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Abstract: The high prevalence of falls and the enormous impact they have on the elderly population is
a cause for concern. We aimed to develop a walking-monitor gait pattern (G-STRIDE) for older adults
based on a 6-axis inertial measurement (IMU) with the application of pedestrian dead reckoning
algorithms and tested its structural and clinical validity. A cross-sectional case–control study was
conducted with 21 participants (11 fallers and 10 non-fallers). We measured gait using an IMU
attached to the foot while participants walked around different grounds (indoor flooring, outdoor
floor, asphalt, etc.). The G-STRIDE consisted of a portable inertial device that monitored the gait
pattern and a mobile app for telematic clinical analysis. G-STRIDE made it possible to measure
gait parameters under normal living conditions when walking without assessing the patient in the
outpatient clinic. Moreover, we verified concurrent validity with convectional outcome measures
using intraclass correlation coefficients (ICCs) and analyzed the differences between participants.
G-STRIDE showed high estimation accuracy for the walking speed of the elderly and good concurrent
validity compared to conventional measures (ICC = 0.69; p < 0.000). In conclusion, the developed
inertial-based G-STRIDE can accurately classify older people with risk to fall with a significance as
high as using traditional but more subjective clinical methods (gait speed, Timed Up and Go Test).

Keywords: frailty; gait analysis; IMU; mobile app; telemedicine; pedestrian dead reckoning; assistant

1. Introduction

Falls are one of the most significant clinical problems in the elderly population. One-
third of the elderly living in the community falls every year, and about half of them suffer
repeated falls. Additionally, 1 in 10 elderly people with falls will be hospitalized due to the
falls, and only half of them will live a year [1,2]. Therefore, the evaluation of patients at
risk of falling is key to taking preventive measures to avoid its prevalence.

The assessment of risk of falling can be implemented by analyzing its gait and balance,
and daily activities [3,4]. Gait speed and step lengths are detected as the main parameters
for identifying people with high fall risk [5,6]. In primary and specialized care, this can
be achieve using inexpensive methods based on physical examination and functional
tests such as the gait speed test, the Short Physical Performance Battery (SPPB) [7], and
the Timed Up and Go Test (TUG) [8], and the Environment-Adaptive TUG (EATUG) fall
risk assessment system [9], which is an improvement of the standard TUG test. These
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conventional functional tests provide information on running times and the qualitative
aspects of gait. However, they are, to some extent, subjective by using verbal instructions
to the patient, manual temporal measures (e.g., handheld stopwatches) and they do not
provide information on many other gait parameters of interest for recognizing aspects
related to falls, such as cadence, stride length or swing phase time, for example.

The analysis of gait can be obtained using more objective and accurate instruments.
Some of the commercial tools, that can be used for risk of falling assessment (and other
applications), are: (1) optical cameras (e.g., Vicon or OptiTrack), and (2) pressure pathways
(e.g., Gaitrite [10,11]). They provide precise information on gait pattern, step speed, step
length & width, and static and dynamic balance behavior under controlled conditions.
However, the use of these tools is still not widespread; it is practically limited to mono-
graphic units with gait laboratories (i.e., specialized hospital environments) or in the field
of motion analysis research. This is because of the high cost of this kind of equipment and
the time and space required to do such detailed analyses. Therefore, a technology able to
estimate with accuracy those gait parameters but with less-infrastructure and much lower
costs is needed: inertial sensing is that disruptive technology.

The use of inertial sensors has emerged as a technology useful in different gait analysis
studies [12–18]. The main studies and innovations found in the literature about inertial
sensing have already been reviewed in several surveys [19–21]. An inertial sensor is a
portable, low-cost, lightweight device called inertial measurement unit (IMU). A IMU can
be placed at different locations on the body, especially on the leg, back, ankle, and foot,
to extract motion gait parameters. Inertial sensors measure raw accelerations and turn
rates by orthogonally oriented accelerometers and gyroscopes. This raw data must be
post-processed to obtain gait parameters with reasonable accuracy.

Gait parameters can be estimated from IMUs via three types of inertial estimation
algorithms: (1) human gait models, (2) abstraction models (artificial intelligence or re-
gression) and (3) direct inertial integration (or INS) [22–24]. The first method requires
defining the kinematic human gait model, using known parameters such as leg length
and walking style. The IMU can measure joint rotations or heap oscillations and deduce
the cadence and parameters such as speed of stride length. This estimation depends on
the particular subject and must be calibrated, which is a problem when we want to study
a large group of subjects. In the second approach (abstraction models), the problem is
considered as a black box, where a set of features are extracted from the IMU, but also
social-demographic features of the subject under study. This kind of method uses artificial
intelligence algorithms, such as neural networks, or regressions models, in order to try to
learn gait parameters in a supervised way (a large database of inertial log files and known
gait parameters given as examples). This approach has a main drawback: the need of new
trainings (learning or model fitting) with new databases each time the population changes,
apart from a limited accuracy (higher than 5%).

In the last, and third, approach (INS), a direct double integration of acceleration and
angular rates is used. This approach requires sophisticated algorithms to eliminate the
noise typical of microelectromechanical system (MEMS)-type IMUs, which, after double
integration, cause significant drifts in spatial and angular estimations. To minimize this
effect, zero-update velocity (ZUPT) [25] during stance is performed, which force the use
of the IMU on the foot of the subject [3]. Apart from these challenges and foot-location
restriction, this method has a significant advantage. It does not need to use any human
model, no calibration of the user features (e.g., leg-length), and no learning process must
be performed. The estimation of gait parameters can be valid for different kind of users
(young or elder, with or without pathologies, moving fast or slow). A few studies perform
a direct INS integration-based walking speed estimation algorithm [13,26,27] with IMUs
attached to feet with a reported accuracy of about 3%.
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The technology used for gait analysis is not the only aspect that matters; the evaluation
site and conditions have an important influence on the assessment. For example, even
for all of the abovementioned technological solutions (i.e., conventional, complementary
instruments, and inertial devices), examinations by a doctor require long consultation times
and relatively wide indoor spaces, the patients tend to outperform, and the test surface
is quite ideal. Additionally, the execution of these tests requires the understanding and
collaboration of patients, which is difficult in those with cognitive impairment. Under
these circumstances, it would be desirable to perform tests with portable devices (such
as IMUs) but in “real word” conditions. This assessment could be done at home or in the
patient’s everyday street environment with various terrain conditions (slopes, sidewalks,
steps, etc.) and where falls usually occur. Conducting more extended walking distance
tests (more than half an hour), and without the supervision of a doctor, patients do not
tend to outperform, which is good for reliable gait analysis and risk of fall assessment, or
in other pathologies or syndromes such as frailty.

In this paper, we aimed to develop an accurate INS-based inertial solution (G-STRIDE),
easy to use by patients and clinical stuff, and with special focus on testing the structural
and clinical validation of old patients. For that purpose, we propose to address the
following innovations.

Firstly, we propose and present the development of an inertial INS-based device (the
G-STRIDE device) that allows gait assessment without needing any learning or calibration
phase (valid for any kind of persons independently of its age). An approach with high
accuracy, and a potential for a larger range of gait parameter estimations (e.g., stride
length, speed, cadence, rotation angles, clearance, etc.) when compared with model-
based algorithms.

Secondly, our proposal includes the management of the processed gait information
through a mobile application (the G-STRIDE App) to make it accessible to clinicians (easy
to use and pre-classification of risks indicators, or pre-frail or frail categorization).

Thirdly, we evaluate differences between people with and without falls using classic
functional procedures and inertial device parameters (the G-STRIDE Assessment). As
falls in older adults are deeply linked to frailty status as it is one of the main pathogenic
factors, we are interested to explore the relationship between gait parameters and frailty
status in older adults and studying possible cut-off points to classify patients according to
device parameters.

This paper is organized as follows: Section 2 describes the pilot study for fall as-
sessment, the design and implementation of the G-STRIDE solution, including sensors,
hardware, communication, data processing, and user interface, as well as the statistical
analysis. The relevant results from the clinical point of view, in gait analysis and groups of
patients, and the validation of the technology for frail detection, are presented in Section 3.
Finally, a global discussion and some conclusions are shown in last two sections.

2. Materials and Methods
2.1. Design of Pilot Study

A pilot observational case–control study was conducted in the Community of Madrid.
The study was approved by the Research Ethics Committee of the Hospital Universitario
de la Paz (Registration No: PI-4486), following the ethical principles for medical research
involving human subjects of the Declaration of Helsinki. All participants signed the
informed consent for participation in the study.

2.2. Sample

All the participants were adults from the Falls Outpatient Clinic in the Geriatric
Department of the Hospital Universitario Infanta Sofía (Madrid, Spain) included using
non-probabilistic consecutive sampling. The inclusion criteria are a modification of the
criteria for referrals to specific units for the evaluation and treatment of falls in the elderly,
proposed by the American Geriatrics Society (AGS) and the British Geriatrics Society
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(BGS) [28]: participants over 70 years of age who could walk without assistance from
another person and met one of the three criteria: (a) One fall or two or more falls with
consequences in the last year; (b) gait and balance disorder or fear of falling; (c) post-fall
syndrome. Exclusion criteria were having a terminal illness with a life expectancy of fewer
than six months or not providing informed consent to participate.

The participants’ assessment was carried out during a single visit to the Falls Out-
patient Clinic and usual assessment was conducted to collect the study variables described
in Falls Assessment. Finally, the device was placed in the shoe, and the participant was
asked to walk freely for 30 min (recommended walking time for older people based on
scientific evidence [29]). At the end of this time, the participant returned to the out-patient
clinic to give back the device.

2.3. Falls Assessment

Falls assessment was done according to clinical practice of geriatricians in Out-patient
Clinics and included:

- Age, sex, height, weight, height, and body mass index (BMI).
- Global cognition measured using Reisberg Global Deterioration Scale (GDS) [30].
- Self-report physical activity: it is assessed according to frailty criteria considering

sedentary if they walk less than 3 h per week in the case of men or less than 1 h per
week in women.

- Assessment of frailty status using the Standardized Frailty Criteria (SFC) that includes
five criteria: weight loss; measured weakness; self-report exhaustion; measured slow-
ness; low activity questionnaire. The score range 0 to 5 being Frail when ≥3 criteria
are present, Pre-frail when 1 or 2 criteria are present and Robust or Non-frail when
there are no criteria present [31].

- Short Falls Efficacy Scale-International (Short FES-I): This scale measures “fear of
falling” or, more properly, “concerns about falling” in older adults living in the com-
munity. The scale includes different activities of daily living and it scores from 7 to
28 seven (no concern) to 28 (severe concern). From 9 points onwards, it is considered
moderate concern [32].

Functional Tests:

- Four-Meter Gait Speed (FMGS): patients are instructed to walk 4 m at their “usual
speed”. Timing with a stopwatch began when the first foot pass the starting line and
ends when the same foot pass the finish line. Three-time trials are taken, choosing the
best of them. Gait speed below <0.8 m/s suggests an increased risk of frailty and below
0.6 m/s an increased risk of disability and they both need further clinical review [33].

- Short Physical Performance Battery (SPPB): is an objective assessment tool for evaluat-
ing lower extremity functioning in older persons combining three tests: gait speed,
chair stand and balance tests. It has been used as a predictive tool for possible adverse
events and disability. The scores range from 0 to 12 with higher scores indicating better
lower body function.

In order to classify participants as frail, pre-frail and non-frail or robust, the following
cut-offs were used: SPPB < 4 (with disability), SPPB 4–6 (frail), SPPB 7–9 (pre-frail), SPPB
10–12 (non-frail or robust) [7].

- Timed Up and Go Test (TUG): The patient is observed and timed while he rises from
an armchair, walks 3 m, turns, walks back, and sits down again. A score of ≥14 s has
been shown to indicate high risk of falls [34].

2.4. Designed G-STRIDE Architecture

Figure 1 shows the architecture of the G-STRIDE solution and its component blocks:
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Figure 1. Architecture of G-STRIDE solution.

2.4.1. Block 1: Inertial Device

The inertial device includes a sensor, the sampling of accelerations and turn rates, low-
level signal processing, and wireless communications. The 6-axis IMU’s raw signals (i.e.,
acceleration, angular rotation, and the timestamp of the microcontroller) were recorded on
a microSD card during the test, and when the test was completed, they were sent wirelessly,
using WIFI communication (IEEE 802.11) to Block 2. The G-STRIDE inertial device was
placed on the subject’s foot in a non-intrusive manner to continuously sample the gait
pattern for 30 min during regular walking activities.

2.4.2. Block 2: Cloud Processing

The cloud processing and storage block was implemented using a Raspberry-Pi
consisting of a signal processing stage in Python to extract the gait pattern (stride length,
cadence, speed, etc.) using INS-based algorithms [35] (also known as Pedestrian Dead
Reckoning or PDR techniques). A portable server stores the generated gait information. The
server was implemented in the Raspberry using a Linux, Apache, MySQL, PHP/Python
(LAMP) system developed by members of the SENIALAB and LABTEL groups of the
URJC [36]. This provided an added value to the system: it is a portable and low-cost system
that allows a quick and straightforward installation in any gait assessment practice.

2.4.3. Block 3: Management App

The management App is the interface between the user and the system. It is accessible,
intuitive, and open to the inclusion of new elements. The clinician can consult each patient’s
variables and analyze the data to automatically obtain the correlation with measurements
of self-perception and influence on daily activities. The project’s clinical team can access
the content and management of this website to analyze the data collected by the users and
activate alert mechanisms or change routines/tasks.
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2.4.4. Block 4: Tests with Patients

A series of conventional tests (FMSG, SPPB, TUG, Short FES-I, SFC) were carried out
to determine if the device could correlate with the usual scales for frailty identification. In
these tests, the subjects would perform the traditional metrics. Additionally, they would
carry the sample device during thirty minutes of free walking.

2.5. G-STRIDE Hardware and Software Implementation

The implementation of the system consists of four parts, sampling device, data pro-
cessing, data storage and data visualization. In Figure 2 sampling device attachment and
server are shown (Video S1).
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2.5.1. Implementation of G-STRIDE Sampling Device

This section explains the implementation of the G-STRIDE sampling device. This
device was designed to take inertial measurements and generate a walking pattern in
post-processing and Wi-Fi connectivity. For this reason, the Arduino NANO 33 IoT board
was used (Arduino, Scarmagno, Italy), which has a 6-axis IMU and a WiFiNINA module. A
PCB board was designed to incorporate the Arduino board together with a voltage booster
for the LIPO battery and a microSD card reader as shown in the schematics of Figure 3.

The booster, Adafruit Power Boost 1000C (Adafruit, New York, NY, USA) was neces-
sary to power the Arduino, as it needs a 5 V input and the LIPO battery only provides 3.7 V.
The microSD card reader allowed for recording the IMU values on the microSD during the
test, this data was recorded synchronously with a timestamp. When the test finished, the
content was sent by Wi-Fi. The button shown in the schematics of Figure 3 allowed the
user to interact with the G-STRIDE device.

Finally, the switch allowed the user to turn the G-STRIDE device on and off. The IMU
used was the LSM6DS3 from the manufacturer STMicroelectronics (Geneva, Switzerland).
It had an accelerometer with three orthogonally oriented axes and a gyroscope with three
orthogonally oriented axes. The IMU can be adjusted in different ranges, 2/4/8/16 g for
the accelerometer and 125/250/500/1000/2000 dps for the gyroscope. The IMU frequency
was set to 104 Hz, this frequency was adjusted according to the technical characteristics of
the IMU and the frequency used in related works [21], which is about 100 Hz.
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2.5.2. Data Processing

All processing of the data recorded was performed using Python on the Raspberry
server. Raw IMU data, consisting of linear accelerations and angular velocities, must
be integrated to obtain spatio-temporal gait parameters. The estimation of parameters
like stride length, average speed, cadence, and swing time were established based on
medical requirements.

For this issue, it was first necessary to detect the foot’s stance moment, i.e., to detect
the moment at which each step occurs. The stance phase is detected based on local
standard deviation of the acceleration magnitudes, following the methodology explained
in [35]. For this purpose, events such as the heel strike are detected. The stance phase
was detected by applying two conditions that must be satisfied; firstly, it is required to
detect a transition between high and low accelerations with an upper threshold, and then
these low accelerations must be below a lower threshold during a fixed window. It was
determined that the thresholds that best met the test conditions were 1.6 m/s2 for the upper
threshold and 0.8 m/s2 for the lower threshold. Moreover, it was necessary to integrate
the acceleration twice, between two consecutive step detection events, and translate the
sensor’s local coordinate system to the global one, updating the orientation matrix with
the gyroscope values. Therefore, noise in these sensors can lead to significant errors in
position estimation due to drift. Studies previously carried out by [37] reflect these effects.
To reduce these errors of estimation, the ZUPT correction was implemented, which was
clearly developed and explained by [35]. During the stance phase, the sensor is assumed to
not be moving. Therefore, the velocity obtained during this phase was forced to 0. This
error during the stance phase was used to remove it from the rest of the measurements
present during the swing phase, since drift is an error that accumulates and increases over
time. Then with double integration of IMU data, spatial parameters such as stride lengths
can be easily estimated. Cadence was obtained with the number of steps detected divided
by the time in which the subjects were walking. For walking speed, we directly used
the speed estimated by ZUPT algorithm. Swing times were calculated by obtaining the
difference in the time stamps of the end of a stance phase (toe off) and the moment when
the foot is detected to contact the ground again (heel strike).
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2.5.3. Data Transfer and Data Storage

In Figure 4 the data transfer process, through the blocks 1, 2 and 3 of the architecture,
is described. The data recorded during tests in “Block 1” (inertial or sampling device) is
stored in a text document on the microSD and sent by WIFI. On the server, these data
are collected using a PHP file that stores it in a text document. When all data are sent,
algorithms that calculate the walking pattern parameters are executed (red arrow, Figure 3).
When the gait pattern parameters are obtained, they are uploaded to the BBDD with the
patient identification number corresponding to the beacon used to send the data (purple
arrow in Figure 3).
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Finally, the data can be consulted through a mobile application, which corresponds to
“Block 3” (management App) and allows the identification number of each patient to be
updated with that of each beacon, orange arrow in Figure 3. The raw sensory information
recorded by Block 1 is additionally sent wirelessly to the URJC cloud server (IMB + Watson).
Work is also being done on a Raspberry 4-based server that allows for duplicate storage
of the nodes of the clinical units that receive patient data. Thus, if a clinical entity does
not want to upload it to the cloud, it can do so in a “cloud” managed by a Raspberry 4
customized for a specific clinical entity. This allows having a record with a backup of
patient data for the duration of a project. The server side has been implemented as a remote
monitoring system that allows ubiquitous data access. It is a modular design that allows
several databases from different sampling devices and simultaneous access to them from
different consultation devices: computer, tablet, smartphone, etc. The system has been
designed to allow the database to be replicated on other remote servers if necessary, adding
backup capabilities to the system and allowing remote collaboration between different
users and locations. Grafana v7.3.0 is used as the front-end for the visualization of the
time-series data. A series of dashboards are used to monitor information in real-time. All
stored data are time-stamped and associated with a specific node, allowing the comparison
of results between locations. Dashboards are connected to a web page hosted on the server
that allows the user to select the node to be consulted. HTML5, CSS3, and JavaScript have
been used for web design.
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Work is being done to evaluate the nodes’ compatibility with a server hosted on IBM
Cloud. This communication has been implemented through a data frame, which contains
the information coming from the sensors. This frame’s structure consists of a header with
relevant information with the parameters they use for their communication protocol in
the application layer. The second part consists of a message of variable length depending
on the data included. A hexadecimal frame is used for this purpose. A timestamp is also
included. Once uploaded to IBM Cloud, the data are sent to the external database server
for remote management automatically using a Python script. MySQL Server 5.7.29 on an
Ubuntu 18.04 LTS (Long Time Service) machine has been used as the server.

2.5.4. Visualization Interface for Gait Parameters

The mobile app for consultation and visualization of patient gait pattern data was
developed in Android Studio Version 4.1.2. It contains different tabs that can be accessed
from a drop-down menu, text views to monitor the parameters, and graphs to help their
interpretation. The following tabs are available in the app: Application Information, Speed,
Strides, Swing Times, Graphs, and Waypoint Identifier (Figures 5 and 6). Besides, a tab
called Devices is available, which allows the physician to update the patient’s identification
using the number of the device.
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2.6. Statistical Analysis

The sample did not comply with normality by Shapiro-Wilk, so non-parametric tests
were performed. We determined the demographic and anthropometric parameters as
means and standard deviations for continuous variables (age, body mass, height, body
mass index, Global Deterioration Scale, Four-Meter Gait Speed, Standardized Frailty Cri-
teria, Short Physical Performance Battery, Timed Up and Go Test, Short Falls Efficacy
Scale-International and gait parameters of G-STRIDE device) or percentages for the discrete
variable (sex, type of surface and level of physical activity). We performed group compar-
ison between the derivation and mean scores with the Mann–Whitney U statistic. Also,
the effect size was calculated with Cohen’s statistic and its transformation to correlation
coefficient (dr). The following values were considered with respect to the magnitude of the
effect size: dr = 0.10 (low), dr = 0.30 (medium), dr = 0.50 (high) and dr = 0.70 (very high) [38].
We demonstrated the concurrent validity of each model based on the intraclass correlation
coefficients (ICCs) calculated using a two-way mixed model (absolute agreement type) by
comparing the walking speeds estimated from conventional measurement (Four-Meter
Gait Speed) and those obtained from G-Stride. Based on the 95 percent confident interval
of the ICC estimate, it is often considered very good if ICC is greater than 0.90, good if
it is between 0.71 and 0.90, moderate between 0.51 and 0.70, mediocre between 0.31 and
0.50, and bad or null if ICC is less than 0.31. Correlations between variables were analyzed
using Spearman test. The analysis of the variables was carried out with the statistical
program IBM SPSS Statistics for Windows, version 27.0 (IBM SPSS Corp., Armonk, NY,
USA), considering the significant p < 0.05.
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3. Results
3.1. Basal Characteristics

Table 1 shows basal characteristics of the study with 21 participants (11 of them fallers).
Mean age was 81.1 ± 4.8 years, being older the group of fallers and 12 (57.1%) were women.
Regarding physical activity, 45.5% of fallers were sedentary, while 100% of non-fallers
were active. In addition, cognitive impairment was only identified in fallers (measured by
Reisberg Global Deterioration Scale (GDS).

Table 1. Basal Characteristics of Participants.

Total (n = 21) Non–Fallers (n = 10) Fallers (n = 11) p Value

Age (years) 81.1 ± 4.8 (73–91) 78.2 ± 3 (73–83) 83.7 ± 4.6 (77–91) 0.011
Sex (female/male) 12 (57.1%)/9 (42.9%) 6 (60)/4 (40) 6 (54.5)/5 (45.5) 0.801

Surface (flat/sloped) 18 (85.7%)/3 (14.3%) 7 (70%)/3 (30%) 11 (100%)/0 (0%) 0.050
Physical Activity (No/Yes) 16 (76.2%)/5 (23.8%) 10 (100%)/0 (0%) 6 (54.5%)/5 (45.5%) 0.015

Body Mass (kg) 63.3 ± 9.6 (45–66) 66.8 ± 8.9 (54–86) 60.1 ± 9.8 (46–79) 0.398
Height (m) 1.61 ± 0,08 (1.40–1.79) 1.64 ± 0.05 (1.60–1.72) 1.56 ± 0.10 (1.40–1.79) 0.091

BMI (Kg/m2) 24.5 ± 2.5 (19.9–31.6) 24.6 ± 3.3 (21.1–31.6) 24.4 ± 1.8 (19.9–26.4) 0.015
GDS 2.1 ± 1 (1–6) 1 ± 0 (1–1) 3.20 ± 1.8 (1–6) 0.001

Age, Body Mass, Body Height, Body Mass Index (BMI) and Global Deterioration Scale (GDS) are presented with mean ± standard deviation
values and range. Sex, Surface and Physical Activity are presented with the points score and percentage.

3.2. Correlations between Clinical Tests and Gait Characteristics Obtained by G-Stride Device

Intraclass correlation coefficient was 0.69 with a 95% confident interval, which indi-
cates moderate reliability of G-Stride device. Figure 7 shows correlations between gait
parameters processed by the G-STRIDE sampling device and functional tests commonly
used in clinical practice. Mean speed, mean stride, and cadence variables obtained by the
device show correlations larger than 0.57 (p < 0.05) with functional tests, being the best
correlation between mean speed and SPPB (0.87; p < 0.01). Also mean swing time shows
good correlation with gait speed in 4 m, SPPB, and TUG with correlations between 0.51
and 0.75 (p < 0.01), allowing us to analyze the gait pattern with this variable.
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Figure 7. Correlations between Clinical Tests and Gait Characteristics obtained by G-STRIDE Device.
The bigger and the more intense the color is, the higher the correlation. Blue means positive
correlations and red negative correlations. ** Shows a significant correlation at the 0.01 level and * at
the 0.05 level. Four-Meter Gait Speed (FMGS), Standardized Frailty Criteria (SFC), Short Physical
Performance Battery (SPPB), Timed Up and Go Test (TUG).



Sensors 2021, 21, 4334 12 of 17

3.3. Differences in Gait Characteristics between Groups

Differences between fallers and non-fallers are shown in Table 2 for functional tests
and Table 3 for G-STRIDE parameters. In comparison to non-fallers, the fallers had worst
performance in all functional tests used in clinical practice with significant differences
(p < 0.000) in all except Short FES-I test. Regarding gait analysis measured by the device,
we found significant differences in mean stride length, mean swing time, mean speed,
cadence, number of steps, and total distance covered. Additionally, we classify participants
according to frailty status using SPPB cut-offs: SPPB < 4 (with disability), SPPB 4–6 (frail),
SPPB 7–9 (pre-frail), SPPB 10–12 (non-frail). There were 3 participants in frailty group, 6 in
pre-frail group and 12 were non-frail. We found differences in two gait parameters (mean
speed and mean stride length) between these frailty groups (Figure 8).

Table 2. Differences between groups functional tests.

Functional Tests Fallers
(Mean ± SD)

Non-Fallers
(Mean ± SD) Sig. Z dr

FMGS (m/s) 1.13 ± 0.70 1.92 ± 0.34 0.002 −3.02 0.58
SFC 1.55 ± 1.37 0.1 ± 0.32 0.004 −2.90 0.57

SPPB 7.36 ± 2.54 11.30 ± 0.82 0.001 −3.33 0.72
TUG (s) 21.85 ± 24.59 7.72 ± 1.52 0.000 −3.80 0.37

Short FES-I 12.64 ± 5.10 9.00 ± 2.49 0.080 −1.75 0.41
Results of the tests: Four-Meter Gait Speed (FMGS), Standardized Frailty Criteria (SFC), Short Physical Per-
formance Battery (SPPB), Timed Up and Go Test (TUG), Short Falls Efficacy Scale-International (Short FES-I).
Standard deviation (SD).

Table 3. Differences between groups G-STRIDE parameters.

G-STRIDE Parameters Fallers
(Mean ± SD)

Non-Fallers
(Mean ± SD) Sig. Z dr

Mean Stride Length (m) 0.68 ± 0.24 0.97 ± 0.15 0.007 −2.68 0.58
SD Stride Length (m2) 0.08 ± 0.06 0.108 ± 0.04 0.180 −1.34 0.28
Mean Swing Time (s) 0.75 ± 0.11 0.83 ± 0.06 0.053 −1.94 0.45
SD Swing Time (s2) 0.04 ± 0.04 0.02 ± 0.03 0.460 −0.74 0.19
Mean Speed (m/s) 0.58 ± 0.25 0.91 ± 0.17 0.005 −2.82 0.60

Cadence (steps/min) 46.63 ± 8.25 53.11 ± 6.13 0.035 −2.11 0.40
Steps 1267.27 ± 415.44 1637.70 ± 278.62 0.041 −2.04 0.46

Total Distance (m) 905.56 ± 459.42 1650.09 ± 374.02 0.001 −3.31 0.66
Total Walking Time (s) 1593.96 ± 347.44 1819.49 ± 138.64 0.105 −1.62 0.39

Results of G-STRIDE parameters. Standard deviation (SD).
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3.4. Acceptability of G-STRIDE Device

It is a small and light device (78.71 g); easy and familiar to wear and no problems
arose using G-STRIDE device during the 30 min walking test. Data transfer rate through
WIFI has been tested, the results show that each minute of data recording requires one
minute to send this data to the server by WIFI.

4. Discussion

This pilot study aims to describe the development of an inertial INS-based device (the
G-STRIDE device) that allows gait assessment without needing any learning or calibration
phase and a mobile application (G-STRIDE App) for managing the information to make it
accessible to clinicians. The objectives of the study include evaluation of older adults with
and without falls using classic functional procedures and inertial device parameters (the
G-STRIDE Assessment), and finally, we describe the relationship between gait parameters
and frailty status. The study results identify the G-STRIDE device as a reliable and valid
tool because it accurately detects the walking risk of falls in older adults and a remarkable
concurrent validity compared to classical functional assessment in the clinical setting.
G-STRIDE is a novel approach with high accuracy and potential for a larger range of
gait parameter estimations (stride length, speed, cadence) when compared with model-
based algorithms.

4.1. The Algorithm

The algorithms developed for estimating population gait parameters in the G-STRIDE
solution showed substantially higher accuracy compared to models based on human
gait and abstract regression, which require calibration or training, respectively. This
improved accuracy in G-STRIDE was recently verified, using a stride length ground truth
reference, in a pilot study of a validation dataset of a small sample size (<3% mean absolute
error- MAE in stride length estimation [39]). In line with our study, Byun et al. [23]
published a related study using an inertial measurement unit attached to the lower back to
measure gait speed in the elderly. The learning phrase showed good results in gait speed
estimation, at low speed (4.7% MAE), using a repression estimation method. Likewise,
Vallabhajosula et al. [24] conducted a study to validate their technological device based
on pressure sensors to measure gait patterns and found that concurrent validity was
acceptable. Also, a recent study conducted by Amitrano et al. [40] validates a new wearable
e-textile based system (SWEET Sock) for remote gait and postural assessment. It is of
utmost importance to incorporate these devices in consultation to speed up the assessment
process and to be able to anticipate risks of falls or deterioration of muscle health.

The G-STRIDE solution also can estimate the total travelled distance (TTD), a parame-
ter quite relevant and significant. This parameter is considered of interest as it is correlated
with the exhaustion level of a person while walking, especially in elderly [29,41]. The total
travelled distance in a test has relevance at large runs of at least 30 min [28], something
that cannot be done in clinical spaces or under a direct doctor consultation. Accuracy
in TTD for foot-mounted INS-based estimations has been reported to be below 1.5% by
previous studies [13,25,27].

4.2. The Patients

Based on our results we suggest that older adults without falls had a high level of
physical activity, whereas almost 50% of fallers were sedentary. This suggests that gait
pattern has a strong relationship with the physical condition and muscle status. Therefore,
when identifying people at potential risk of falling, one aspect to focus on is exercise and
physical activity to improve muscle mass and muscle performance [8]. In this sense, Jagos
et al. [42] found that patients with neurological conditions provided more detectable strides
than the control group, so patients had to perform more strides to cross the same distance
than healthy subjects. This may increase fatigue, muscle exhaustion and thus the risk of
falls.
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We found that the group of fallers were older, as described before [37]. Aging is
associated with many fall risk factors and significantly linked to frailty and sarcopenia that
have consequences as falls, functional decline, and functional disability [43].

Cognitive functions, mainly executive functions, are related to gait pattern, coordina-
tion, and balance. They can explain motor syndrome associated with mild cognitive im-
pairment and dementia as described by other authors [40,44,45]. Recently Mulas et al. [46]
published the results of gait assessment in Italian cognitive impaired older adults using
wearable inertial sensors finding a significant reduction of speed in these patients and other
changes in gait parameters.

Regarding functional parameters we found differences between adults with and
without falls as it is described in literature [33] but interestingly there are differences in
G-STRIDE parameters that allows the device to detect those patients at high risk of falls.

There is good correlation between functional tests and device parameters. Some other
authors have compared clinical tests with accelerometry, although they use only TUG to
compare with [47].

4.3. Pre-Frailty and Frailty Criteria

Additionally, we have found differences in G-STRIDE parameters according to frailty
status, which means it is possible to identify patients with pre-frailty and frailty criteria by
using the G-STRIDE device. Therefore, clinicians can intervene in order to prevent falls.

A frailty prevalence study [48] observed differences in the pattern and variability of
all elderly walking. Frail individuals had a more significant number of shorter walking
sessions and less variable in walking bout duration than non-frail older adults. All these
features may be restricted to activities entailing short walking bouts (i.e., within the
home environment), and they may be unable to sustain prolonged bouts of walking [48].
Furthermore, as Ternero-Quiñones et al. [49] point out, frailty and the risk of falls are
significant predictors of autonomy in basic daily life activities.

Falls are a problem of enormous magnitude in the elderly population. Fast, reliable,
easy to use, and inexpensive instruments are needed to detect a risk of falls in older adults.
Our developed device facilitates assessing gait characteristics in the elderly population
with falls, increasing the number of parameters studied, the reliability of the results, and im-
proving the assessment in patients with cognitive impairment who do not collaborate. Also,
it reduces consultation times and avoids exposing patients to the hospital environment,
which is so important in pandemics.

The main contribution is the development of the algorithm from a pilot sample of
clinically older adults and the verification of the accuracy of the algorithm by applying it in
a validation set. Another strength of this study is developing an inexpensive, easy-to-use
device with WIFI, Bluetooth and microSD. However, there are certain limitations: the
sample size is small, so it is necessary to confirm results with a more significant sample.
We did not consider the effect of sex on the results: there are differences between groups
(54.5% females in fallers and 60% in non-fallers). All non-fallers recruited in the study were
physically active and fit, so we could probably consider studying some older adults with
no falls less physically active to improve the external validity of our findings.

Additionally, it would be very interesting to confirm results in different pathologies
(mild cognitive impairment, dementia, or other neurological disorders) and different popu-
lations as pediatrics and to study the utility of the G-STRIDE device to develop personalized
treatments and training programs according to patients some main gait parameters.

5. Conclusions

Based on the present study’s findings, the G-STRIDE solution appears to be a suitable
tool to measure gait parameters in older adults with falls. It may replace conventional
tests used in clinical practice because it can efficiently speed up the assessment time,
analyzing walking behavior on different surfaces. The device is lightweight and com-
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fortable to wear. Further studies with a larger sample size are needed to be able to draw
definitive conclusions.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/
10.3390/s21134334/s1, Video S1: G-Stride video.
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