within the Chelicerates, a distant clade of

arthropods (Blanquart and Lartillot 2008). Unfortunately, the

increased sophistication of CAT-BP apparently comes at the

cost of tractability, since MCMC convergence is an even

greater challenge than with CAT. The development of a scal-

able and efficient method for joint modeling of branch- and

site-heterogeneity remains a major challenge for phyloge-

netics, and a reminder of the potential limitations of even

the best methods currently available.

As a computationally efficient and more scalable alterna-

tive to the Bayesian CAT model, several authors have investi-

gated models that have a fixed number of site compositions

precomputed from existing sequence alignments (Quang

et al. 2008; Wang, Li, et al. 2008; Schrempf et al. 2020).

These fixed compositions are taken to represent general pat-

terns in sequence data, similar to the logic underpinning the

fixed exchange rates between amino acids in empirical single

matrix models such as LG (Le and Gascuel 2008). Tree infer-

ence then involves estimating far fewer parameters than the

full CAT model because the number of composition vectors

and their constituent amino acid proportions are fixed; the

alignment is treated as evolving under a mixture model for

which only the weights of each composition must be inferred.

This makes analysis tractable under maximum likelihood, and

efficient implementations of these models that scale to rea-

sonable numbers (100 s) of taxa and alignment lengths

(1,000–10,000s of sites) have been implemented in IQ-TREE

2 (Minh et al. 2020) and RAxML (Kozlov et al. 2019).

The first models of this type were the class frequency (cF)

mixture model (Wang, Li, et al. 2008), which included four

fixed site compositions and one general composition esti-

mated from the alignment of interest, and the C10–C60

(CXX) models, with 10–60 fixed site compositions (Quang

et al. 2008). For very large data sets, computational efficiency

can be increased further by estimating a fixed, site-specific

composition for each site in the alignment, thereby avoiding

the need to compute the likelihood at each site for each mix-

ture component (Wang et al. 2018). Recent developments

include an ML method (MAMMaL) for estimating site com-

positions directly from the alignment of interest (Susko et al.

2018) and the universal distribution mixture (UDM) models

(Schrempf et al. 2020), which comprise precomputed models

with up to 512 site compositions inferred using a distinct
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clustering approach (EDCluster) for estimating site profiles

from large sets of sequence alignments. Like the CXX models,

UDM models use flat (Poisson) exchange rates among amino

acids, because the single gene alignments used for training

the models are individually too short to infer both composi-

tions and exchangeabilities. This is a compromise because

rates of change among pairs of amino acids vary in real

data, although some of that signal is captured in the site

profile compositions (Schrempf et al. 2020).

Both MAMMaL and the UDM models show improved

model fit and performance compared with the CXX models.

For example, both approaches (MAMMaL with 20–30 site

profiles; Susko et al. 2018 and UDMþG with 128 and 256

components; Schrempf et al. 2020) recovered the correct

MicrosporidiaþFungi tree from the previously discussed

133-gene data set (Brinkmann et al. 2005; Wang et al.

2009), as does the full CATþGTR model, under conditions

in which the C60þG, the LGþG, and the WAGþG models

recovered the incorrect “Microsporidia early” tree (Schrempf

et al. 2020).

Model Fit and Model Adequacy

There are currently two approaches to choosing a model for

analyzingmolecular sequencedata.One looksat the relativefit

of a suite of models to a data set and chooses the best fitting

model of those tested (Posada and Buckley 2004; Darriba et al.

2012). The other approach tests for model adequacy by inves-

tigating whether the data are likely to have arisen under the

model (Goldman 1993; Bollback 2002; Foster 2004); reviewed

in Shepherd and Klaere (2019). In the first approach, the com-

parison of AIC or BIC scores can be used to select the best

model for a data set from a set of candidates, but the winning

model may still not fit the data very well: it is simply the best of

the models that were evaluated. This procedure is imple-

mented in commonly used packages such as jModelTest,

(Darriba et al. 2012), ModelFinder (Kalyaanamoorthy et al.

2017), and ModelTest-NG (Darriba et al. 2020).

Bayesian posterior predictive simulations (Bollback 2002)

provide a useful way of testing model adequacy, and whether

data simulated under a model are similar to some property of

the empirical data. These analyses involve computing a statis-

tic of interest, such as a v2 statistic for compositional homo-

geneity (Foster 2004) or the mean number of different

character states per site (Lartillot et al. 2009), on the observed

data and on a large number of equally sized data sets simu-

lated under the model, using the parameter configurations

and tree sampled at each step in an MCMC analysis. The

simulated data are used to calculate a null distribution for

the test statistic that averages over the uncertainty in the

parameters. The observed value for the real data can then

be compared with this null distribution to determine if the

observed data could have plausibly been generated under

the model. For example, posterior predictive simulations

were used to demonstrate that the GTR model commonly

used to analyze rRNA data, does not produce sequences

with the diversity of nucleotide composition observed in the

Deinococcus/Thermus SSU rRNA data set (Foster 2004 and

fig. 1g), or in SSU and LSU rRNA sequences sampled from

across the tree of life (Cox et al. 2008). In both of these cases

the use of the NCDH composition-heterogeneous model,

which fits the data better for composition, supports a differ-

ent tree to the one recovered by the GTR model. For the

Thermus/Deinococcus data set, the GTR model recovered

the incorrect “attract tree” whereas the NDCH model sup-

ports the sisterhood of Thermus and Deinococcus (fig. 1). In

the analysis of SSU and LSU rRNA sequences from across the

tree of life, the poorly fitting GTR model produced a classic 3-

domains tree wherein eukaryotes are a separate group

(Woese et al. 1990), whereas the NDCH analyses placed

eukaryotes within the Archaea (Cox et al. 2008; Foster et al.

2009). Identifying which of these two trees is correct is im-

portant for understanding how eukaryotes evolved from pro-

karyotes and for identifying what kind of cell might have

hosted the mitochondrial endosymbiont.

Where Do Eukaryotes Fit in the Tree of Life?

It is currently thought that the last common ancestor of eukar-

yotes already possessed mitochondria (Martin et al. 2015;

Roger et al. 2017). This suggests that endosymbiosis between

a bacterial endosymbiont and a host cell was a key step in

eukaryogenesis. There has been a long-standing debate

about the nature and phylogenetic position of the host cell

(reviewed in Doolittle [2020]). Trees based upon analyses of

the relatively small number of genes that are conserved in all

three major groups of life have been central to this debate.

Early analyses of ribosomal RNA and other broadly conserved

genes using simple models recovered an unrooted tree (e.g.,

figure 4 in Woese [1987]) in which bacteria, archaea, and

eukaryotes were recovered as three separate groups. The

unrooted tree did not resolve the order of divergence of the

three groups and so allowed for the possibility that they might

be of equal antiquity (Woese and Fox 1977; Kurland et al.

2006). The universal SSU rRNA tree was subsequently rooted

using external data from analyses of ancient elongation factor

and ATPase paralogs that suggested the root was on the

bacterial branch (Gogarten et al. 1989; Iwabe et al. 1989;

Woese et al. 1990). In the rooted tree (Woese et al. 1990),

the eukaryotes and Archaea are sister taxa with a common

ancestor that is not shared with bacteria, but which parsi-

mony would suggest was already a prokaryote. The three

major groups were subsequently renamed “domains” and

the rooted three domains (3D) tree was adopted in textbooks

and reviews as the main framework for understanding the

diversity of cellular life.

Despite its prominence, it was soon suggested (Lake 1988)

that the 3D tree was an artifact of long-branch attraction
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(LBA) between bacteria and eukaryotes, the two longest

branches in the tree. In a series of papers (Lake et al. 1984;

Lake 1988, 1994; Rivera and Lake 1992), Lake developed the

hypothesis that eukaryotes were the sister lineage to a specific

group of Archaea that he called Eocytes (Lake et al. 1984); the

same group later named Crenarchaeota by Woese et al.

(1990). Lake’s hypothesis subsequently received support

from analyses of ancient duplicated genes (Baldauf et al.

1996; Hashimoto and Hasegawa 1996) and from analyses

of rRNA and RNA polymerases using models accounting for

ASRV (Tourasse and Gouy 1999), but it was still overshad-

owed by the canonical 3D tree (reviewed in Williams et al.

[2013]; McInerney et al. [2014]). However, recent phyloge-

nomic analyses of conserved genes using methods like CAT

have recovered trees (Raymann et al. 2015; Spang et al. 2015;

Zaremba-Niedzwiedzka et al. 2017; Williams et al. 2020) that

support a version of Lake’s eocyte hypothesis, when allow-

ance is made for the expanded sampling of Archaea now

available (Doolittle 2020). To distinguish it from the 3D tree,

this tree is now generally referred to as the two-domains (2D)

tree, because the basal split identifies Bacteria and Archaea as

the two candidate primary domains of life (sensu Woese et al.

1990).

Despite the growing support for the 2D tree discussed

above, some recent analyses of conserved genes using the

homogenous LG model have recovered the 3D tree (Da

Cunha et al. 2017, 2018), and it is interesting to explore

why. It has been suggested (Tourasse and Gouy 1999) that

the 2D tree is difficult to recover using simple models, because

it requires placing a long branch (the eukaryotic stem) within a

short-branching clade (the Archaea). By contrast, in the 3D

tree, the two longest branches (the bacterial and eukaryotic

stems) are joined together, potentially due to LBA. Previous

work (Lartillot et al. 2007; Williams et al. 2020) has shown

that, when the data is site-heterogeneous, as most molecular

data are, overly simple models can be vulnerable to LBA be-

cause they can underestimate the number of convergent

changes. When taxa share the same amino acid at an align-

ment site, two explanations are possible: either they inherited

that state from a common ancestor, or they arrived at the

same amino acid by convergent evolution from different start-

ing points. Site-specific information is critically important for

distinguishing these two possibilities. At a site where all 20

amino acids are observed, the first explanation seems more

likely, but convergence is increasingly favored as the number

of possible amino acids at the site decreases. Simple site-

homogeneous substitution models, in which the evolutionary

process is averaged over the alignment, are potentially sus-

ceptible to LBA artifacts because they ignore this site-specific

context. Consistent with this hypothesis, the use of the CAT

model to reanalyze the data recently used to support the 3D

tree using LG (Da Cunha et al. 2017, 2018) instead recovered

a 2D tree with strong support (Williams et al. 2020).

To explore further, we used simulations to investigate the

role of site heterogeneity in recovering the 2D and 3D trees in

a controlled setting where the true (simulation) tree is known.

To do this, we simulated data with among-site rate (ASRV)

and/or composition heterogeneity as two common potential

causes of LBA (see Materials and Methods). We then evalu-

ated the ability of simple and more complex models to recover

the true tree that generated the data (fig. 2). In these simu-

lations, we used empirical 2D and 3D trees, including branch

lengths, from a recent study (Williams et al. 2020), and sim-

ulated data sets similar in size (7,000 sites) to the real align-

ment used in those analyses. To capture realistic levels of site

compositional heterogeneity, we simulated data under site

compositions obtained from the HOGENOM database

(Dufayard et al. 2005) on both 2D and 3D trees. The simulated

data are likely to recapitulate the compositional variation of

real sequence data, because the patterns of site heterogeneity

are based on a sample of over 1 million gene family align-

ments. We then analyzed the simulated data with a set of

UDM models with constant (Poisson) exchangeabilities com-

bined with 1, 4, 8, 16, 32, 64, 128, or 256 site compositions,

with and without ASRV. We also analyzed the simulated data

with the LG model (Le and Gascuel 2008) which assumes a

single site composition, with and without ASRV. As men-

tioned above, the LG model has featured heavily in recent

discussions of which tree, 3D or 2D, is best supported by

molecular data (Da Cunha et al. 2017, 2018; Spang et al.

2018; Williams et al. 2020).

When site-heterogeneous data were simulated on a 2D

tree, inference under the LG model always recovered an in-

correct 3D tree, consistent with it being susceptible to LBA

when faced with this common feature of real data. By con-

trast, all inferences under the more complex UDM models

with 16 or more site compositions (Schrempf et al. 2020)

recovered a 2D tree (fig. 2). The simulations also confirm pre-

vious work that modeling ASRV is particularly important for

obtaining the correct tree when long branches are present.

Thus, all analyses of the 2D-simulated data without ASRV

recovered a 3D tree, regardless of the model used. These

results demonstrate that joint modeling of both site rate

and site compositional heterogeneity is necessary to recover

the true 2D tree for these data. By contrast, when data were

simulated on a 3D tree, all of the models, with or without

ASRV, recovered the 3D tree. Interestingly, and regardless of

whether the data were simulated on a 2D or a 3D tree, the

branch lengths and within-domain relationships were more

accurately estimated under the more complex models, as in-

dicated by the reduced symmetric and branch length distan-

ces to the simulation tree with an increasing number of site

compositions (fig. 2).

Given the results of our simulations, we reanalyzed an em-

pirical data set used to investigate the relationships between

bacteria, archaea, and eukaryotes with the UDM 128þG
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model (Schrempf et al. 2020). The data set comprises a

concatenation of 27 universal genes (6,419 amino acid sites)

for 125 taxa including bacteria, archaea, and eukaryotes.

These 27 genes were chosen because they were present in

two out of three marker gene data sets used in recent anal-

yses of the tree of life (Spang et al. 2015; Da Cunha et al.

2017; Williams et al. 2020). Consistent with recent work

suggesting that the 2D tree is the best-supported tree for

these data (Williams et al. 2020), we recovered a maximally

supported (100% ultrafast bootstrap) 2D tree (fig. 3). In this

tree, the eukaryotes were the sister group to the

Heimdallarchaeota, a lineage within the recently discovered

Asgard archaea that form a clade with eocytes/Crenarchaeota

in the archaeal tree (fig. 3).

FIG. 2..——Simulations to evaluate the difficulty of recovering the 2D and 3D trees using simple and more complex phylogenetic models. We simulated

site-heterogeneous amino acid sequence alignments under site compositions obtained from the HOGENOM database (Dufayard et al. 2005) on 2D tree and

3D trees, with the alignment dimensions and simulation trees taken from a recent empirical study (Williams et al. 2020). We then evaluated the ability of a set

of increasingly complex substitution models to recover the true simulation tree. “Poisson” denotes a model with uniform exchangeabilities between amino

acids and a single composition vector; “LG” denotes a model with LG exchangeabilities (Le and Gascuel 2008) and a single composition vector; UDM

denotes a series of Universal Distribution Mixture models with uniform exchangeabilities and four or more site compositions. When data were simulated on a

3D tree, all analyses (both simple and complex models, with and without ASRV) recovered the correct 3D tree (not shown). When data were simulated on the

2D tree, the results depended on the model used to analyze the data. If ASRV was not modeled (no gamma distribution, left panels), then all analyses

recovered the incorrect 3D tree. When ASRV was modeled, models with one to eight site compositions (Poisson, LG, UDM model with four or eight

components) recovered an incorrect 3D tree, whereas models with 16 or more site compositions recovered the correct 2D tree. Whether the data were

simulated on a 2D or a 3D tree, branch lengths and within-domain relationships were more accurately estimated under the more complex models, as

indicated by the reduced symmetric and branch length distances to the simulation tree with an increasing number of site compositions. The results indicate

that the 2D is intrinsically more difficult to recover than the 3D tree, and that modeling of both site rate and site compositional heterogeneity may be

necessary to recover the true tree for difficult phylogenetic problems.
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Conclusions

In this review, we have focused on the analysis of molecular

sequence data to make phylogenetic trees for ancient rela-

tionships using substitution models. Our aim has been to use

three classic case studies, which we and many other labs have

worked on, to demonstrate that the choice of model, and

how well it fits the often very complicated data being ana-

lyzed, can have a profound effect on which tree is recovered.

Hence, some apparently well-supported and influential trees

which were made with commonly used but overly simple

models are now known to have been incorrect and to have

misled thinking about evolutionary relationships. In the con-

text of making phylogenies, standard measures of statistical

support such as bootstraps and posterior probabilities only

measure uncertainty in estimates assuming a specific evolu-

tionary model, and hence may be an unreliable guide to the

accuracy of the inferred tree. Methods that directly evaluate

the adequacy of models and trees (Goldman 1993; Bollback

2002; Jermiin et al. 2020) have been developed but are not

yet widely used.

We have not discussed genome-scale evolutionary pro-

cesses such as incomplete lineage sorting, gene duplications,

losses, and horizontal transfers, all of which are common

phenomena that potentially affect the quality of data sets

and tree topologies. Methods are being developed to account

for disagreements among the large numbers of gene trees

that can be produced from genome-scale data, and to har-

ness that discord to learn about evolutionary history. These

include methods based on the multispecies coalescent

(Bouckaert et al. 2014; Höhna et al. 2016; Zhang et al.

2017, 2020) or explicit models of gene duplication, transfer,

and loss (Szöll~osi et al. 2013; Jacox et al. 2016; Bansal et al.

2018; Morel et al. 2020). These methods can potentially bring

much more data to bear on interesting problems including

phylogenomic rooting, the quantification of vertical and hor-

izontal gene flows, ancestral genome reconstructions, and

the inference of endosymbioses from genome data.

However, to the extent that these methods use source trees

made with overly simple models of the substitution process,

the issues we discuss that can affect the accuracy of individual

trees are directly relevant. The CXX and UDM models may be

useful in this context because they potentially allow large

numbers of single-gene trees to be inferred under tractable,

computationally efficient models that account for site hetero-

geneity without a very large number of additional parameters.

FIG. 3..——Analysis with a universal distribution model (UDM

128þG) to investigate the placement of eukaryotes within Archaea. ML

phylogeny inferred from a concatenation of 27 broadly conserved marker

FIG. 3.—Continued

genes under the UDM 128þG model. The analysis places the eukaryotic

nuclear lineage within Asgard archaea as the sister lineage to

Heimdallarchaeota with high (95%) ultrafast bootstrap support. Branch

lengths are the expected number of substitutions per site. To improve the

legibility of the internal structure of the trees, the branch separating bac-

teria and archaea is shown at 1/10th its true size.
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George Box is famous for suggesting that models that seek

to represent the real world are always wrong, yet they can still

be illuminating and useful. Although new models have been

developed that fit some features of real data much better

than previous models, the patterns in data can be complicated

and can vary among sites, genes, and lineages. As a result,

there can be complex interactions between different con-

founding factors in data, with an outcome that is difficult to

diagnose or predict a priori. None of the currently available

models can reasonably be expected to fit such data perfectly,

and posterior predictive simulations for individual models of-

ten show that the fit between model and real data is inade-

quate. In this situation, the question is whether or not the

model is sufficient to recover useful information about the

particular relationships that are of interest to the study. As

our examples attest, carefully chosen models can often re-

cover what are believed to be the correct relationships in

the face of ASRV, variable lineage-specific rates, site-specific

composition effects, and changing across-tree nucleotide or

amino acid composition. Conversely, there is overwhelming

evidence that the use of overly simple models to analyze real

data will often fail to recover the correct tree.

Given that no current method deals with all of the different

types of heterogeneity in real data equally well, exploring the

stability of trees using methods that focus on different prop-

erties of data can be helpful for identifying where problems

might lie. For example, making trees based on amino acid or

nucleotide composition is a simple way to identify sequences

which have the potential to group together because of their

shared composition rather than their shared history. Since

some models are demonstrably better at dealing with this

type of convergence than others, using them should probably

be more routine than it currently is. In our review, we have

used the Deinococcus–Thermus example to illustrate how

trees can radically change when dramatic compositional het-

erogeneity is ignored, mitigated, or modeled. Across-tree

compositional heterogeneity appears to be a pervasive feature

of most molecular data, and so is potentially a common

source of model misspecification that is still often ignored in

the published literature.

Even the best available models can fail to recover accurate

ingroup relationships, when long-branch outgroups are pre-

sent and internal branches are short. The difficulties in recov-

ering the relationship between Microsporidia and Fungi

demonstrate just how challenging this can be, and the litera-

ture is littered with examples of other difficult “long-branch

problems” (Philippe et al. 2011; Gouy et al. 2015). In these

cases, agreement between models for a particular tree topol-

ogy may simply reflect their shared inadequacy at modeling

the complexities of the data. As we discuss in the main text,

methods that explicitly accommodate site-specific composi-

tional heterogeneity appear to be better than others at deal-

ing with long branches. But as was shown for the position of

honeybees within insects (Blanquart and Lartillot 2008), they

can still sometimes fail to fully mitigate the problem of LBA,

because they do not model across-tree compositional hetero-

geneity. In cases where LBA to long-branch outgroups is sus-

pected, repeating the analyses in the absence of outgroups

can often provide an informative check on the stability of

ingroup relationships.

Long branches and data heterogeneity are particularly

prominent features of universal trees investigating the rela-

tionships between major groups and the domains of cellular

life, so it is unsurprising that the topologies of these trees have

greatly changed as models have improved. The Archezoa hy-

pothesis (Cavalier-Smith 1987) proposed that some eukar-

yotes might primitively lack mitochondria and was founded

on early rRNA and protein trees and the apparent absence of

cytological and biochemical evidence for mitochondria in

early-branching protist lineages like Microsporidia. But more

data and better models have rearranged eukaryotic relation-

ships to the extent where the latest eukaryotic tree (Burki et al.

2020) bears little resemblance to the classical rRNA tree. In the

new tree, Microsporidia group with Fungi and there is no

compelling evidence to argue that any of the other former

archezoans branch at the base of eukaryotes, especially since

the root of the eukaryotic tree is still uncertain (Burki et al.

2020). Since all of the best-studied former archezoans are also

now known to contain highly reduced versions of mitochon-

dria (Embley and Martin 2006; Martin et al. 2015; Roger et al.

2017), the idea that some eukaryotes primitively lack mito-

chondria has fallen out of favor for lack of good candidates.

As a consequence, there seems to be no compelling reason to

assume that eukaryotes, as we now define them, must have

predated the mitochondrial endosymbiosis.

The impact of improved methods of analysis and more

data on current ideas about the topology of the tree of life,

and the place of eukaryotes within that tree, has been dra-

matic. Here, the potential for substitutional saturation and

overwriting over vast time scales potentially amplifies the dif-

ficulties of obtaining a robust hypothesis of relationships from

already complex data. At present, the best available methods

support a two-domains tree wherein eukaryotes originate

from within the Archaea, consistent with some formulations

of Lake’s eocyte hypothesis (Rivera and Lake 1992; Williams

et al. 2013, 2020; Doolittle 2020). Universal trees generally

assume a root on the bacterial branch, but this rooting owes

much of its prominence to the early days of phylogenetic

analysis using simple models (Gogarten et al. 1989; Iwabe

et al. 1989; Woese et al. 1990; Brown and Doolittle 1995;

Zhaxybayeva et al. 2005; Gouy et al. 2015). The issues we

discuss about long branches and the complexity of data sug-

gest that we should be cautious in claiming that we have a

robust estimate for the root of the universal tree, especially

given its fundamental importance for understanding the ear-

liest period of cell evolution.

Given the complexities of real data and the limitations of

even the best models, it is no surprise that phylogenetic

Williams et al. GBE
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inferences of ancient relationships have been so tentative and

challenging. However, progress has been made and there

exists a robust statistical toolbox that can be used to evaluate

models and support for phylogenetic hypotheses from molec-

ular data. Congruence or consilience (Whewell 1840; Darwin

1859) between different types of data should also be used to

test or support inferences. For example, a close relationship

between Thermus and Deinococcus is supported by the com-

plex lipid and cell wall characters that they share. The relation-

ship between Microsporidia and Fungi is supported by the

discovery of a diversity of environmental lineages that branch

between canonical fungi and microsporidia and display a mix-

ture of ancestral and derived characters (James et al. 2013;

Bass et al. 2018). Independent data that speak decisively to

the relationship between eukaryotes and archaea are more

elusive, but the discovery of the new Asgard archaea, which

contain more of the genes for proteins formerly claimed to be

eukaryote-specific (Spang et al. 2015; Zaremba-Niedzwiedzka

et al. 2017; Imachi et al. 2020) is consistent with an archaeal

origin for at least some of the building blocks of eukaryotic

complexity.

Materials and Methods

2D/3D Simulations and Analysis with UDM Models

Two trees T3D and T2D exhibiting a 3D and 2D topology were

obtained from Da Cunha et al. (2017), and Williams et al.

(2020), respectively. Both trees had been inferred from the

same 35 gene matrix (Da Cunha et al. 2017), albeit with dif-

ferent models. T3D was inferred by the LG model (Le and

Gascuel 2008) with discrete gamma rate heterogeneity

(Yang 1994) in PhyML (Guindon et al. 2010), and T2D by

the CAT model (Lartillot and Philippe 2004) with GTR exchan-

geabilities (Tavar�e 1986) and four-category discrete gamma

rate heterogeneity in Phylobayes-MPI (Lartillot et al. 2013).

Alignments with 7,000 amino acid columns were simu-

lated along the trees using a model with varying compositions

of amino acids across sites. To this end, for each site, a ran-

dom composition of amino acids was sampled from a set of

compositions previously obtained from an analysis (Schrempf

et al. 2020) of the HOGENOM database (Dufayard et al.

2005). Uniform exchangeabilities (Poisson model;

Felsenstein 1981) were used throughout. For each tree, an

alignment with discrete gamma rate heterogeneity (four cat-

egories and a gamma distribution parameter of 0.935) and

without rate heterogeneity was simulated. The ELynx soft-

ware package (https://github.com/dschrempf/elynx, last

accessed April 5, 2021) was used for these simulations.

Trees were inferred from the four simulated alignments

with IQ-TREE 2 (Minh et al. 2020). The model of rate hetero-

geneity (four-category gamma) used for simulating the align-

ment was also used for inference. We used the Poisson, LG

(Le and Gascuel 2008) and UDM (Schrempf et al. 2020)

models for inference. For all inferences, the ultrafast bootstrap

(Hoang et al. 2018) with 1,000 samples was used. Finally,

each reconstructed tree was analyzed for compatibility with

the 2D or the 3D topology.
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