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Combination antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV)

replication and improves immune function, but is unable to eradicate the virus. Therefore,

development of an HIV cure has become one of the main priorities of the HIV research

field. The main obstacle for an HIV cure is the formation of latent viral reservoirs, where

the virus is able to “hide” despite decades of therapy, just to reignite active replication

once therapy is stopped. Revealing HIV hiding places is thus central to HIV cure research,

but the absence of markers of these reservoir cells greatly complicates the search for a

cure. Identification of one or several marker(s) of latently infected cells would represent

a significant step forward toward a better description of the cell types involved and

improved understanding of HIV latency. Moreover, it could provide a “handle” for selective

therapeutic targeting of the reservoirs. A number of cellular markers of HIV reservoir

have recently been proposed, including immune checkpoint molecules, CD2, and CD30.

CD32a is perhaps the most promising of HIV reservoir markers as it is reported to

be associated with a very prominent enrichment in HIV DNA, although this finding has

been challenged. In this review, we provide an update on the current knowledge about

HIV reservoir markers. We specifically highlight studies that characterized markers of

persistently infected cells in the lymphoid tissues.

Keywords: HIV, biomarker, viral reservoirs, HIV latent reservoir, HIV persistence

INTRODUCTION

Antiretroviral therapy (ART) allows the clinical management of the vast majority of human
immunodeficiency virus (HIV) infected individuals, resulting in the prevention of AIDS and in the
drastic reduction of the virus transmission risk. Unfortunately, ART is not curative. Interruption of
therapy almost invariably leads to a quick viral rebound to pre-ART levels (1–6). Moreover, chronic
immune activation and inflammation despite ART contribute to the excessive risk of non-AIDS
events in ART-treated individuals (7). The etiology of persistent immune activation in the context
of successful ART is considered multifactorial and involves microbial translocation, co-infections,
metabolic disorders, regulatory T cell (Treg) deficiency, and decreased thymic function (8–11).

Presence of latent HIV reservoirs forms the major obstacle to an HIV cure. There is currently
no consensus definition of the viral reservoirs due to their heterogeneous and dynamic nature.
Viral reservoirs are commonly defined as cell types or anatomical sites that support the long-term
persistence of replication-competent virus (12–14). This definition limits the HIV reservoirs to
proviruses capable of triggering viral rebound after ART interruption (15). However, there is
evidence that some defective proviruses that cannot reignite infection may still elicit immune
activation through the production of viral proteins or novel antigens and thus participate in residual
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HIV pathogenesis (16–19). The eradication of this fraction of
the HIV reservoir should therefore also be considered in the
context of a durable cure. This concept led to extension of the
HIV reservoir definition to all infected cells (20–22).

The definition of the HIV latent reservoir was initially
restricted to transcriptionally silent proviruses (12). However,
HIV post-integration latency is a multifactorial phenomenon
controlled by mechanisms that operate not only at the
transcriptional but also posttranscriptional levels (e.g., splicing
and nuclear export of HIV RNA, translation, viral particle
assembly, and maturation) (23, 24). These multiple blocks
to virus production (25, 26) explain why subsets of latently
infected cells in individuals on long-term ART can express
HIV RNA and proteins (27–29). Such latently infected but
transcription-competent cells have been defined as active HIV
reservoirs (30–32). HIV latency has thus to be seen as a
continuum with blocks to productive infection at different
stages of the viral replication cycle in different populations of
latently infected cells (33, 34). It has therefore been suggested
to avoid the word “latent” when describing these cellular HIV
reservoirs (22), and the term “leaky latency” has been proposed
(Conference on Retroviruses and Opportunistic Infections 2015).
However, it might be more practical to use a wider definition
of HIV latency, integrating all the transcriptional and post-
transcriptional blocks to virus production (34). Interestingly,
those blocks are not “frozen” but can evolve over time. For
instance, DNA methylation of the HIV promoter progressively
increases during ART, possibly strengthening HIV latency (35).
HIV reservoir expression also leads to clearance of infected cells
due to immune surveillance or viral cytotoxicity, as suggested
by a recent longitudinal HIV sequencing study (36). Prolonged
ART is consequently associated with enrichment for proviral
sequences that exhibit multiple features of deeper latency, such
as positioning of the provirus in intergenic regions, in opposite
orientation to host genes, and in either proximity to or increased
distance from host transcription start sites and accessible
chromatin (37).

In summary, a complex interplay of viral and host factors is
continuously reshaping the HIV reservoirs. Moreover, this likely
varies in different tissues, which are characterized by different
anatomic properties and enriched for specific CD4+ T-cell
subsets. It is therefore not surprising that mechanisms underlying
HIV latency might differ between the peripheral blood and the
tissues, as recently proposed (38). Viral and host markers of HIV
reservoirs have been the focus of two recent reviews (39, 40).
Here, we provide an update on some recent developments in the
quest to distinguish the HIV reservoir cells from the plethora of
cells in blood and tissues of an infected individual.

HETEROGENEOUS NATURE OF HIV
RESERVOIRS

Understanding the cell types and anatomical sites that harbor
latent HIV proviruses is essential for the design of therapeutic
strategies to eradicate HIV from an infected individual. The
developmental profile of a memory T cell has been increasingly

well conceptualized, and is currently best characterized as a
linear program during which highly immature, long-lasting
memory T cells progressively transition toward more mature,
differentiated and short-lived effector-memory cells (41, 42).
HIV can persist in stem cell-like memory (TSCM), central
(TCM), transitional (TTM), and effector (TEM) memory CD4+

T cells, in addition to naïve (TN) CD4+ T cells (43–47).
Although the frequency of HIV-infected cells is lower in
TN compared to TCM, Zerbato et al. demonstrated that TN

harbor a large inducible reservoir of replication-competent HIV,
suggesting that TN cells may constitute an important HIV
reservoir (48). Confirming these results, Venanzi Rullo et al.
recently reported a large proportion of intact proviruses in
TN from two ART-treated subjects (49). Hiener et al. showed
that, among memory CD4+ T cells, TEM contain the larger
proportion of intact HIV genomes (50). These studies indicate
that the advent of improved culture- or PCR-based assays to
measure the different reservoirs does seriously challenge the
dogma that resting CD4+ memory T cells constitute the main
HIV reservoir.

T cells can also be categorized according to functional
properties, defined by specific antimicrobial properties or
distinctive cytokine secretion patterns. Th1, Th2, Th17, Th9,
regulatory T cell (Treg), and follicular T helper cell (Tfh) T-
cell subpopulations have been identified based on functional
polarization (42). Functionally polarized CD4+ T cells can
support HIV persistence by distinct mechanisms related to
their discrete functional profiles. Functional commitment toward
a Th1 profile is possible during all stages of memory
CD4+ T-cell development including the most immature and
most durable subpopulations (51). Interestingly, proliferation
of HIV-infected Th1 cells can play a crucial role in HIV
persistence by maintaining the number of cells that harbor
intact, replication-competent HIV (52). Recent evidence also
highlights the contribution of long-lived Th17 cells to HIV
persistence during ART, particularly in the gut (53). Th1/17
cells have been understood as a long-lasting subpopulation
that may be somewhat more mature than Th17 cells, but
retain the developmental program of long-lasting precursor
cells for effector lymphocytes (54). CD4+ T cells enriched for
Th1/17 polarization harbor high levels of HIV DNA in ART
treated individuals and contribute disproportionately to the viral
reservoirs that remain stable over many years of ART (45, 55).

Besides the gut and the lymph nodes (LN) that constitute
major anatomical sites for HIV persistence, multiple other tissues
and organs harbor HIV provirus in ART-suppressed individuals
(56). Besides T cells, other cell types such as monocytes,
astrocytes and tissue resident macrophages (splenic, alveolar,
and microglia) may potentially serve as stable viral reservoirs in
the tissues (20, 57–63). Given the difficulties in accessing tissue
biopsies from humans, animal models such as humanized mouse
models or SIV-infected non-human primate (NHP) models have
been very helpful for examining HIV dynamics. These models
have been used to show the persistence of HIV reservoirs
in various tissues of HIV- or SIV-suppressed animals, with
new tools allowing for demonstrating the intactness of these
reservoirs (64–66).
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Altogether, these studies highlight the highly heterogeneous
nature of HIV reservoirs and underline the urgent need for
identification of marker(s) of latently infected cells. Suchmarkers
could provide a “handle” to further dissect the complex and
dynamic nature of the reservoirs and might even enable their
selective targeting for eradication (67, 68). So far, no cellular
marker has been discovered that is capable of identifying all
HIV reservoirs. However, several HIV reservoir markers have
recently been proposed and their further characterization could
represent a significant step toward a better understanding of the
HIV reservoirs.

IMMUNE CHECKPOINT MOLECULES

In chronic viral infections, high antigenic loads constantly
stimulate T cells, resulting in progressive loss of function
termed T-cell exhaustion (69, 70). During this period, T cells
demonstrate increased expression of some inhibitory receptors,
known as immune checkpoint molecules (ICs), which increase
the threshold for activation, leading to suppressed immune
responses. Such ICs include programmed cell death-1 (PD-
1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4),
lymphocyte activation gene 3 (LAG-3), T cell immunoglobulin,
and ITIM domain (TIGIT), T cell immunoglobulin and mucin
3 (TIM-3), CD160, and 2B4 (CD244). Fromentin et al. showed
that expression of PD-1, LAG-3, and TIGIT in CD4+ T cells
was positively associated with the frequency of cells harboring
integrated HIV DNA (71). More importantly, they observed that
cells expressing these markers were enriched for HIV infection in
several memory CD4+ T-cell subsets during ART. The majority
of inducible HIV proviruses were found in memory CD4+ T cells
that expressed at least one of these markers (71). More recently,
the same group demonstrated a modest enrichment for HIV
capsid (CA-p24)-producing cells (5.4-fold) in ART-suppressed
individuals-derived cells displaying a CD45RA−, α4β1+, TIGIT+

phenotype (72). In line with these studies, Fromentin et al.
recently reported that ex vivo HIV reactivation from latency
is enhanced by a PD-1 blockade in CD4+ T cells from ART-
suppressed individuals (73), although another group could not
demonstrate such effect (74). In addition, Hurst et al. found that
the expression of ICs measured prior to ART predicts time to
viral rebound following ART interruption, confirming that T-
cell exhaustion markers can identify latently infected cells with
a higher tendency to viral transcription (75).

LN PD-1+/Tfh cells, as well as their circulating counterpart
in peripheral blood (CXCR3+CD4+), represent a major cellular
location for persistent virus in untreated and treated HIV-
infected individuals, as demonstrated by the Perreau group (76–
78). Notably, Tfh are localized to the germinal centers within
the LN B-cell follicles, which are an immunologically privileged
site with restricted CTL function (79). This may explain why
PD-1+/Tfh cells are enriched in replication-competent HIV
as compared to any other PD-1 negative memory CD4+ T-
cell population isolated from blood or LN (77). However,
intracellular concentrations of a number of antiretroviral drugs
have been shown to be reduced in LN compared to peripheral

blood (80–82), providing another possible reason for the
persistence of infectious virus in the LNs. Interestingly, McGary
et al. reported that CTLA-4+PD-1− memory CD4+ T cells
significantly contribute to SIV persistence in ART-treated rhesus
macaques (83). CTLA-4+PD-1− memory CD4+ T cells, a subset
comprised predominantly of Tregs, were shown to be enriched
for SIV DNA in several tissues and to contain replication-
competent and infectious virus. In contrast to PD-1+/Tfh cells,
SIV-enriched CTLA-4+PD-1− Treg cells localized outside the LN
B-cell follicle. Moreover, in HIV-infected individuals on ART,
CTLA-4+PD-1− memory CD4+ T cells harboring HIV DNA
also persisted outside the B-cell follicle and contributed to the
long-term latent viral reservoir (83).

Better definition of the parameters that dictate exhaustion
is promoting the development of methods that prevent
functionally inferior responses or “revitalize” them (84). IC
inhibitors are already currently used to treat malignancies. This
treatment would work for HIV infection in two ways: through
boosting HIV-specific CD8+ T-cell effector function and through
reactivating HIV expression from latency (85, 86). However, the
case reports and clinical trials investigating the use of IC blockers
have produced conflicting results (87, 88). Toxicity also appears
as an important concern (89).

CD2, CD30, AND CD20

Using an in vitro primary CD4+ T-cell model for HIV
post-integration latency (90), Iglesias-Ussel et al. studied the
expression profile of latently infected CD4+ T cells (91). Among
the markers identified in this study, CD2 was selected for further
analysis. Resting memory CD4+ CD2high T cells harbored higher
HIV DNA copy numbers compared with the other cell subsets,
although the fold enrichment was limited (5.7-fold). Iglesias-
Ussel et al. further showed that CD4+ CD2high T cells could
be stimulated to express high levels of HIV RNA, although no
evidence was provided that infectious viruses could be produced
(91). In contrast to the other markers described in this review and
for which some tissue data is available, the relevance of CD2 still
has to be confirmed in lymphoid tissues.

CD30 is expressed in Hodgkin and other aggressive
lymphomas and on a small fraction of lymphocytes in healthy
individuals (92). CD30 expression can be triggered by infections
with several viruses, including human T-cell lymphotropic virus
and Epstein-Barr virus (92). It is known for more than 20 years
that triggering CD30 may play an important role in both HIV
replication and HIV-infected CD4+ T-cell death (93). More
recently, Hogan et al. demonstrated that CD30+CD4+ T cells
were significantly enriched for cell-associated HIV RNA but not
for HIV DNA in several individuals regardless of ART use (94).
CD30 expression and HIV transcriptional activity co-localized in
gut-associated lymphoid tissue from ART-treated or ART-naïve
individuals. Following ex vivo culture of peripheral blood cells
in the presence of brentuximab vedotin, an anti-CD30 antibody-
drug conjugate, they observed a significant reduction in total HIV
DNA. These data suggested that CD30 may be a relevant HIV
therapeutic target as it is not expressed on a vast majority of
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cells (93). Subsequently, the same group studied the impact of
3 doses of brentuximab vedotin therapy for Hodgkin lymphoma
on HIV persistence and immune phenotype in an individual on
long-term ART (95). An encouraging but transient reduction
of CD4+ T cells expressing CD30 was observed, accompanied
by reductions in CD4+ T-cell–associated HIV RNA, low-level
plasma viremia, and to lesser extent HIV DNA levels (95). The
reason for the lack of a sustained effect of brentuximab vedotin
on CD30-expressing T cells is currently unknown.

Very recently, Serra-Peinado et al. reported a higher
percentage of HIV RNA+ cells among cells expressing CD20
(96). CD20 is a known B-cell surface marker but is dimly
expressed on a small subpopulation of CD4+ T cells. Although
the contribution of CD20dimCD4+ T cells to the total pool of HIV
RNA+ cells was modest (median of 18.6% in ART-treated and
25.0% in viremic HIV-infected individuals), ex vivo treatment
of primary peripheral blood mononuclear cells (PBMCs) from
ART-suppressed individuals with the anti-CD20 monoclonal
antibody Rituximab appeared to reduce the pool of HIV RNA+

cells when combined with latency-reversing agents (96). Further
studies are needed to elucidate whether Rituximab treatment is
also capable of reducing the total or intact HIV DNA reservoir.

CD32a

CD32a, also known as Fc gamma receptor IIa (FcγIIa), is the low-
affinity receptor for the immunoglobulin G Fc fragment that is
highly expressed onmyeloid cells and expressed on a small subset
of T cells (97, 98). CD32a was recently proposed by Descours
et al. as a marker of HIV reservoir cells (99). Notably, CD32
has already been identified by an earlier study among several
surface markers overexpressed in latently infected vs. uninfected
CD4+ T cells in a primary CD4+ T-cell model for HIV latency
(91). In contrast to all the markers described above that are
associated with very limited HIV DNA enrichment, an extremely
high (∼1,000-fold) enrichment in HIV DNA was observed by
Descours et al. in CD4+ T cells with high CD32a expression as
compared to CD32−CD4+ T cells (99). They also demonstrated
an enrichment for replication-competent proviruses in these
cells, although not to a higher degree than the enrichment for
total HIV DNA. If confirmed, these findings would represent
a milestone in the efforts to develop a cure for HIV infection.
However, a number of subsequent reports questioned whether
CD32a would be a bona fide marker of the HIV latent reservoir
(100–105), which decreased the initial enthusiasm. Some studies
observed limited enrichment for HIV DNA in CD32+ cells in
some participants but not in others (101, 102). Other reports
could not demonstrate any enrichment for total HIV DNA or for
replication-competent proviruses in CD32+ cells (100, 103–105).

The key for this controversy likely resides in the technical
difficulty to obtain a sufficiently pure population of bona fide
CD32+CD4+ T cells. The frequency of CD32+ cells among
antigen-presenting cells (APCs) is much higher than among
CD4+ T cells. Therefore, even if the residual APC contamination
of CD4+ T cells is low in general, APCs will be disproportionally
overrepresented in the CD32+ fraction, as reported by several

groups (101, 103) and also observed in our initial attempts
to purify CD32+CD4+ cells (Figure 1A) (106). The excess of
residual non-T cells in the sorted CD32+ fraction can easily
obscure the enrichment for HIV DNA in CD32+CD4+ cells.
Alternatively, certain cell sorting strategies and/or settings might
result in the isolation of T-B cell doublets or conjugates instead
of bona fide CD32+CD4+ T cells, as reported by two groups
(105, 107). Because another CD32 isoform, CD32b, is highly
expressed on the surface of B cells, and consequently on T-B
cell doublets or conjugates, the latter cells may be preferentially
recognized during FACS sorting for CD32+CD4+ cells as most
anti-CD32 antibodies do not discriminate between the CD32a
and CD32b isoforms. The extracellular domains of these two
proteins are very similar, and no CD32a-specific antibody is
available yet. Depending on the sorting settings and/or antibody
titers, bona fide CD32+CD4+ T cells, which likely express less
CD32molecules per cell than T-B cell doublets/conjugates, might
be missed, unless specific efforts are made to thoroughly deplete
the CD32+ non-T cells.

To overcome these problems, we performed two consecutive
rounds of CD4+ T-cell negative selection by magnetic cell
sorting before we started with CD32+ cell isolation. This
sequential cell purification strategy could efficiently deplete
the vast majority of contaminating non-T cells, including
any T-B cell doublets, which allowed us to obtain a purified
population of CD32+CD4+ cells (Figure 1B) (106). Remarkably,
we demonstrated a progressive increase in HIVDNA enrichment
in CD32+CD4+ cells with further purification of these cells,
and in the purified population we measured a very prominent
enrichment for HIV DNA (average, 292-fold) (106), confirming
the results of Descours et al. (99). Interestingly, several groups
found that the majority of peripheral blood CD32+CD4+ T cells
express the activation marker HLA-DR (100–102, 106, 108, 109).
Although it has been shown previously that HIV can establish
latent infection in activated CD4+ T cells (110, 111) and that the
peripheral blood HIV DNA load is higher in activated compared
to resting cells in ART-treated individuals (112), the existence
of latently infected CD4+ cells that are activated, and therefore
relatively short-lived, suggests continuous replenishment of this
component of the reservoir by cellular proliferation (113). At
present, however, high HLA-DR expression on CD32+CD4+

cells should be interpreted with caution, as it cannot be
ruled out that the HLA-DR signal may partly originate from
the non-T cells within the contaminating CD32+ T-non-
T cell doublets or conjugates, as recently demonstrated by
Thornhill et al. (107).

Persistence of CD32+ cells has also been studied in tissues.
Abdel-Mohsen et al. showed that a high percentage of HIV-
expressing cells localized within the B-cell follicle co-express
CD32a, whereas CD32a single-positive cells were rarely observed
(100). These RNA in situ hybridization (ISH) experiments
showing the co-expression of CD32a RNA and HIV RNA in
lymphoid tissue support the notion that CD32a is associated
with transcriptionally active tissue reservoirs. Similar results were
recently obtained by Vásquez et al. in the gut tissue (114).
By using ISH-based methods, they demonstrated co-expression
of HIV and CD32a mRNA, with most of the CD3+CD32+
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FIGURE 1 | Presence of residual non-CD4+ T cells in the CD32+ cell fraction. (A) After one round of selection for CD4+ T cells, although the residual non-CD4+

T-cell contamination is low in general, the percentage of CD32+ cells among non-T cells is much higher than among CD4+ T cells. Therefore, after selection for

CD32-expressing cells, the majority of CD32+ cells will be non-T cells. (B) Two consecutive rounds of CD4+ T-cell selection result in much purer CD4+ T-cell

population, and the majority of CD4+ T cells is maintained even in the CD32+ fraction.

cells in the gut co-expressing HIV RNA. Moreover, Thornhill
et al. recently found that the T cells within the CD32+ T-
B cell doublets in the gut and tonsil tissues of ART-treated
individuals were associated with a Tfh phenotype (107). As
Tfh cells have been previously shown to harbor high levels of
HIV RNA and infectious virus in LN (77), this may provide
a clue why CD32+ cells are associated with HIV transcription
in tissues.

Two groups studied co-expression of CD32a and other
HIV reservoir markers in tissues. Noto et al. analyzed HIV
transcription in LN memory CD4+ T-cell populations sorted
for CD32a and PD-1 expression (108). The CD32+ and PD-
1+ CD4+ T-cell populations overlapped to a large extent and
CD32+PD-1+ cells were significantly enriched for HIV RNA
compared to CD32−PD-1−, CD32+PD-1−, and CD32−PD-1+

cells. In the LNs, CD32+ and PD-1+ CD4+ T cells expressed high
levels of the HIV co-receptors CCR5 and CXCR4, potentially
making these cells a preferential target for HIV infection, as
well as higher levels of activation markers, which can explain

why these cells are characterized by a high level of HIV
transcription (108). Hogan et al. sorted rectal biopsy cells
for the expression of CD32a and CD30 (94). The highest
HIV RNA and DNA levels from rectal tissue-derived cells
were measured in cells co-expressing CD30 and CD32. These
two studies demonstrate that different HIV reservoir markers
can be co-expressed on CD4+ T cells, raising the possibility
that there is some overlap in the reservoirs identified by
these markers.

Taken together, these studies suggest an association between
CD32a expression and active HIV transcription in tissues. In
contrast, in peripheral blood we found no enrichment for cell-
associated HIV RNA in CD32+CD4+ cells, and significantly
reduced HIV RNA/DNA ratios were measured in these cells
compared to CD32−CD4+ cells (106), indicating that HIV is
transcriptionally silent in most of the infected peripheral blood
CD32+ cells and suggesting that CD32a indeed marks latently
infected cells. These seemingly discrepant results might suggest
differences in the underlying mechanisms of persistence of
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HIV-infected CD32+ cells between blood and tissues. Residual
HIV replication in tissue compartments can be quite prominent
due to poor antiretroviral drug penetration (80–82, 115, 116)
and CD32a expression in CD4+ T cells is induced upon in
vitro HIV infection (29, 99, 100, 102). Therefore, in tissues,
CD32a could mark cells that were recently infected despite
ART. Alternatively, CD32a expression may be up-regulated
upon re-activation of HIV transcription in long-lived latently
infected cells in tissues, although the reverse association between
HIV transcription and CD32a expression in peripheral blood
makes this possibility less likely. To study the association
between CD32a expression and HIV transcription in tissues, it
will also be important to determine the relative contribution
of CD32b+ T-B cell doublets vs. bona fide CD32a+CD4+

T cells to the total pool of tissue CD32+ T cells, and to
which extent these two cell types are associated with active
HIV transcription vs. viral latency. Interestingly, Thornhill
et al. observed a positive correlation between the frequency
of Tfh cells in CD32+ T-B cell doublets and total HIV DNA
in the rectum (but not terminal ileum or PBMC) (107),
suggesting that these doublets might be associated with a
higher level of HIV infection in some sites. As B cells are
capable of transmission of infectious HIV to T cells via
CD21-complement interactions or DC-SIGN-mediated virion
capture (117, 118), some of the observed T-B cell doublets can
even be involved in residual B-to-T-cell HIV trans-infection
in tissues.

Despite the considerable interest triggered by the Descours
study (99), many questions with regard to the CD32a-HIV link
are still open. Mechanisms of CD32a expression in HIV-infected
cells remain to be investigated, as well as the role of CD32a
in HIV reservoir formation and/or persistence. Notably, the
contribution of CD32+ CD4+ T cells to the HIV reservoirs
seems to be highly variable from one HIV-infected individual
to the other, both in peripheral blood and in tissues (94, 99,
100, 106). This may restrict the efficiency of CD32a therapeutic
targeting for HIV reservoir eradication in some individuals.
In general, targeting of CD32a alone is not a feasible option
because this would deplete the majority of an individual’s
myeloid immune cells. However, advanced targeting strategies
(e.g., bi- and tri-specific antibodies) can be used to guarantee
high specificity of CD32+CD4+ cell targeting. Targeting
downstream CD32a signaling in CD4+ T cells could also be a
feasible alternative.

CONCLUSIONS

The identification of a marker of latently infected cells has
long been considered the “Holy Grail” of HIV cure programs
(67). Several CD4+ T-cell subsets have been shown to harbor
important HIV reservoirs, including resting memory CD4+ T
cells. However, this picture is getting more complex every day as
numerous other cell types were found to contribute to the HIV
reservoirs. Activated T cells, naïve T cells, Tregs, Tfh, and their
circulating counterpart, but also tissue macrophages, appear as
major sites of HIV persistence.

Although much progress has been made in recent years in
identifyingHIV reservoirmarkers, no single cell surfacemolecule
is currently able to mark all HIV-infected cells. However, some
of the putative markers, including CD32a, CD30, and ICs,
will likely play an important role in future studies aimed at
understanding and eradicating the HIV reservoirs. Although a
significant overlap was found in the expression of different HIV
reservoir markers, targeting several markers at the same time in a
“multicolor” approach may significantly increase the proportion
of the reservoir that is eradicated.
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