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The efficacy of allogeneic hematopoietic stem cell transplantation (HSCT) is challenged 
by acute and chronic graft-versus-host disease (aGVHD and cGVHD) and viral infections 
due to long-lasting immunodeficiency. Interleukin-7 (IL-7) is a cytokine essential for 
de novo T cell generation in thymus and peripheral T cell homeostasis. In this study, 
we investigated the impact of the single nucleotide polymorphism rs6897932 in the 
IL-7 receptor α-chain (IL-7Rα) which has previously been associated with several 
autoimmune diseases. We included 460 patients undergoing allogeneic HSCT after a 
myeloablative conditioning. Patients had a median age of 26.3 years (0.3–67.0 years), 
and 372 (80.9%) underwent HSCT for malignant diseases. Donors were matched sibling 
donors (n = 147), matched unrelated donors (n = 244) or mismatched unrelated donors 
(n =  69), and the stem cell source were either bone marrow (n  =  329) or peripheral 
blood (n  =  131). DNA from donors was genotyped for the IL-7Rα single nucleotide 
polymorphism (SNP) rs6897932 using an allele-specific primer extension assay (CC: 
n = 252, CT: n = 178, TT: n = 30). The donor T allele was associated with a higher 
risk of grades III–IV aGVHD (HR = 2.0, 95% CI = 1.1–3.8, P = 0.034) and with signifi-
cantly increased risk of extensive cGVHD (HR = 2.0, 95% CI = 1.1–3.6, P = 0.025) 
after adjustment for potential risk factors. In addition, the TT genotype was associated 
with a higher risk of cytomegalovirus (CMV) infection post-transplant (HR = 2.4, 95% 
CI = 1.2–4.3, P = 0.0068). Numbers of T cells were significantly higher on day +60 in 
patients receiving a rs6897932 TT graft (CD3+: 109% increase, P =  0.0096; CD4+: 

Abbreviations: HSCT, hematopoietic stem cell transplantation; GVHD, graft-versus-host disease; IL-7Rα, interleukin-7 
receptor α-chain; TBI, total body irradiation; ATG, anti-thymocyte globulin; CMV, cytomegalovirus; EBV, Epstein–Barr virus.
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inTrODUcTiOn

Allogeneic hematopoietic stem cell transplantation (HSCT) is a 
treatment of high-risk leukemia and a number of benign hema-
tological disorders. In the treatment of leukemia, the outcome 
of HSCT is based on an immune-mediated cytotoxic attack on 
the malignant cells and persisting immune surveillance, also 
known as the graft-versus-leukemia effect. However, the suc-
cess of HSCT is limited by long-lasting T cell dysfunction with 
risk of severe infections and development of graft-versus-host 
disease (GVHD), both contributing significantly to non-relapse 
mortality (1–3). More detailed insight into the mechanisms of 
T cell reconstitution and prognostic markers is essential to limit 
morbidity and mortality after HSCT.

Interleukin-7 (IL-7) is a hematopoietic cytokine essential 
for de novo T cell development in the thymus and homeostatic 
peripheral expansion of T cells (4–6). IL-7 signals through the 
IL-7 receptor (IL-7R), a heterodimer consisting of the common 
γ-chain (CD132) and the high-affinity IL-7R α-chain (IL-7Rα, 
CD127) (7). The IL-7Rα-chain is also used by Thymic Stromal 
Lymphopoetin, a cytokine promoting TH2 differentiation and 
Treg induction, and involved in allergic inflammation and auto-
immunity (8–12).

Interleukin-7 receptor α-chain is expressed on lymphocyte 
progenitors and on naïve and memory T cells, and its expression 
is strictly regulated during the different developmental stages 
of T cells with the highest expression on naïve T cells, a lower 
expression on memory T  cells, and downregulation of IL-7Rα 
upon development into effector T cells (6, 13). The critical role 
of the IL-7 pathway for human T cell homeostasis is illustrated 
by the fact that absence of a functioning IL-7Rα leads to severe 
combined immunodeficiency with a T-B + NK + phenotype (14), 
while somatic gain-of-function mutations in IL-7Rα may cause 
T- as well as B-cell acute lymphoblastic leukemia (15, 16).

Single nucleotide polymorphisms (SNPs) in the exons of the 
IL-7Rα, which give rise to non-conservative amino-acid substi-
tutions, have been associated with several chronic inflammatory 
diseases. The rs6897932 SNP in the transmembrane region of the 
IL-7Rα increases the risk of developing multiple sclerosis, ulcera-
tive colitis, and sarcoidosis (17–20). In allogeneic HSCT, donor 
genotypes of SNPs influencing the structure of the extracellular 
part of IL-7Rα have been associated with non-relapse mortality 
after allogeneic HSCT, in contrast to recipient genotypes that 
were not associated with outcomes (21–23).

In this study, we show that the donor genotype in IL-7Rα 
rs6897932 influences the rate of immune reconstitution after allo-
geneic HSCT with impact on infections as well as acute GVHD 
(aGVHD) and chronic GVHD (cGVHD).

MaTerials anD MeThODs

Patient Population
We retrospectively studied patients undergoing allogeneic trans-
plantation at the national HSCT center at Copenhagen University 
Hospital Rigshospitalet, Denmark, from 2004 to 2014. Inclusion 
criteria were first allogeneic HSCT, myeloablative conditioning 
(24), a matched sibling donor or an unrelated donor, and the use 
of bone marrow or peripheral blood as stem cell source.

Five-hundred twelve patients fulfilled the inclusion criteria. 
Deposited donor blood samples were available for 471 of these, 
and a donor SNP could be assigned for 460 patients (89.8%), 
which were all included in the study. The included patients did 
not differ significantly from non-participants in terms of age, 
diagnosis, donor, conditioning regimen, graft type, cell dose/
kilogram, pre-transplant Karnofsky score, sex-mismatch, or 
cytomegalovirus (CMV) antibody status.

The study protocol was approved by the ethics committee 
of the Capital Region of Denmark (#H-15006001), and written 
informed consent was obtained from all patients and/or their 
legal guardians.

Patient characteristics
The study included 153 children and 307 adults with a median 
age of 26.3  years (range 0.3–63.0  years). Diagnosis was acute 
myeloid leukemia (n  =  136), acute lymphoblastic leukemia 
(n = 118), myelodysplastic syndrome (n = 51), chronic myeloid 
leukemia (n = 39), other malignancies (n = 28), or benign dis-
eases (n = 88, including 46 severe aplastic anemia and 24 primary 
immunodeficiencies). Donors were either fully human leukocyte 
antigen-A, -B, -C, -DR, and -DQ allele-matched sibling donors 
(n  =  147), matched unrelated donors (10/10 match, n  =  244), 
or mismatched unrelated donors (9/10 or 8/10 match, n = 69). 
Bone marrow (n =  329) or G-CFS mobilized peripheral blood 
stem cells (n = 131) were used as stem cell source, and allografts 
were T cell replete. Conditioning regimens consisted of total body 
irradiation (TBI) plus cyclophosphamide or etoposide (n = 293), 
cyclophosphamide plus busulphane (n  =  107), or other types 

64% increase, P = 0.038; CD8+: 133% increase, P = 0.011). Donor heterozygosity for 
the T allele was associated with inferior overall survival (HR = 1.7, 95% CI = 1.2–2.3, 
P = 0.0027) and increased treatment-related mortality (HR = 2.3, 95% CI = 1.3–4.0, 
P = 0.0047), but was not associated with the risk of relapse (P = 0.35). In conclusion, 
the IL-7Rα rs6897932 genotype of the donor is predictive of aGVHD and cGVHD, CMV 
infection, and mortality following HSCT. These findings indicate that IL-7Rα SNP typing 
of donors may optimize donor selection and facilitate individualization of treatment in 
order to limit treatment-related complications.

Keywords: interleukin-7 receptor, single nucleotide polymorphisms, allogeneic hematopoietic stem cell 
transplantation, graft-versus-host disease, T cell reconstitution, cytomegalovirus infection
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of chemotherapy-based conditioning (n  =  60). Conditioning 
included anti-thymocyte globulin (ATG) in 179 patients trans-
planted with an unrelated donor. GVHD prophylaxis consisted 
of Cyclosporine A plus methotrexate for 90% of patients. All 
patients were monitored weekly by PCR for viral infections (reac-
tivation or primary infection) with CMV and Epstein–Barr virus 
(EBV) until day +90 post-HSCT and subsequently every second 
week. In case of increasing viral load, pre-emptive treatment 
with anti-viral medication [(Val)ganciclovir for CMV infection 
and Rituximab for EBV infection] was commenced along with 
tapering of immunosuppression.

Detection of il-7rα snPs
Blood from donors were collected before HSCT and stored 
at −20°C. Genomic DNA extraction was performed using 
Maxwell™ 16 Blood DNA Purification Kit (Promega Biotech AB, 
Nacka, Sweden) as described by the manufacturer.

DNA was genotyped for rs6897932 using a previously described 
multiplex bead-based assay (25). In brief, allele-specific prim-
ers were labeled in a primer extension using polymerase chain 
reaction-amplified SNP-sites as their target regions. The labeled 
primers were then hybridized to MicroPlex-xTAG beadsets for 
detection and counting on the Luminex platform (Luminex 
Corporation, Austin, TX, USA). We also included primers for 
the sex-specific amelogenin-gene (“AMELX” and “AMELY,” 
respectively) to be able to define the sex of the donor as a quality 
control (26).

All donor samples were blinded to the technicians perform-
ing the analyzes. The IL-7Rα SNP calling rates were 99.4%, and 
10% of samples were genotyped twice without discordance. Eight 
samples were excluded due to mismatch between sex according 
to sex determined by the amelogenin-gene and known donor sex.

immunological Parameters
Absolute lymphocyte counts were measured as part of the clinical 
routine by particle counting using Sysmex XN flow cytometry. 
Total immunoglobulins (IgM, IgG, and IgA) were measured with 
turbidimetry using Cobas 8000, module c502.

T and B cells were counted 12 months after HSCT, and in addi-
tion measured after 1, 2, 3, and 6 months in patients undergoing 
HSCT from 2008 to 2014 (n = 283, 62%). Peripheral blood sam-
ples were analyzed directly in a single-platform no-lyse-no-wash 
flow cytometry procedure. EDTA-anti-coagulated blood were 
incubated in Trucount tubes (Becton, Dickinson & Company, 
Albertslund, Denmark) for quantification of lymphocyte subsets, 
and a panel of monoclonal antibodies (CD3-PerCP, CD3-FITC, 
CD4-FITC, CD8-PE, CD45-PerCP, and CD19-PE, all from BD) 
on a FC500 flow cytometer (Beckman Coulter, Copenhagen, 
Denmark). Lymphocytes were gated based on forward scatter and 
side scatter characteristics. Lymphocyte subsets were identified as 
CD3+ T cells, CD4+ T cells, CD8+ T cells, and CD45+ CD19+ 
B cells. The laboratory participates in the quality assurance pro-
gram by the National External Quality Assessment Site (NEQAS).

statistical analysis
Kaplan–Meier estimates with log-rank tests were applied as an 
initial non-parametric analysis of the risk of complications and 

mortality. Next, a cause-specific Cox regression model was used 
to estimate the risk of aGVHD, cGVHD, viral reactivation, and 
time to lymphocyte recovery. Overall survival was analyzed 
further using Cox regression, while treatment-related mortality 
(TRM) and relapse were estimated using Fine–Gray competing 
risk regression model. For all analyzes, transplant-related char-
acteristics that are main risk factors for the specific transplant-
related complications were included in the multivariable model 
for this outcome as indicated under results.

Linear regression analyzes were used to analyze asso-
ciations with cell counts and immunoglobulin levels after 1 year. 
Longitudinal analysis of T  cell counts were performed with a 
linear mixed model with random slope over time since transplan-
tation and random intercept by patient for measurements from all 
patients without truncation due to death, relapse, retransplanta-
tion, or donor lymphocyte infusion within the first 360 days. All 
cell counts were log10-transformed; and measurements equal 
to 0 (3.2%) were changed to 0.005  ×  109/L corresponding to 
one half of the minimum value of the measurements. For the 
multivariable analysis, all potential co-variables were included in 
the model and analyzed with backwards elimination. The final 
model included recipient age, stem cell source, ATG, and the 
IL-7Rα genotype. In an additional backwards elimination model, 
aGVHD and cGVHD were included as time-dependent variables 
and remained significant together with recipient age, stem cell 
source, ATG, and the IL-7Rα genotypes.

To confirm these results regarding T cell counts in a model 
including patients, who experienced death, relapse, retransplan-
tation, or donor lymphocyte infusion within the first 360 days, 
we performed a pattern mixture model including all patients and 
with truncation at time of the event. This model analyzed the 
cell counts in each stratum (defined by time of event/truncation) 
in turn using a standard linear mixed model. The mixed model 
contained a random intercept by patient and, whenever feasible 
due to enough data in a stratum, a random slope by time since 
transplantation. The IL-7Rα genotypes were compared as major 
allele homozygotes (CC) versus heterozygotes and minor allele 
homozygotes combined (CT/TT) due to limited data within each 
stratum in the minor allele homozygous patients. Missing and 
truncated were similarly distributed in the genotype groups.

A two-sided P-value <0.05 was considered statistically sig-
nificant. All statistical analyzes were performed using R statistical 
software version 3.2.3 (R Foundation for Statistical Computing, 
Vienna, Austria).

resUlTs

il-7rα genotypes and Transplantation 
characteristics
The frequencies of the rs6897932 genotype in donors [CC = 252 
(55.8%), CT = 178 (38.7%), and TT = 30 (6.5%)] corresponded 
to previously reported gene frequencies, and the distribution of 
genotypes met the criteria for Hardy–Weinberg equilibrium.

Table  1 shows the transplantation characteristics divided 
among the rs6897932 genotypes. No significant differences were 
found between patients in the three different groups.
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Table 1 | Transplantation characteristics by donor Interleukin-7 receptor α-chain genotype rs6897932.

characteristics cc (n = 252) cT (n = 178) TT (n = 30) P-value

age at transplantation (years), median (range)
Recipients 25.4 (0.4–63.0) 27.8 (0.3–60.0) 27.6 (0.9–50.6) 0.61
Donors 34.0 (2.8–71.6) 33.0 (1.1–59.5) 35.6 (16.1–60.8) 0.27
Disease at transplantation, no. of patients (%)
Acute myeoloid leukemia 78 (31%) 50 (28%) 8 (27%) 0.89
Acute lymphoblastic leukemia 62 (25%) 48 (27%) 8 (27%)
Other malignancies 65 (26%) 43 (24%) 10 (33%)
Benign disorders 47 (19%) 37 (21%) 4 (13%)
Donor type, no. (%)
HLA-identical. siblings 78 (31%) 57 (32%) 12 (40%) 0.81
HLA-matched unrelated donors 133 (53%) 97 (54%) 14 (47%)
HLA-mismatched unrelated donors 41 (16%) 24 (13%) 4 (13%)
stem cell source, no. (%)
Bone marrow stem cells 181 (72%) 130 (73%) 18 (60%) 0.34
Peripheral blood stem cells, G-CSF mobilized 71 (28%) 48 (27%) 12 (40%)
Total nucleated cell dose infused ×106/kg recipient wt, median 4 3.6 5 0.29
conditioning regimen, no. of patients (%)
TBI + CY or Etoposide 156 (62%) 116 (65%) 21 (70%) 0.61
Chemotherapy alone 96 (38%) 62 (35%) 9 (30%)
anti-thymocyte globulin as part of conditioning regimen, no. (%)
Yes 105 (42%) 65 (37%) 9 (30%) 0.34
No 147 (58%) 113 (63%) 21 (70%)
sex-mismatch (female donor to male recipient), no. (%)
Yes 37 (15%) 27 (15%) 7 (23%) 0.46
No 215 (85%) 151 (85%) 23 (77%)
cMV igg mismatch, no. (%)
Yes 91 (36%) 61 (34%) 10 (33%) 0.86
No 161 (64%) 117 (66%) 20 (67%)

4

Kielsen et al. Donor IL-7Rα SNPs in HSCT

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 109

Donor rs6897932 genotype and agVhD
251 patients (54.6%) developed aGVHD with onset at median 
day +24 (+6 to +106) post-HSCT; grades III–IV aGVHD were 
seen in 42 patients (9.1%). The risk of grades III–IV aGVHD 
was significantly increased in donors with one or two copies of 
the T allele in rs6897932 (12.5% for CT/TT versus 6.3% for CC, 
P = 0.023) (Figure 1; Table S1 in Supplementary Material). This 
was confirmed in a multivariable Cox regression after adjustment 
for recipient age, donor type (matched sibling donor/matched 
unrelated donor/mismatched unrelated donor), stem cell source, 
cell dose/kilogram, TBI-based conditioning, ATG, and sex-
mismatch (HR = 2.0, 95% CI = 1.1–3.8, P = 0.036 for TT/CT 
compared with the CC genotype).

Donor rs6897932 genotype and cgVhD
Extensive cGVHD occurred in 118 patients (25.7%) at median 
day +201 (+42 to +2,088), and this was significantly associated 
with donor rs6897932 genotype with a step-wise increased risk of 
cGVHD for each T allele (CC: 21.8%, CT: 27.0%, and TT: 50.0%, 
P = 0.0031) (Figure 2; Table S1 in Supplementary Material). The 
risk of extensive cGVHD was significantly increased for the TT 
versus CC genotype in a multivariable Cox regression adjusting 
for recipient age, donor type (matched sibling donor/matched 
unrelated donor/mismatched unrelated donor), stem cell source, 
cell dose/kilogram, TBI-based conditioning, ATG, and sex-
mismatch (HR = 2.0, 95% CI = 1.1–3.6, P = 0.025).

To address if the effect of the donor genotype on chronic GVHD 
was mediated by the increased risk of aGVHD, we included 

aGVHD in a Cox regression model also adjusting for recipient 
age, donor type, stem cell source, cell dose/kilogram, TBI-based 
conditioning, ATG, and sex-mismatch. In this modified model, 
the donor rs6897932 genotype remained an independent risk fac-
tor of extensive cGVHD (HR = 1.9, 95% CI = 1.0–3.5, P = 0.035).

Donor rs6897932 genotype and Viral 
infections
123 patients (26.7%) developed therapy-requiring CMV infection 
at median day +49 post-HSCT, and 34 patients (7.4%) developed 
therapy-requiring EBV infection at median day +57.

Donor rs6897932 TT genotype was associated with a higher 
occurrence of CMV infection compared with CC (CC: 23.8%, 
CT: 31.4%, and TT: 43.3%, P =  0.053) (Figure 3; Table S1 in 
Supplementary Material). The risk of CMV infection post-HSCT 
was significantly increased with HR = 2.3 (95% CI = 1.2–4.3, 
P  =  0.0083) for TT versus CC genotype in a multivariable 
Cox regression model adjusting for recipient age, donor type 
(matched sibling donor/matched unrelated donor/mismatched 
unrelated donor), stem cell source, cell dose, TBI-based condi-
tioning, ATG and CMV mismatch between donor and recipient 
(D−R+ or D+R−). No association with EBV infection was 
observed.

Donor rs6897932 genotype and early 
lymphocyte reconstitution
Lymphocyte recovery with >109 lymphocytes/L occurred in 
427 patients (92.8%) within the first year post-HSCT. There was 
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FigUre 1 | Incidence of acute graft-versus-host disease (aGVHD) following hematopoietic stem cell transplantation (HSCT) according to donor’s genotype in the 
Interleukin-7 receptor α-chain single nucleotide polymorphism rs6897932. (a) Relative frequency of aGVHD and (b) Kaplan–Meier estimates of aGVHD grades III–IV. (c–e) 
Organ staging of aGVHD. The P-value indicates the difference between donor genotype CT/TT and CC (genotype distribution: CC: n = 252, CT: n = 178, TT: n = 30).
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no association between donor rs6897932 genotype and time to 
lymphocyte recovery.

We further investigated the impact rs6897932 on recovery of T 
and B lymphocyte subsets within 1 year post-HSCT. Patients were 
excluded from the analysis in case of death, relapse, retransplan-
tation, or donor lymphocyte infusion from the date of the event.

First, we studied the impact on immune reconstitution in a 
linear mixed model only including patients, who did not experi-
ence an event within the first 360 days (n = 212). In an univariable 
model, the donor rs6897932 genotype TT was associated with sig-
nificantly increased CD3+, CD4+, and CD8+ T cells at day +60 
compared with the CC genotype (Figure 4). This was confirmed 
in the multivariable model, where the donor TT genotype was 

associated with an increased number of T  cell subsets (CD3+: 
109% increase, P  =  0.0096; CD4+: 64% increase, P  =  0.038; 
CD8+: 133% increase, P = 0.011) at day +60 compared with the 
CC genotype, after adjustment for age, stem cell source, and ATG 
(Table 2). These results were similar, when also adjusting for the 
immunosuppressive effect of aGVHD and cGVHD by including 
them as time-dependent co-variables in this model (P = 0.0079, 
P = 0.030, and P = 0.0096, respectively).

Next, we investigated the significance of IL-7Rα donor 
genotypes in a pattern mixture model with truncation due to 
death, relapse, retransplantation, or donor lymphocyte infusion 
to confirm the first results in a cohort including patients who 
experienced an event (n  =  268). At each time of follow-up, 
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FigUre 3 | Incidence of cytomegalovirus (CMV) infection following 
hematopoietic stem cell transplantation (HSCT) according to donor’s 
genotype in the Interleukin-7 receptor α-chain single nucleotide 
polymorphism rs6897932. Kaplan–Meier estimates of treatment-requiring 
CMV infection are shown. The P-value indicates the difference between 
donor genotype TT and CC (genotype distribution: CC: n = 252, CT: 
n = 178, TT: n = 30).

FigUre 2 | Incidence of chronic graft-versus-host disease (cGVHD) following hematopoietic stem cell transplantation (HSCT) according to donor’s genotype in the 
Interleukin-7 receptor α-chain single nucleotide polymorphism rs6897932. (a) Relative frequency of cGVHD and (b) Kaplan–Meier estimates of extensive cGVHD. 
The P-value indicates the difference between donor genotype TT and CC (genotype distribution: CC: n = 252, CT: n = 178, TT: n = 30).
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the expected change in median cell count were estimated and 
compared between the genotype groups. The two groups CT and 
TT were merged to be able to estimate all parameters, due to the 
limited number of donors with the TT genotype. In this model, 
no significant difference between cell counts for the rs6897932 
genotype was found at any time point, most likely due to the 
limited data in each strata. Notably, missing and truncated 
patients were similarly distributed in the two genotype-defined 
groups.

Donor rs6897932 genotype and  
late immunity
We next assessed the major immune parameters 1  year after 
HSCT. Measurements of T and B  cells were available in 233 
(72.6%) patients having no events before this time point. There 
was no difference in cell counts of any lymphocyte subsets 
according to the rs6897932 genotype in a linear regression model 
both before and after adjustment for age, stem cell source, and 
ATG (Figures 5A–D; Table 2).

We looked into the level of immunoglobulins to evaluate 
the functional interaction between T and B  cells. The donor 
rs6897932 TT genotype was associated with significantly lower 
levels of IgG and IgM compared to the CC genotype 1 year post-
HSCT (Figures  5E–G), although no difference was observed 
before transplantation. This finding remained significant for IgG 
in a multivariable model adjusting for age, stem cell source, and 
ATG (P  =  0.027). However, this decrease in immunoglobulin 
levels was also strongly associated with occurrence of aGVHD 
and cGVHD, suggesting that the immunosuppressive effect 
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FigUre 4 | Early immune reconstitution following hematopoietic stem cell transplantation (HSCT) according to donor’s genotype in the Interleukin-7 receptor 
α-chain single nucleotide polymorphism rs6897932. (a–c) Median CD3+, CD4+, and CD8+ T cell counts from time of transplantation to 3 months post-HSCT. The 
P-values indicate the difference between donor genotype TT and CC at the specific time point in a longitudinal linear mixed model (*P < 0.05, **P < 0.01) (genotype 
distribution: CC: n = 108, CT: n = 86, TT: n = 18).

Table 2 | Longitudinal T cell reconstitution by donor Interleukin-7 receptor α-chain genotype.

Univariable model [estimate (95% ci)] Multivariable model [estimate (95% ci)]

cc cT P-value (cT 
versus cc)

TT P-value (TT 
versus cc)

cc cT P-value (cT 
versus cc)

TT P-value 
(TT versus 

cc)

Day +30
CD3+ 1.0 0.90 (0.61–1.32) 0.59 1.37 (0.71–2.64) 0.34 1.0 0.94 (0.67–1.33) 0.75 1.04 (0.57–1.90) 0.89
CD4+ 1.0 0.97 (0.69–1.37) 0.85 1.68 (0.93–3.05) 0.088 1.0 1.03 (0.77–1.38) 0.86 1.27 (0.76–2.10) 0.36
CD8+ 1.0 0.91 (0.61–1.38) 0.67 1.19 (0.58–2.44) 0.63 1.0 0.95 (0.64–1.41) 0.79 0.96 (0.48–1.92) 0.92

Day +60
CD3+ 1.0 1.16 (0.81–1.67) 0.42 2.37 (1.29–4.35) 0.006 1.0 1.20 (0.86–1.67) 0.30 2.09 (1.20–3.66) 0.0097
CD4+ 1.0 1.08 (0.78–1.50) 0.63 1.94 (1.13–3.37) 0.017 1.0 1.13 (0.86–1.50) 0.38 1.64 (1.03–2.61) 0.038
CD8+ 1.0 1.24 (0.83–1.86) 0.29 2.53 (1.29–4.96) 0.007 1.0 1.26 (0.85–1.86) 0.24 2.33 (1.21–4.47) 0.011

Day +90
CD3+ 1.0 1.02 (0.73–1.44) 0.89 1.36 (0.70–2.64) 0.36 1.0 1.02 (0.74–1.39) 0.91 1.22 (0.66–2.27) 0.53
CD4+ 1.0 0.99 (0.74–1.34) 0.97 1.53 (0.85–2.73) 0.16 1.0 1.01 (0.78–1.30) 0.96 1.28 (0.77–2.15) 0.34
CD8+ 1.0 1.03 (0.71–1.51) 0.86 1.35 (0.64–2.83) 0.43 1.0 1.03 (0.71–1.48) 0.89 1.26 (0.61–2.59) 0.53

Day +180
CD3+ 1.0 1.00 (0.74–1.36) 0.99 0.94 (0.55–1.59) 0.81 1.0 0.99 (0.74–1.33) 0.95 0.86 (0.52–1.43) 0.56
CD4+ 1.0 0.98 (0.75–1.28) 0.86 1.13 (0.71–1.80) 0.61 1.0 0.97 (0.76–1.23) 0.80 1.01 (0.66–1.53) 0.97
CD8+ 1.0 0.94 (0.66–1.35) 0.74 0.80 (0.43–1.49) 0.48 1.0 0.93 (0.66–1.33) 0.71 0.76 (0.41–1.40) 0.38

Day +360
CD3+ 1.0 0.97 (0.72–1.31) 0.83 0.93 (0.53–1.63) 0.79 1.0 0.94 (0.71–1.24) 0.67 0.91 (0.54–1.55) 0.74
CD4+ 1.0 0.92 (0.67–1.25) 0.59 1.04 (0.58–1.86) 0.90 1.0 0.89 (0.68–1.16) 0.38 0.98 (0.59–1.63) 0.95
CD8+ 1.0 0.98 (0.69–1.39) 0.90 0.87 (0.45–1.66) 0.67 1.0 0.95 (0.68–1.34) 0.77 0.86 (0.45–1.63) 0.64

Significant associations are written in bold.
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of rs6897932 on late immunity might be mediated through an 
increased allo-response.

Donor rs6897932 genotype and Mortality
We next investigated whether the rs6897932 donor genotype 
also influenced post-transplant mortality. 156 patients (33.9%) 
died within the follow-up time of 6.9 years (range: 1.9–12.8). Of 
patients transplanted for a malignant disease, 78 patients (21.0%) 
died of TRM and 81 patients (21.8%) relapsed.

Donor carriage of the rs6897932 CT genotype was associated 
with inferior overall survival in an univariable Cox regres-
sion model (HR  =  1.50, P  =  0.013) (Figure  6A; Table S1 in 
Supplementary Material) as well as in a multivariable model 
adjusting for recipient age, diagnosis, donor type, stem cell source, 
TBI-based conditioning, and ATG (HR = 1.7 for CT versus CC 
genotype, 95% CI = 1.2–2.3, P = 0.0027).

In a competing risk model, donor rs6897932 CT genotype was 
associated with increased TRM in a univariable model (cumula-
tive incidence estimates: CC = 14.3%, CT = 35.0, TT = 19.6%, 
P = 0.00022 for CT versus CC genotype), but not with the risk 
of relapse (P = 0.35) (Figures 6B,C; Table S1 in Supplementary 

Material). The significant association with TRM was confirmed 
in a multivariable competing risk model adjusted for recipient 
age, donor type, stem cell source, TBI-based conditioning, and 
ATG (HR  =  2.3, 95% CI  =  1.3–4.0, P  =  0.0047 for CT versus 
CC). We were not able to demonstrate a significant effect of TT 
homozygosity on TRM most likely reflecting the low prevalence 
of this genotype.

DiscUssiOn

Despite the marked improvements during the recent years, 
allogeneic HSCT is still challenged by severe treatment-related 
complications (27). Both aGVHD and cGVHD cause significant 
morbidity and mortality after HSCT, and the long-term immu-
nosuppressive treatment of these complications may have limited 
efficacy although still hampering the immune responses toward 
infections and the remaining leukemic cells (28). Thus, identifica-
tion of risk factors for development of alloreactivity and immune 
dysfunction may be an important step toward a more effective 
risk stratification to prevent these complications.

Our data show that donor rs6897932 TT genotype in the 
IL-7Rα is associated with increased risk of both aGVHD and 

FigUre 5 | Immunity at 1 year post-hematopoietic stem cell transplantation according to donor’s genotype in the Interleukin-7 receptor α-chain single nucleotide 
polymorphism rs6897932. (a–D) Total counts of CD3+, CD8+, and CD4+ T cells and CD19+ B cells. (e–g) Plasma levels of immunoglobulins (median plus 
quartiles). The P-values indicate the difference between donor genotype TT and CC (*P < 0.05) (genotype distribution: CC: n = 128, CT: n = 90, TT: n = 15).
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cGVHD, CMV infection, and faster reconstitution of T  cells. 
These results indicate that genotyping of rs6897932 could help 
to individualize conditioning regimens and GVHD prophylaxis, 
or potentially be included as a supplementary criteria for donor 
selection along with HLA-typing. As alloreactivity and the graft-
versus-leukemia effect are often closely associated (27), it is of 
particular interest that the impact of the rs6897932 genotype is 
restricted to treatment-related complications with no significant 
impact on relapse.

The rs6897932 SNP has been studied previously in low-
powered or heterogeneous multicenter studies with conflicting 
results concerning aGVHD and mortality (21–23, 29, 30). A 
major strength of the present study is the large number of HSCT 
patients studied within a single institution with an ethnically 
homogeneous population and a uniform registration of com-
plications. However, in comparison with genetic studies linking 
candidate SNPs to development of disease in general, our cohort 
is relatively small and results should be taken with caution, espe-
cially considering the low frequency of the risk genotype.

Interleukin-7 is a cytokine with effects on both peripheral 
expansion of T cells and thymic T cell production that is known 
to decline with age (31, 32). Accordingly, we found it important to 
address age-related differences in the impact of the IL-7Rα SNP. 
In an age-stratified analysis, we found similar associations with 
clinical outcomes and T cell reconstitution in adult and pediatric 
patients suggesting that the effects of the genotype were inde-
pendent on age-related changes in thymic function. In line with 
this, the IL-7Rα SNP appeared to affect T cell numbers at an early 
stage before day 100 where thymic output in the form of T cell 
receptor excision circles cannot be detected (33–35), suggesting 

that rs6897932 is mainly affecting the peripheral expansion of 
T cells of importance for both children and adults in the early 
post-transplant period.

The biological background for the impact of rs6897932 on 
immune dysregulation in allo- and autoimmunity has been 
addressed previously. Studies in conditions with elevated IL-7 
levels, due to lymphopenia or pharmacologic administration 
of IL-7, indicate that IL-7 in high concentrations may enhance 
the proliferative responses even to weak self-antigens (36–38). 
Therefore, it is likely that IL-7 may also drive peripheral expan-
sion of naïve alloreactive T cell clones early after HSCT, where 
IL-7 levels are highly increased (39–41). Furthermore, recent 
studies suggest that IL-7 specifically enhances the proliferation 
of pro-inflammatory T cell subsets (42, 43) and reduce the func-
tional capacity of regulatory T cells to suppress proliferation and 
cytokine production (44). In line with this, elevated IL-7 levels 
are associated with development of aGVHD after myeloablative 
HSCT and is increased in autoimmune diseases (39–41, 45).

The mechanism by which rs6897932 impacts outcome of 
HSCT is most likely related to an altered degree of binding of 
IL-7 to soluble IL-7R (sIL-7R). The T allele in rs6897932 causes 
an amino-acid substitution in the transmembrane region of the 
IL-7Rα gene which reduces alternative splicing of this domain. 
This process results in increased expression of membrane-bound 
IL-7R and decreased generation of sIL-7R (46, 47). Since sIL-7R 
acts as an inhibitor of IL-7 signaling in vitro (48), rs6897932 may 
affect IL-7 activity not only by diminishing sIL-7R levels, but also 
through increased expression of membrane-bound IL-7Rα.

Several lines of evidence suggest that the T allele of rs6897932 
increases IL-7 activity. First, the T allele is associated with faster 

FigUre 6 | Mortality following hematopoietic stem cell transplantation (HSCT) according to donor’s genotype in the Interleukin-7 receptor α-chain single nucleotide 
polymorphism rs6897932. (a) Overall survival, (b) treatment-related mortality (TRM), and (c) relapse frequency. Overall survival is estimated by Kaplan–Meier, while 
TRM and relapse are estimated by a Fine–Gray competing risk model. The P-values indicate the difference between donor genotype CT and CC (genotype 
distribution: CC: n = 252, CT: n = 178, TT: n = 30).
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