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Cycad biology, ecology, and horticul-
ture decisions are not supported by

adequate research, and experiments in
cycad physiology in particular have been
deficient. Our recent report on free sugar
content in a range of cycad taxa and tis-
sues sets the stage for developing contin-
ued carbohydrate research. Growth and
development of cycad pollen, mediation
of the herbivory traits of specialist polli-
nators, and support of expensive strobilus
behavioral traits are areas of cycad polli-
nation biology that would benefit from a
greater understanding of the role of car-
bohydrate relations.

Cycads represent the most threatened
group of plants worldwide.1 Global
research trends have been heavily
focused on disciplines such as taxonomy
and phylogeny, and research into cycad
physiology has not received adequate
attention.2 As a result, we studied vari-
ous aspects of free sugar content and
reported that fructose, glucose, and
sucrose were abundant in tissues from
species representing every described
cycad genera, and sugar content and
stoichiometry varied greatly among
organs.3 The importance of these carbo-
hydrates as forms of carbon storage,
components of signaling, or regulators
of cycad metabolism have not been
determined to date.

Cycads and insects have developed
sophisticated pollination mutualisms and
specialist antagonistic relationships. A
greater understanding of how non-struc-
tural carbohydrates influence these rela-
tionships may improve conservation
efforts for the many threatened cycad spe-
cies. Here we focus on pollination biology
and how the inclusion of carbohydrate

studies could aid in efforts to reach that
goal.

Pollen

Carbohydrates play critical roles during
pollen growth and development, then in
the final phase prior to dispersal carbohy-
drates change to prepare pollen for dis-
persal.4 Following dispersal and during
pollen storage, the various metabolites
comprising the carbohydrate pool change
in relative proportion, a behavior that is
understood as an adaptation for sustaining
pollen viability in time.5 Sucrose in partic-
ular may be of particular importance dur-
ing pollen storage, as variations among
species for pollen desiccation tolerance
have been linked to sucrose content.6

Sucrose may replace water to preserve
native protein structures and spacing
between phospholipids in the plasma-
membrane during dehydration.7 The role
of starch and sugars in pollen develop-
ment, dispersal, and maintenance of via-
bility has not been determined for any
member of the Cycadales, and is therefore
a focus of needed research.

Several authors have conducted robust
surveys and noted that starchy pollen
occurred disproportionately among ane-
mophilous species.8-10 Representatives
from the Cycadales were absent from these
surveys and this should be corrected, as
cycad pollination studies have only
recently illuminated the sophisticated pol-
lination syndromes that characterize the
threatened plant group. Although arthro-
pods were collected from reproductive
structures on various cycad taxa in the
past, the scientific community largely
ignored their potential role as pollinators
due to the established belief that all cycads
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were anemophilous.11 The pendulum
swung in the 1980s and 1990s when
extensive experimental evidence con-
firmed mutualisms between cycad species
and specialist insect pollinators.2,12,13

More recently, ambophily has been con-
firmed or proposed for several Cycas spe-
cies where wind has been shown to
augment insect pollination.14-17 Further-
more, variations in aggregation tendencies
and settling velocity have been reported
for pollen from various cycad species.14,15

This is an opportune time to add mem-
bers of the Cycadales to studies that have
linked the relationship of pollen carbohy-
drates to insect versus wind pollination
strategies.

Herbivory

The insect pollinators of cycads gather
on male cones, where the adults socialize,
mate, and use the post-dispersal male stro-
bilus tissue as larvae food (Fig. 1).2,13,14,18

The study of idioblasts within cycad spo-
rophyll tissues has illuminated intricacies
in how general tissue chemistry may

interact with pollinator feeding behaviors.
For Zamia furfuracea, these idioblasts
remained intact in the male sporophyll tis-
sue but appeared to release their contents
into female sporophyll tissue prior to
ovule receptivity.19,20 The authors con-
cluded that toxins remained sequestered
within the idioblasts for male tissue only,
such that the pollinators could feed on
parenchyma tissue around the idioblasts
or consume intact idioblasts which pro-
tected insect metabolism from the toxins
after consumption. Many but not all
cycad species studied in this context exhib-
ited similar idioblast traits.21 For example,
Cycas rumphii and Stangeria eriopus stro-
bili did not contain identifiable idioblasts.
In contrast,Macrozamia lucida andMicro-
cycas calocoma exhibited idioblast break-
down prior to pollination stage for both
male and female sporophyll tissues. The
interactions among carbohydrates,
nutrients, and toxins within cycad strobili
tissues in relation to these idioblasts may
prove to be of crucial importance for
developing a full understanding of how
pollinators feed on the plant’s reproduc-
tive tissues while enacting effectual

pollination. Conservationists in need of
improved knowledge of various pollina-
tion syndromes within the Cycadales will
require more studies within this context.

The majority of cycad pollinators
consume strobilus tissue, but direct con-
sumption of cycad pollen may occur for
some cycad pollinators.22,23 Cumulative
research on pollen digestion has not
progressed enough to discern generali-
ties from idiosyncracies.24 The addition
of cycads to studies that determine car-
bohydrate and nutritional quality of
pollen will greatly improve this line of
research whether the mutualisms repre-
sent ancient associations that pre-dated
angiosperms or examples where the con-
temporary mutualisms were recently
derived from an initial antagonistic
relationship.14,25,26

Strobilus Behavior

The reproductive structures of cycad
species exhibit thermogenesis and volatile
emissions at the time of pollination, traits
that mediate pollinator behavior and
maintain pollinator specificity.13,27,28

Research is accumulating in areas such as
modeling the plant behavior 29,30 and
parsing the influence of specific volatiles
on insect behavior.31,32 Enacting synchro-
nized thermogenesis and volatile biosyn-
thesis is an exceedingly expensive plant
behavior, and no studies have determined
the tissues of residence, quantities, and
stoichiometric relations of the carbohy-
drate reserves that are mobilized to fund
those activities.

Cycad ovules are large structures that
greatly exceed the size of their pollinators.
Droplets have been documented at the
micropyle location on cycad ovules, and
these droplets contain metabolites that
may provide a reward for pollinators.33

Studies that marked pollinators then used
deposition of the markers to track pollina-
tor behavior have confirmed that the pol-
len they vector is trapped by the ovule
droplets.23,25,34 This remarkable female
strobilus behavior represents a system that
would be interesting to study in relation
to specificity of pollinator attraction,
diversity of sugar rewards, and cycad phy-
logeny. Droplets may exhibit taxon-

Figure 1. The microlepidopteran Anatrachyntis sp. is a specialist pollinator of Cycas micronesica.
Left: microstrobilus tissue is tunneled and consumed by larvae (arrows) immediately after pollen
dispersal. Right: within days the entire microstrobilus is reduced to frass and pupation (arrow) her-
alds in a new generation of pollinators. The role of cycad sugars in mediating this mutualism is
unknown.
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specific carbohydrates that are suited to
attracting and nourishing specific special-
ist pollinators.

Conclusions

Our recent report of fructose, glucose,
and sucrose content in cycad tissues3 sets
the stage for designing continued research
on how non-structural carbohydrates are
involved in cycad pollination biology.
Moreover, cycad horticulturists routinely
harvest, store, and ship pollen prior to its
use for successful pollination. Improved
understanding of how carbohydrates and
other factors influence pollen viability and
longevity would improve protocols for arti-
ficial pollination.35 Finally, the risks associ-
ated with coextinctions are very real during
this phase of the Anthropocene, and species
with complex life history traits, such as
cycads, appear to be at greater risk for direct
involvement in coextinctions.36 An increase
in knowledge of how cycad carbohydrates
influence successful pollination relation-
ships may help reduce the risks of coextinc-
tions in these mutualisms that support
contemporary cycad biology.
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