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Many real networks can be best described by weighted networks with a diversity of interactions between nodes measured by the
weights of the edges. It is of great importance to improve the overall capacity of these real-world networks. In this paper, the traffic
capacity of weighted network is investigated based on three different node delivery capability schemes: the delivery capacity of each
node is constant in the first scheme while in the second and third schemes it is proportional to its node degree and node strength.
It is shown by simulations that the network transfer capacity depends strongly on the tunable parameter. And different tunable
parameter is suitable for different node delivery capability.

1. Introduction

The past few years have witnessed the emergence of interest
in the network topological structure since the seminal study
on small world networks by Watts and Strogatz [1] and
on scale-free networks by Barabási and Albert [2]. Lots of
biological, social, and communication systems can be viewed
as complex networks while nodes represent individuals
and edges represent the relationships between them. The
previous studies on networks have been primarily focused
on unweighted networks, edges between nodes are either
present or not, represented as binary states. However, the
gathering complete data of real networks display the variation
of the strength of the edges between nodes, providing a
more complete representation of real network structures.
The analyses of the mobile communication networks [3], the
scientific collaboration networks [4], the cellular metabolism
[5], the world-wide airport network [6], and the Internet [7]
have revealed that networks are not only specified by their
topology but also by the dynamics of weight (such as the
capacity and the intensity) taking place along the edges.

Lots ofmodels have been presented to describe those real-
world networks. The YJBT model [8] is a model for weighted
scale-free network whose topology is the same as that of
the BA model. Moreover, both the topology and the weights

are driven by the connectivity according to the preferential
attachment rule. The ZTZH model [9] is a generalization of
the YJBTmodel incorporating a stochastic scheme for weight
assignments based on both the degree and the fitness of node.
And the AKmodel [10], in which the structural growth of the
network is coupled with the edge weights, focus on a strength
driven attachment instead of degree preferential attachment.
In those models discussed above, the weight of edge is
assigned when the edge is added and remains fixed thereafter.
But actually, the addition of new nodes or edges will affect the
weight of the existing edges. The BBV model [11] is proposed
to describe the weights’ reinforcement phenomenon which
is triggered only by new added nodes. Wang model [12]
is a traffic-driven evolution model where weights of edges
between the existed nodes will also be rearranged.

Recently, the study of the network overall transfer capac-
ity is becoming increasingly important due to the constantly
growing significance of large communication networks such
as the Internet. Finding optimal routing strategies to improve
the transfer capacity is gaining increasing concern. Some
are based on global information: the shortest path routing
strategy [13], the efficient path routing strategy [14], and the
generalizedminimum information path routing strategy [15];
some are based on local information [16–20].
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In this paper, we propose a novel routing strategy in
which packets are transferred through the path based on the
weight of edges with a tunable parameter 𝛼. To maximize
the overall network transfer capacity which can be measured
by the critical packet generating rate 𝑅

𝑐
, the optimal tunable

parameter 𝛼 is achieved.
This paper is organized as follows. In Section 2 we

describe the model and our routing strategy, followed by the
experimental evaluations onBBVweighted networks and real
world network in Section 3. The conclusions are given in
Section 4.

2. Model

In BBV networks, the topological as well as weighted prop-
erties can be completely described by a weighted adjacency
matrixW, whose elements 𝑤

𝑖𝑗
denote the weight of the edge

between node 𝑖 and 𝑗. The definition of the BBV network is
based on two coupled mechanisms: the topological growth
and the weight dynamics, which is same as BA network.

(i) Growth. Starting from an initial small number of 𝑁
0

nodes connected by edges with assigned weight 𝑤
0
, a new

node is added at every time step. The new added node is
connected to𝑚 different previously existing nodes with equal
weight 𝑤

0
for every edge and chooses preferentially nodes

with large strength according to the probability ∏
𝑛→ 𝑖

=

𝑠
𝑖
/∑
𝑙
𝑠
𝑙
, where 𝑠

𝑖
is the node strength described as 𝑠

𝑖
= ∑
𝑗
𝑤
𝑖𝑗
.

(ii) Weight dynamics.The weight of each new add edge is
initially set to a given value𝑤

0
which is often set to 1 for sim-

plicity. But the adding of edge connecting to node 𝑖will result
in increasing the weight of the other edges linked to node 𝑖
which is proportional to the edge weights. If the total increase
is 𝛿 (we will focus on the simplest form: 𝛿

𝑖
= 𝛿), we can get

𝑤
𝑖𝑗
= 𝑤
𝑖𝑗
+ Δ𝑤
𝑖𝑗
= 𝑤
𝑖𝑗
+ 𝛿 ∗

𝑤
𝑖𝑗

𝑠
𝑖

. (1)

This will yield the strength increase of node 𝑖 as:

𝑠
𝑖
= 𝑠
𝑖
+ 𝛿 + 𝑤

0
. (2)

The degree distribution of BBV network 𝑃(𝑘) ∝ 𝑘
−𝛾𝑘 and the

strength distribution 𝑃(𝑠) ∝ 𝑠
−𝛾𝑠 yield scale-free properties

with the same exponent [6, 11, 21, 22]:

𝛾
𝑘
= 𝛾
𝑠
=

4𝛿 + 3

2𝛿 + 1

= 2 +

1

2𝛿 + 1

. (3)

Denoting 𝑃
𝑖→ 𝑗

as the path between nodes 𝑖 and 𝑗 which pass
through the nodes sequence 𝑥

0
(= 𝑖), 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑥
𝑛
(= 𝑗),

we define

𝐹 (𝑃
𝑖→ 𝑗

, 𝛼) =

𝑛−1

∑

𝑖=0

𝑤
𝑖𝑗

𝛼

. (4)

In our routing strategy, we specify the routing path between
𝑖 and 𝑗 as the one that makes 𝐹(𝑃

𝑖→ 𝑗
, 𝛼) minimum under a

given tunable parameter 𝛼.
In this paper, the simplest transfermodel can be described

as follows.
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Figure 1: 𝑅
𝑐
versus 𝛼. BBV network with 𝑛 = 1000, 𝛿 = 6, 𝑚 = 6,

and 𝜔
0
= 1.

(1) All the nodes are treated as both hosts and routers.
A host can create packets with addresses of destination and
receive packets fromother hosts while a router routes the data
packets to their destinations.

(2) At each time step 𝑡, there are 𝑅 packets generated
in the whole network with randomly chosen sources and
destinations. Once a packet is created, it is placed at the end
of the queue if this node already has several packets waiting
to be delivered to their destinations.The existing packets may
be created at some previous time steps or they are transmitted
from other nodes.

(3) At each time step, the first 𝐶
𝑖
packets at the top of

the queue of each node 𝑖, if it has more than 𝐶
𝑖
packets in

its queue, are forwarded one step toward their destinations
and placed at the end of the queues of the selected nodes.
Otherwise, all packets in the queue are forwarded one step.
This procedure applies to every node at the same time.

(4) A packet, upon reaching its destination, is removed
from the system.

In our model, three node delivery capability schemes
are considered: (i) each node has the same packet delivery
capability (𝐶

𝑖
= const, CONC stands for this scheme); (ii) the

node delivery capacity is considered to be proportional to the
node degree 𝑘

𝑖
(𝐶
𝑖
∼ 𝑘
𝑖
, DEGC stands for this scheme); (iii)

the node delivery capacity is considered to be proportional to
the node strength 𝑠

𝑖
(𝐶
𝑖
∼ 𝑠
𝑖
, STRC stands for this scheme).

To compare the overall transfer capacity, we assign the equal
value to the total node delivery capability in three situations.
In the last two schemes, we normalize the delivery capability
of each node to set the total delivery capability of the whole
network to be equal to the node number 𝑛, which is the same
as the first case.

When 𝑅 increases from zero to ∞, two phases will be
observed: free flow for small 𝑅 and congested phase for large
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Figure 2: 𝑅
𝑐
versus 𝛼. BBV network with 𝑛 = 1000,𝑚 = 6, and 𝜔

0
= 1. (a) 𝛿 = 0.6, (b) 𝛿 = 3, (c) 𝛿 = 12, and (d) 𝛿 = 60.

𝑅. We focus on the critical value 𝑅
𝑐
where phase transit from

the former to the latter which can best reflect the maximum
information transfer capacity of a system. For 𝑅 < 𝑅

𝑐
,

the numbers of created and delivered packets are balanced,
resulting in a steady free flow of traffic. For 𝑅 > 𝑅

𝑐
, traffic

congestion occurs as the number of accumulated packets
increases with time, due to the fact that the capacities of
nodes for delivering packets are limited. We are interested in
determining critical value 𝑅

𝑐
in order to address which kind

of routing strategy is more susceptible to phase transition and
therefore traffic congestion.

We introduce the betweenness 𝑏
𝑖
to estimate the possible

packet passing through a node 𝑖 under a given routing stra-
tegy which is defined as

𝑏
𝑖
= ∑

𝑠,𝑡

𝜎 (𝑠, 𝑖, 𝑡)

𝜎 (𝑠, 𝑡)

, (5)

where 𝜎(𝑠, 𝑖, 𝑡) is the number of paths under the given routing
strategy between nodes 𝑠 and 𝑡 that pass through node 𝑖 and
𝜎(𝑠, 𝑡) is the total number of paths under the given routing
strategy between nodes 𝑠 and 𝑡 and the sum is over all pairs
𝑠, 𝑡 of all distinct nodes. The probability that a certain packet
will pass through the node 𝑖 is 𝑏

𝑖
/∑
𝑛

𝑗=1
𝑏
𝑗
(𝑛 is the total node

number in the network). The average number of packets that
the node 𝑖 receives at each time step is 𝑅 ∗ 𝑏

𝑖
/(𝑛 ∗ (𝑛 − 1)).

Congestion occurs when the number of incoming packets is
equal to or larger than the outgoing packets that the node 𝑖
can transfer at one time step; that is, 𝑅∗ 𝑏

𝑖
/(𝑛 ∗ (𝑛 − 1)) ≥ 𝐶

𝑖
.

So the critical packet generating rate 𝑅
𝑐
is

𝑅
𝑐
= min(𝐶

𝑖
∗ 𝑛 ∗

𝑛 − 1

𝑏
𝑖

) . (6)
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Figure 3: 𝑅
𝑐
versus 𝛼. BBV network with 𝑛 = 1000, 𝛿 = 6, 𝑚 = 3,

and 𝜔
0
= 1.

In order to characterize the phase transition from free flow to
congested phase, we use the order parameter introduced in
[23]:

𝜂 = lim
𝑡→∞

⟨ΔΘ⟩

𝑅 ∗ Δ𝑡

, (7)

where ΔΘ = Θ(𝑡 + Δ𝑡) − Θ(𝑡), with ⟨⋅ ⋅ ⋅ ⟩ indicating aver-
age over timewindows of widthΔ𝑡, andΘ(𝑡) is the total num-
ber of packets in the network at time 𝑡. Therefore, in our
simulation we can determine 𝑅

𝑐
as the phase transition point

where 𝜂 deviates from zero.

3. Simulation and Analysis

Since BBVnetworks have the sameproperties (i.e., the power-
law distribution of degree, strength, and weight) as lots of
real-world networks (the scientists collaboration networks,
the Internet, and the WWW), we use BBV networks to
investigate the network overall capacity.

In all simulations, we normalize the critical packet gener-
ating rate 𝑅

𝑐
: we plot the normalized 𝑅

𝑐
and label 𝐶

𝑖
= 1 for

the CONC scheme, 𝐶
𝑖
= 𝑘
𝑖
/⟨𝑘⟩ for the DEGC scheme, and

𝐶
𝑖
= 𝑠
𝑖
/⟨𝑠⟩ for the STRC scheme.

In Figure 1, we plot the critical packet generating rate 𝑅
𝑐

versus different parameter 𝛼 in a BBVnetworkwith 𝑛 = 1000,
𝛿 = 6, 𝑚 = 6, and 𝜔

0
= 1. (For every network, 20 instances

are generated and for each instance, we run 20 simulations.
The results are the average over all the simulations.)

From Figure 1, we can see that in the three schemes,
the critical packet generating rate 𝑅

𝑐
varies with the tunable

parameter 𝛼. In the CONC scheme,𝑅
𝑐
reaches the peak when

𝛼 is 0.3 while in the DEGC scheme and STRC scheme 𝛼
is 0.1 and −0.2 correspondingly. The DEGC scheme where
node delivery capability is proportional to its degree has the
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Figure 4: 𝑅
𝑐
versus 𝛼. BBV network with 𝑛 = 2000, 𝛿 = 6, 𝑚 = 6,

and 𝜔
0
= 1.

largest transfer capacity which is 2.35 times as the CONC
scheme where node delivery capability is constant. And the
transfer capacity of the STRC scheme is 2.15 times as the
CONC scheme. Figure 1 show that when the node delivery
capability is different, the BBV network has different transfer
capacity which varies with the tunable parameter. The BBV
network has the highest transfer capacity when the node deli-
very capability is proportional to its degree and the tunable
parameter is 0.1.

Then, we check the impact of 𝛿 on the 𝑅
𝑐
. We set 𝛿 = 0.6,

3, 12, and 60 to get different simulation results in Figure 2.
As shown in Figure 2, all three schemes get their highest

transfer capacity at different tunable parameter 𝛼 because of
different parameter 𝛿. From formula (3), we can recognize
that both the degree distribution and the strength distribu-
tion of BBV network are described by an exponent 𝛾 which
depends on the parameter 𝛿. When the parameter 𝛿 = 0, the
BBV network is similar to BA network with 𝛾 = 3. And when
the parameter 𝛿 increases, the distributions become broader
with 𝛾 = 2 when the parameter 𝛿 → ∞ which results in
different schemes obtaining peak transfer capacity at different
tunable parameter 𝛼.

Thenwe check the influence of the new add edges number
𝑚 and the node number 𝑛 on three different schemes. Simu-
lation results are shown in Figures 3 and 4 correspondingly.

From Figures 3 and 4, we can come to the conclusion that
the new add edges number 𝑚 and the node number 𝑛 have
a little effect on the impact of tunable parameter 𝛼 on the
transfer capacity of three different schemes. They only affect
the absolute value of the transfer capacity.

By investigating the betweenness distribution on the
network, a heuristic explanation for the optimal tunable
parameter 𝛼 corresponding to the highest transfer capacity
is presented in Figure 5.
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Figure 5: BBV network with 𝑛 = 1000, 𝛿 = 6, 𝑚 = 6, and 𝜔
0
= 1. (a) DEGC, betweenness per node. (b) STRC, betweenness per node. (c)

DEGC, betweenness distribution versus node degree. (d) STRC, betweenness distribution versus node strength.

The results of DEGC scheme are shown in Figures 5(a)
and 5(c). In both figures, when the tunable parameter 𝛼 is
0.1, the load is distributed more evenly than the other two.
In Figure 5(a), the betweenness divided by node degree
is relatively flat which means that the node with higher
degree forward more packets. And in Figure 5(c), the linear
characteristic in the log-log plot expresses the samemeaning.
The results of STRC scheme shown in Figures 5(b) and 5(d)
are of the same meaning while the tunable parameter 𝛼 is
−0.2.

In Figure 6, we show the relationship between the critical
packet generating rate𝑅

𝑐
and the node number 𝑛. Figure 6(a)

indicates that the network capacity of the DEGC scheme

is always much larger than those of the STRC and CONC
schemeswhen the tunable parameter𝛼 is 0.1. And Figure 6(b)
indicates the situation of the STRC scheme with 𝛼 = −0.2.

The average weighted average length [24] 𝐿AVE versus
the node number 𝑛 is reported in Figure 7. Although the
weighted average length of DEGC scheme with 𝛼 = 0.1 and
the STRC scheme with 𝛼 = −0.2 are higher than that of
the traditional shortest path with 𝛼 = −1, the small-world
phenomenon, that is, 𝐿AVE ∝ ln 𝑛, is still maintained.

Finally, we test the three schemes on real-world networks.
We choose the scientific collaboration network [25] which
has a giant component of 5835 nodes. Simulation results are
shown in Figure 8.
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Figure 6: 𝑅
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versus 𝑛. BBV network with 𝛿 = 6,𝑚 = 6, and 𝜔
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From Figure 8, we can see that in CONC scheme the
network has the maximum transfer capacity, 24.2, when the
tunable parameter 𝛼 is near 0.3. In DEGC scheme the peak
value is 101.6 with 𝛼 = 0.1 and in STRC scheme it is 60.5 with
𝛼 = −0.2. It means our strategy also works well in the real
world network.

4. Conclusion

Considering the different node transfer capability, this paper
has proposed a new routing strategy to enhance the network
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Figure 8: 𝑅
𝑐
versus 𝛼. Real-world network.

transfer capacity in weighted networks. The characteristic of
our strategy is to select the optimal routing path according
to three kinds of different schemes. The simulation yields
some results different from those of previous studies. In
most cases, the optimal value of the tunable parameter is
0.3 in the scheme in which each node has the same packet
delivery capability (CONC), 0.1 in the scheme in which the
node delivery capacity is considered to be proportional to the
node degree (DEGC), and −0.2 in the scheme in which the
node delivery capacity is considered to be proportional to the
node strength (STRC). It is worth mentioning that in some
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weighted network the optimal value fluctuate around the
mentioned value. And the scheme in which the node delivery
capacity is proportional to the node degree has the highest
transfer capacity when the tunable parameter is −0.2. At last,
we apply our routing strategy on the scientific collaboration
network to show the validity of the strategy on real-world
networks. Moreover, the above-mentioned research may be
practically useful for designing communication protocols.
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[3] J.-P. Onnela, J. Saramäki, J. Hyvönen et al., “Structure and tie
strengths in mobile communication networks,” Proceedings of
the National Academy of Sciences of the United States of America,
vol. 104, no. 18, pp. 7332–7336, 2007.

[4] M. E. J. Newman, “Scientific collaboration networks. II. Shortest
paths, weighted networks, and centrality,” Physical Review E,
vol. 64, no. 1, Article ID 016132, 7 pages, 2001.
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