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Abstract

Background

Beta-adrenergic blockade has been hypothesized to have a protective effect on intestinal

dysfunction and increased intestinal permeability associated with the epinephrine surge

after traumatic brain injury (TBI).

Methods

Wister rats were subjected to either a weight drop TBI, and intraperitoneally injected or not

with labetalol, or a sham procedure (18 rats per group). After 3, 6, or 12h (6 rats per sub-

group), intestinal permeability to 4.4 kDa FITC-Dextran and plasma epinephrine levels were

measured as was intestinal tight junction protein ZO-1 expression at 12h. Terminal ileum

was harvested to measure levels of intestinal tumor necrosis factor (TNF)-α and to evaluate

histopathology.

Results

In TBI group vs. sham group, intestinal permeability (P<0.01) was significantly higher at all

time-points, and intestinal ZO-1 expression was lower at 12h. In TBI with vs. without labeta-

lol group, 1) intestinal permeability was significantly lower at 6 and 12h (94.31±7.64 vs.

102.16±6.40 μg/mL; 110.21±7.52 vs. 118.95±7.11 μg/mL, respectively); 2) levels of plasma

epinephrine and intestinal TNF-α were significantly lower at 3, 6 and 12h; and 3) intestinal

ZO-1 expression was higher at 3, 6 and 12h (p=0.018). Histopathological evaluation

showed that labetalol use preserved intestinal architecture throughout.

Conclusion

In a rat model of TBI, labetalol reduced TBI-induced sympathetic hyperactivity, and pre-

vented histopathological intestinal injury accompanied by changes in gut permeability and

gut TNF-α expression.
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Introduction
Traumatic brain injury (TBI) is the leading cause of death and disability in severe trauma and
is drawing more and more attention. TBI can cause significant gastrointestinal alterations and
impairment, including Cushing’s ulceration, inflammation, loss of intestinal tight junction pro-
teins and increased gut permeability [1, 2]. Increased intestinal permeability leads to bacterial
translocation which can in turn lead to sepsis and multiple organ failure. Intestinal mucosa
structural changes, barrier dysfunction and increased intestinal permeability leading to bacte-
rial translocation, sepsis and multiple organ failure might present as early as 3–6 hours after
traumatic brain injury (TBI) [1–4]. The proposed mechanisms include increased adrenergic
tone, reduced mucosal blood flow, decreased bowel movements, surge of intestinal TNF-α,
and/or loss of intestinal tight junction proteins [1, 5–7].

Decreasing adrenergic tone with beta-blockers might improve outcome after TBI [8].
Several recent studies have showed at beta-blocker exposure was associated with a signifi-

cant reduction in mortality in patients with severe TBI [8, 9]. Adrenergic receptor blockade can
block the activation of the hypothalamus—pituitary—adrenal axis (HPA) mediated by the
locus coeruleus/norepinephrine/sympathetic nervous system, thus interfering with the positive
feedback path of stress response, and weakening the hyperfunction of the HPA axis under con-
tinuous stress state. Labetalol is a selective α1- and nonselective β1- and β2-adrenergic antago-
nist that is widely used in the treatment of hypertension [10]. Labetalol is classified among
lipophilic beta-blockers, its plasma half-life is 3–6 h [11], and it is highly resorbed in the gastro-
intestinal tract, and metabolized by the liver into glucuronide derivates with an extensive first-
pass effect. Labetalol also can slow sinus rhythm and reduce peripheral vascular resistance [12].
In light of the hyperadrenergic state that has been described after severe head injury, we
hypothesized that labetalol would preserve intestinal homeostasis by preventing increased
intestinal permeability after TBI.

Materials and Methods

Animals and TBI Model
The study protocol was approved by the Fudan University, Ministry of Science Animal Ethics
Committee. Adult male Wister rats weighing 200 to 250g were purchased from the Animal
Center of the Chinese Academy of Sciences, Shanghai, China. Rats were housed at 25°C with
12-hour light/dark cycles and free access to food and water.

The rats were randomly divided into three groups (18 rats each) [13, 14] including Sham
group (right parietal bone window alone, without brain injury), TBI group, and TBI+labetalol
group (TBI + labetalol 30 mg/kg i.p.) [15]. Labetalol (Shanghai, China) was prepared as a 0.5%
working solution by dissolving 0.1 g in 20 ml of sterile saline. Working solutions were stored
sterile and away from light at 25°C. Each group was further divided into three subgroups (6
rats each) for assessment at 3, 6, and 12h post injury, respectively. The weight drop TBI model
described by Feeney [16] was used to create a contusion injury of the right parietal cortex. We
used an improved method of chloral hydrate anesthesia in rat by intermittent intraperitoneal
injection in experimental animals [17–19]. Animals received four dosages of chloral hydrate
(100 mg/kg) by intraperitoneal injection at three minute intervals [19]. Following intraperito-
neal anesthesia with chloral hydrate, the animal’s head was shaved with an electric clipper, and
fixed in a stereotactic device. Under strict asepsis, the scalp was opened and a right parietal
bone window 5 mm in diameter was created with a dental drill just behind the cranial coronal
suture and next to the midline. Following the removal of a small bone flap, a circular footplate
was made to rest on the surface of the dura, which remained intact. A 25cm tube guided a
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falling weight onto the footplate resting on the dura with forces of 1000g/cm applied (40g
weight after dropping 25cm). After impact, the bone window was closed using a small bone
flap and incision was closed with 3–0 silk suture in all animals and the procedure needed about
5 min. Sham group animals underwent anesthesia, scalp incision and bone window creation,
without brain injury. Animals that had undergone brain injury were given intraperitoneal labe-
talol or normal saline after the bone window was closed, and sham procedure animals received
saline. At 3, 6, or 12h after TBI±labetalol or sham procedure, animals underwent an in vivo
intestinal permeability assay, followed 30 minutes later by blood collection by cardiac puncture
to measure FITC-Dextran concentration and epinephrine levels, and removal of terminal
ileum, which was either snap frozen for protein extraction or stored in 4% formalin for histo-
logical evaluation.

Labetalol intervention
5 min after TBI or sham operation, respectively, the TBI+labetalol group was intraperitoneally
injected with labetalol (30mg/Kg) and the sham group with an equal volume of normal saline.

In Vivo Intestinal Permeability Assay
Animals underwent an in vivo intestinal permeability assay as described by Chen et al. [20]. At
3, 6, or 12h after TBI±labetalol or sham procedure, animals were once again anesthetized
with10% chloral hydrate (300mg/kg body weight) by intraperitoneal injection. A midline inci-
sion laparotomy was performed, and a 20-cm segment of the jejunum was dissected beginning
5 cm distal to the ligament of Treitz with well-protected superior mesenteric vessels. The bilat-
eral ends of the isolated jejunum were tied with silk to prevent FITC-Dextran leakage. Previ-
ously prepared FITC-Dextran (25 mg of 4.4-kDa FITC-Dextran in 1 mL phosphate-buffered
saline) was injected into the lumen of the isolated jejunum. The isolated jejunum was returned
into the abdominal cavity and the abdominal wall was closed using 3–0 silk suture. Thirty min-
utes after FITC-Dextran injection, blood was collected by cardiac puncture and blood samples
were placed into heparinized Eppendorf tubes and centrifuged at 10,000g for 10 min. Plasma
was removed and subsequently assayed using a Hitachi Fluorescence spectrophotometer-F-
7000 (Hitachi, Japan) to determine the concentration of FITC-Dextran. A standard curve for
the assay was obtained through serial dilution of FITC-Dextran in rat serum.

Levels of Plasma epinephrine
The epinephrine plasma levels were measured using a commercially available ELISA kit (San
Diego, CA, USA) with minimum limit of epinephrine detection of 2.8 pg/mL.

Levels of Intestinal TNF-α
The TNF-α contents in the terminal ileum tissue were expressed as nanograms of TNF-α per
gram of tissue protein. At 3, 6, or 12h after TBI±labetalol or sham procedure, the levels of intes-
tinal tumor necrosis factor-α (TNF-α) in the tissue supernatant fluids were measured using an
ELISA kit (San Diego, CA,USA) specific for rat TNF-α[21,22]. The minimum limit of TNF-α
detection for this assay was 15 pg/mL. The terminal ileum tissue (100 mg per rat) was trans-
ferred into a 5 mL tube, and 1mL tissue lysis buffer (Beyotime, Shanghai, China) supplemented
with protease inhibitor cocktail (Roche, 04693132001) and phosphatase inhibitor cocktail
(Sigma-Aldrich, Germany) was added. The tissue was homogenized on ice using a tissue
homogenizer (Pro Scientific, USA); the tissue homogenate was transferred into a Dounce tissue
grinder and further processed. The homogenate then was transferred into 1.5 mL tubes and
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centrifuged for 15 min at 16000g at 4°C; the supernatant fluid was removed and its protein
concentration was determined (Pierce Biotechnology, Rockford, USA). The samples were sub-
sequently diluted with deionized water to achieve a concentration of 4 mg protein in 1 mL total
volume.

Western blot analysis
At 12h after TBI±Labetalol or sham procedure, protein samples of distal ileum were separated
by SDS-PAGE and transferred onto PVDF membrane (0.2μm, Millipore,Massachusetts, USA).
The membrane was blocked for 90 min in TTBS (0.1% (v/v) Tween 20,150 mMNaCl, and 50
mM Tris—HCl, pH 7.5) containing 5% nonfat milk and was then incubated overnight at 4°C
with primary antibodies specific to ZO-1 (Santa Cruz, CA, USA), followed by incubation with
the appropriate secondary antibodies(Jackson Immuno Research, PA, USA) for 90 min. The
dilutions of the primary antibodies were as follows: ZO-1, 1:100; and anti-β-actin (Sigma, MO,
USA), 1:4,000. The dilution of the secondary antibody was 1:8,000. After thorough washing,
immunoreactive bands were detected using enhanced chemiluminescence (ECL Plus, NJ,
USA), according to the manufacturer’s instructions. Relative band density was calculated by
dividing the pixel density of each sample by the mean pixel density of sham samples [23, 24].

Real-time quantitative PCR
Total RNA was isolated from tissues or cells using TRIzol Reagent (Invitrogen, Shanghai,
China) and purified using the RNeasy Total RNA Isolation Kit (Qiagen, Hilden, Germany).
Real-time quantitative PCR was performed using the Real-Time PCR System (Biosystems, CA,
USA) and the Perfect Real Time Kit (SYBR, Dalian, China). For the rat gene expression, the fol-
lowing SYBR Green real-time PCR primers were used: ZO-1 forward, 50-AGTTCTGCCCT
CAGCTACCA-30 and reverse, 50-GCTTAAAGCTGGCAGTGTC-30; and β-actin forward,
5-CCTAGACTTCGAGCAAGAGA-30 and reverse 50-AGAGGTCTTTACGGATGTCA-30.

Histological Evaluation
After heart puncture blood collection, segments of distal ileum (obtained 5 cm away from the
ileocecal junction) were dehydrated, embedded in paraffin and stained with hematoxylin and
eosin (H&E) [25, 26]. Using light microscopy (Olympus, Japan), a pathologist blinded to the
groups quantified pathological changes of the intestinal mucosal using mucosal damage index
and Chiu's score [27] as follows: 0, Villous structure of the normal mucosa; I: intestinal muco-
sal villi over widened subepithelial space; II: villi with subcutaneous gap, further expansion of
the villus tip epithelial elevation, and lamina propria stripped; III: villous both sides of the epi-
thelium into a block off; IV: epithelium completely off, with lamina propria as only remaining
structure; and V: mucosal lamina propria off, bleeding and ulcers.

Statistical Analysis
SPSS software 17.0 (Chicago, USA) was used for statistical analysis. All data are expressed as
mean±SD and were compared using one-way ANOVA analysis. Statistical significance was
accepted at p<0.05.

Results

Intestinal Permeability
In vivo intestinal permeability as determined by spectrophotometric measurement of plasma
4.4 kDa FITC-Dextran, was higher in TBI vs. sham group at all time-points (3h: 60.82±7.13 vs.
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28.94±2.05 μg/mL; 6h: 102.16±6.40 vs. 31.21±1.92 μg/mL; and 12h: 118.95±7.11 vs. 32.39
±3.67 μg/mL; p<0.01), and lower at 6 and 12h in TBI with vs. without labetalol groups (94.31
±7.64 vs. 102.16±6.40 μg/mL; and 110.21±7.52 vs. 118.95±7.11 μg/mL, respectively; p<0.05)
(Fig 1).

Plasma epinephrine levels
At all time-points, plasma epinephrine levels were higher in TBI vs. sham group (3h: 0.87±0.17
vs. 0.16±0.04 ng/mL; 6h: 1.53±0.34 vs. 0.26±0.08ng/mL; and 12h: 0.43±0.14 vs. 0.16±0.04 ng/
mL, all p<0.01), and lower in TBI with vs. without labetalol (3h: 0.34±0.13 vs. 0.87±0.17 ng/
mL; 6h: 0.55±0.24 vs. 1.53±0.34ng/mL; and 12h: 0.26±0.10 vs. 0.43±0.14 ng/mL; p<0.01,
p<0.05)(Fig 2).

Intestinal TNF-α Levels
At all time-points, TNF-α levels were higher in the intestinal homogenates of TBI vs. sham
group (3h: 9.07±1.09 vs. 5.27±0.95 ng/g; 6h: 13.89±1.21 vs. 5.12±1.22 ng/g; and 12h: 17.28
±1.15vs. 5.01±0.96 ng/g; p<0.01); and lower in TBI with vs. without labetalol (3h: 6.34±0.65 vs.
9.07±1.09 ng/g; 6h: 12.15±1.21 vs. 13.90±1.22 ng/g; and 12h: 15.70±1.41 vs. 17.28±1.15 ng/g;
p<0.001, p<0.05) (Fig 3)

ZO-1 expression
As shown in Fig 4, expression of ZO-1 was lower in rat distal ileumc of TBI vs. sham group at
all time-points. Labetalol significantly improved ZO-1 expression at all time-points, with
1.6-fold, 1.3-fold, and 1.4-fold higher in TBI with labetalol vs. TBI at 3h, 6h, and 12h, respec-
tively (p<0.05).

Histopathological Evaluation
The terminal ileum was harvested at 3, 6, and12h after either sham procedure or TBI ±Labeta-
lol intervention for histological analysis using H&E staining (Fig 5). Normal appearing villi
with normal villous height and no evidence of intestinal necrosis were observed in sham group
at all time-points, while mucosal damage index was higher in TBI vs. sham group at all time-
points (3h: 1.83±0.41 vs. 0.33±0.52; 6h: 2.17±0.41 vs. 0.33±0.52; and 12h: 3.50±0.55 vs. 0.66
±0.52; p = 0.000). In contrast, labetalol intervention had a protective effects on intestinal archi-
tecture at all time-points with lower mucosal index damage in TBI with vs. without labetalol
(3h: 0.67±0.52 vs. 1.83±0.41; 6h: 1.00±0.63 vs. 2.17±0.41; and 12h: 2.66±0.82vs. 3.50±0.55;
p<0.01, p = 0.04) (Fig 6).

Discussion
This study showed that labetalol has a protective effect against intestinal dysfunction after TBI.
Treatment with labetalol reduced TBI-induced sympathetic hyperactivity, and prevented histo-
pathological intestinal injury accompanied by changes in gut permeability and gut TNF-α
expression in a rat model of TBI.

Recent literature has demonstrated a strong association between neurologic trauma and the
development of non-neurologic organ dysfunction, which appears to be a result of sympathetic
hyperactivity [28, 29], the surge in epinephrine tone and proinflammatory cytokines [8, 30].
Several investigators have evaluated the post-TBI state and noted a greater than sevenfold
increase in norepinephrine, epinephrine, and their urine-excreted metabolites. Epinephrine
level elevations appear to correlate with significant increases in sympathetic hyperactivity and
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are most pronounced during the first week after injury [31, 32]. Decreasing adrenergic tone
through beta-blockade has been hypothesized to improve outcome after TBI [8]. To this end,
Morel et al. [33] demonstrated that the hyperdynamic state mediated by sympathetic overactiv-
ity after severe injury was successfully reduced through the utilization of adrenergic blockade,
and animal models have shown that pretreatment with beta-blockade reverses catecholamine-
induced immunosuppression [34, 35]. In the present study, we showed that labetalol reduced
plasma epinephrine and TBI-induced intestinal injury in rats. The principal physiologic action
of labetalol is to competitively block adrenergic stimulation of β-receptors within the myocar-
dium (β1-receptors) and within bronchial and vascular smooth muscle (β2-receptors), and
α1-receptors within vascular smooth muscle. The rate limiting step in the synthesis of catheco-
lamines is subject to negative feedback by the end products, in our study by epinephrine. How-
ever, the exact mechanism that labetalol reduces plasma epinephrine level remains to be
explored.

An intact intestinal epithelium is required to maintain an effective barrier against luminal
bacteria that normally inhabit the gut and against endotoxin. The maintenance of intestinal
barrier function is highly dependent on epithelial cell-to-cell adhesion, which is indispensable
for intestinal architecture [36]. Tight junctions are located at the most apical part of the lateral
membranes of epithelial and endothelial cells and comprise various molecules, such as the
transmembrane proteins occludin [37], claudins [38], tricellulin [39] and the peripheral mem-
brane proteins zonula occludens (ZOs). ZOs include three isoforms: ZO-1, ZO-2, and ZO-3
[40–43]. Zonula occludens protein 1 is a 220-kd tight junction protein that links the transmem-
brane protein occludin to the actin cytoskeleton within the apical portion of the cell and is a
particularly important molecule in the formation of tight junctions [44, 45] and likely in the

Fig 1. FITC-Dextran levels classified in sham, TBI and TBI+labetalol groups at 3, 6 and 12h. Intestinal permeability was higher at all time-points in TBI
vs. sham group (**p <0.01), and lower in TBI with vs. without labetalol at 6 and 12h (94.31±7.64 vs. 102.16±6.40 μg/mL; and 110.21±7.52 vs. 118.95
±7.11 μg/mL, respectively; *p<0.05).

doi:10.1371/journal.pone.0133215.g001
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Fig 2. Plasma epinephrine levels in sham, TBI and TBI+labetalol groups at 3, 6 and 12h. Plasma
epinephrine levels were significantly higher in TBI vs. sham group at all time-points (***p<0.001), and lower
for TBI with vs. without i.p. labetalol at 3 and 6h (0.34±0.13 vs. 0.87±0.17ng/mL; and 0.55±0.24 vs. 1.53±0.34
ng/mL, respectively, **p <0.01), and 12h (0.26±0.10 vs. 0.43±0.14 ng/mL; *p<0.05).

doi:10.1371/journal.pone.0133215.g002
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function of intestinal ones. Immunohistochemical alteration of ZO-1 is closely associated with
increased intestinal permeability in patients with nonalcoholic fatty liver diseases [46].
Splanchnic hypoperfusion is a common phenomenon after trauma-induced stress, and surge
in epinephrine tone is associated with gastrointestinal vasoconstriction, cramps, and signifi-
cantly reduced intestinal mucosal blood flow,resulting gastrointestinal impairment including
loss of intestinal tight junction proteins and increased gut permeability [1, 2]. Bansal et al. [1]
showed that TBI-induced sympathetic hyperactivity and splanchnic hypoperfusion caused
alteration of the intestinal tight junction proteins ZO-1 and occludin, which correlates to
increased intestinal permeability and distinct changes. Moreover, TNF-α and other inflamma-
tory factors is known to cause downregulation of ZO-1 [47] and induce intestinal mucosal
injury by destroying the tight junctions between cells [48]. Costantini et al. [47] showed that
pentoxifyline, a known anti-inflammatory agent, significantly decreased TNF-α levels and pre-
vented an increase in intestinal permeability in a severe burn model. In our study, decreasing
hyperactivity of adrenergic tone with labetalol decreased intestinal TNF-α level, and prevented
an increase in intestinal permeability in the TBI rat model. In addition, myosin light chain
kinase (MLCK) that plays an important role in junction protein function was also reported to
be modulated by adrenergic blockers [14, 49]. Further research is needed to understand
whether labetalol affects barrier function through modulation of MLCK.

It is important to note that our study is a hypothetical construct with inherent limitations.
Animal grouping in our study was based on the published literatures [13, 14]. It is more rea-
sonable to add a group that receives labetalol alone (no TBI) as an important control. Thus,

Fig 3. Intestinal TNF-α levels classified in sham, TBI and TBI+labetalol groups at 3, 6 and 12h. At all time-points, intestinal TNF-α was higher in TBI
groups vs. sham group, and lower in TBI with vs. without labetalol (3h: 6.34±0.65 vs. 9.07±1.09 ng/g; 6 h: 12.15±1.21 vs. 13.90±1.22 ng/g; and 12 h: 15.70
±1.41 vs. 17.28±1.15 ng/g; **p<0.001, *p<0.05)

doi:10.1371/journal.pone.0133215.g003
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this kind of animal grouping may have measurement bias. Another limitation was Labetalol
dose that we used in this study. Only dose of 30mg/kg was chosen [15] and a dose-response
wasn’t performed. This is relevant due to some of the minimal protective effects seen with
the drug in some assays. Further research is needed to understand whether there is more

Fig 4. Intestinal ZO-1 expression in sham, TBI and TBI+labetalol groups at 3, 6 and 12h. ZO-1 protein (top panel, measured at 12h) and mRNA (bottom
panel, measured at 3, 6 and 12h) expression in sham, TBI and TBI+labetalol groups. At all time-points, expression of ZO-1 was lower in rat distal ileumc of
TBI vs. sham group, and labetalol significantly improved ZO-1 expression at all time-points (**p<0.001, *p<0.05).

doi:10.1371/journal.pone.0133215.g004
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protection at a higher dose. Furthermore, since changes in gut permeability and TNF-a in the
TBI+Labetalol group were statistically significant compared to TBI group, the results of our
study would be only applicable based on the small sample size. Additional studies based on
large sample are needed to confirm the results. In addition, chloral hydrate as an anesthetic
agent by single injection at the dose range used is shown early to alter gut functions in rats.
Thus, we used an improved method of chloral hydrate anesthesia in rat by intermittent intra-
peritoneal injection, and did not found the influence on the parameters measured in our study.

Fig 5. Terminal ileumH&E staining (all images are 50*magnification) at 3, 6, and 12h after either sham or TBI ±Labetalol.① Terminal ileum in sham
controls showing normal villi and consistent villous height;② At 3 h, intestinal mucosal villi with widened subepithelial space in TBI animals;③ At 6h, intestinal
the top part of mucosal villi is damaged with central lacteal expansion in TBI animals;④ At 12h, villous epithelium into a block off in TBI animals;⑤ At 3 h,
villous structure of the normal mucosa in TBI+labetalol animals;⑥ At 6h, intestinal mucosal villi with widened subepithelial space in TBI+labetalol animals;⑦
At 12h, villi with further expansion of the submucosal gap, villus tip epithelial elevation and damaged or broken top part in TBI+labetalol animals.

doi:10.1371/journal.pone.0133215.g005
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In summary, our preliminary results in a rat model showed that labetalol decreased the
plasma epinephrine levels and histopathological intestinal injury induced by TBI. Labetalol
therefore appears to have potent a protective effect on intestinal function after TBI by reducing
sympathetic hyperactivity.
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