
Biological interaction networks have been the main focus 
of systems biology in recent years. These interactions 
form a spectrum of biological networks, including protein-
protein interaction (PPI), transcription factor-target regu-
lation, genetic interaction and metabolic networks. Each 
of these networks provides insight into different intra-
cellular communication systems, from gene and post-
translational regulation (transcription factor-target and 
kinase-substrate phosphorylation networks, respect ively) 
to physical interactions between proteins (PPI net works). 
Given their importance, studies have attempted to 
characterize the global evolutionary mechanisms that 
shape network architectures, which would help to under-
stand the network design principles and evolu tionary 
forces that ultimately determine the network of a species. 
Such studies are possible as a result of the development 
of methods such as the yeast-two hybrid system [1,2], 
tandem affinity purification followed by mass spectro-
metry [3,4], and chromatin immuno precipitation followed 
by either microarray chip (ChIP-chip) [5] or high-
throughput sequencing (ChIP-seq) [6,7], which can 
rapidly interrogate the interaction network of a given 
species, leading to a dramatic increase in biological inter-
action data for several species. Large, but yet incomplete, 
networks for Homo sapiens [1,2,8] and model eukaryotic 
organisms such as Saccharomyces cerevisiae [3-5,9-13], 
Caenorhabditis elegans [6,14,15] and Drosophila melano
gaster [7,16-20] are available in many multispecies data 
repositories [21-24].

We review recent progress in the study of biological 
network evolution, with a particular focus on the PPI 
network, because this has been studied in more depth 
(other networks, such as the transcription factor-target 
network, are also available to varying degrees of comple-
tion). While networks have been examined in the past 
using computational simulations [25,26], here we focus 
on studies based on experimental data primarily from 
high-throughput methods. The shift to using experi-
mental data has enabled observation of different proper-
ties of network evolution. For instance, early studies 
suggested that certain interactions tend to be conserved, 
and this finding was used to transfer anno tation 
knowledge and identify important cellular pathways 
between different species. We also discuss network hubs 
and motifs, which are conserved elements whose members 
are more likely to maintain the same functionality 
between species. Conversely, networks are evolutionarily 
very dynamic. We explore divergent network elements, 
such as how networks change over time between species 
(a phenomenon known as network rewiring). We review 
the different rates at which interaction networks, such as 
PPI and transcription factor-target networks, rewire, and 
explore why regulatory networks rewire at a more rapid 
rate than PPI networks. Finally, we look at methods to 
estimate the rate of network rewiring, given that different 
types of interaction networks have been elucidated to 
different degrees of completeness.

Building blocks of network evolution
To understand and discover global network properties 
either between different species or between different 
types of networks, such as transcription factor-target and 
PPI networks, the basic building blocks of network 
evolution need to be characterized. Using the analogy of 
a multiple sequence alignment, one can distinguish 
between conserved and divergent regions, both of which 
are important features for sequence evolution. There are 
many important conserved elements, such as protein 
domains [27,28] and sequence motifs [29]. Conversely, 
evolutionary change is due to sequence differences that 
can be attributed to different mechanisms such as point 
mutations, insertions and deletions. The respective 
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contribution of each mechanism can be quantified by 
measuring evolutionary rates. Similarly, in the com pari-
son of biological networks between species, conserved 
and diverged elements can be found. Using the PPI 
network as an example, comparing PPI networks of 
different species reveals two types of conserved elements. 
First, conserved proteins can be found between PPI 
networks (that is, proteins in different species that share 
the same ancestral gene, whose identification can be 
made through orthology measures) [30-32]. Second, 
inter actions between orthologous protein pairs can be 
conserved; this conservation type is known as an 
‘interolog’ for PPI networks [33,34] and a ‘regulog’ for 
transcription factor-target regulation networks (Figure 1a) 
[35]. Determining conserved interactions such as intero-
logs has identified interactions in core processes, such as 
metabolism, and has enabled the prediction and know-
ledge transfer of conserved interactions between species 
[34]. While PPI networks are typically depicted as un-
directed graphs (shown in Figure  1a, with interactions 
lacking directionality), PPI networks such as those 
between domain-peptide interactions and regulatory 
networks, such as transcription factor-target and kinase-
phosphorylation networks, are shown as directed graphs 
due to the asymmetry between interaction partners 
designated as source and target proteins. Differences 
between biological networks from different species can 
be attributed to network rewiring events, which are the 
changes in wiring or interaction between interaction 
partners. Two mechanisms of network rewiring exist: 
(1)  ‘interaction rewiring’, which is the gain or loss of an 
interaction but retention of both binding partners; and 
(2)  ‘protein change’, which is the gain (typically by gene 
duplication) or loss of either binding partner (Figure 1b). 
Such network rewiring mechanisms have helped to 
rationalize the evolution of pathways such as in the 
mitogen-activated protein kinase (MAPK) pathway in the 
comparison between S. cerevisiae and higher eukaryote 
interaction networks. It was shown that despite MAPKs 
being highly conserved, changes in interaction partners 
can occur. In yeast, Pbs2 activates Hog1, and Slt2 
activates Rlm1. In humans (and other higher eukaryotes) 
these interactions rewire and MEK1/2 (the Pbs2 ortho-
log) activates extracellular signal-regulated kinase 1/2 
(ERK1/2; ortholog of Fus3), and p38α (the Hog1 ortho-
log) activates myocyte-specific enhancer factor 2A 
(MEF2A; the Rlm1 ortholog) (Figure 1c) [36]. Interaction 
rewiring can arise due to mutations causing structural 
changes to either a binding partner’s interaction site, 
abolishing the existing interaction, or creating new 
surfaces to which a new interaction partner can bind. 
This can be demonstrated by performing point mutations 
to proteins maintaining multiple interaction partners on 
different interaction surfaces, thereby abolishing a single 

interaction surface and giving rise to different phenotypes 
[37]. For domains that recognize linear peptide motifs, 
mutations in this binding motif are more likely to occur 
due to its small length and their relatively high evolu-
tionary variability.

Figure 1. Mechanisms of network evolution. Continuous lines 
represent an interaction and dashed lines represent orthologous 
relationships. (a) A conserved interaction between two species 
requires both interaction partners to be conserved by having 
identifiable orthologs. (b) Two mechanisms of network rewiring can 
be defined: interaction rewiring and protein change. Interaction 
rewiring is the gain or loss of an interaction but retention of both 
binding partners. Using species 1 as the reference, the illustrated 
interaction rewiring event in species 2 is an interaction loss between 
A’ and B’, shown by the gray line. Swapping the reference species 
results in an interaction gain between A and B. Protein change is the 
gain or loss of at least one of the binding partners. Using species 1 
as the reference, the illustrated protein change is a protein gain of 
C’. The lack of an ortholog in species 1 indicates that C’ is specific to 
species 2. (c) Specificity swapping in the mitogen-activated protein 
kinase (MAPK) pathway in the comparison between Saccharomyces 
cerevisiae and higher eukaryote interaction networks (adapted 
from Mody et al. [36]). The yeast Pbs2 activates Hog1, and Slt2 
activates Rlm1, while in humans (and other higher eukaryotes) 
these interactions rewire and MEK1/2 (the Pbs2 ortholog) activates 
extracellular signal-regulated kinase 1/2 (ERK1/2; ortholog of Fus3), 
and p38α (the Hog1 ortholog) activates myocyte-specific enhancer 
factor 2A (MEF2A; the Rlm1 ortholog). MAPKK, MAPK kinase; TF, 
transcription factor.
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Models of network evolution
Similar to the history of molecular evolution, interest in 
network evolution began before the availability of 
sufficient high-throughput data for empirical study. Thus, 
early studies focused on top-down models of network 
evolution, and attempted to recapitulate global features 
of these experimentally determined networks by focusing 
on their topological properties. Biological networks 
maintain interesting topological properties, such as a 
scale-free topology (where only a few proteins or meta-
bolic substrates maintain a high number of interacting 
partners), hierarchical modularity (a scale-free network 
composed of modular components) and degree-dissorta-
tivity (the tendency of hub proteins to connect with non-
hub proteins in PPI networks) [38-40]. To explore evolu-
tionary mechanisms responsible for developing current 
biological networks, various models have been proposed 
to describe these observed network properties, thereby 
proposing how different network architectures and 
topologies are formed. Each of these models provides a 
unique perspective on network evolution and can be 
grouped by how the network is grown; they include 
(1)  preferential attachment, (2)  gene duplication and 
diver gence (DD), and (3) physical constraint models (for 
example, the crystal growth model).

Each of these models simulates network growth by 
iteratively adding nodes and interactions to the existing 
network in a specific fashion. The preferential attachment 
model only attempts to explain the observed scale-free 
topology within biological networks [38,39]. In this 
model, new proteins (nodes) are incrementally added to 
the network by connecting a new node (i) to an existing 
network node (j) with a probability proportional to the 
number of interactions the existing node (j) participates 
in (Figure  2). Therefore, new nodes are more likely to 
connect to existing nodes participating in a large number 
of interactions [41]. However, such a model fails to 
provide insight into the biological mechanisms giving 
rise to networks with the observed topologies. To provide 
a more biological model, gene duplication has been 
suggested as a means by which additional genetic 
material can be created to evolve and expand PPI net-
works, giving rise to gene DD models [42]. It has been 
further observed that duplicated genes rapidly diverge, 
sharing only a subset of their interaction partners [43]. 
Taking these considerations into account, DD models 
expand the network iteratively by first randomly selecting 
a node within the network, then duplicating it along with 
all its interactions. Rewiring events are subsequently 
applied to the duplicated node, whereby some duplicated 
interactions are lost and new interactions involving the 
duplicated node are made (Figure 2). Such a case can be 
found in the functional history of the TFIID/SAS protein 
complexes in the yeast clade. After gene duplication of 

the ancestral Taf14/Sas5 gene into Taf14 and Sas5, a 
specialization event occurred that resulted in the 
modulari zation of the original TFIID/SAS complex into 
distinct TFIID and SAS complexes of which Taf14 and 
Sas5 are members, respectively. Thus, Taf14 and Sas5 
each retain some of the interactions of the ancestral gene, 
but lose some others [44]. Despite its simplicity, DD 
models can recapitulate the scale-free network topology 
by implicitly incorporating the preferential attachment 
rules [45-48]. This can be realized by noting that nodes 
with many interaction partners will likely have one of its 
partners chosen for duplication.

Instead of focusing on topological rules such as prefer-
ential attachment to generate networks with a desired 
network topology, other studies have focused on physical 
attributes or constraints that may guide network evolu tion. 
One of the first constraints developed was the notion that 
intrinsic protein fitness influences the growth of new 
nodes (that is, proteins that are more important to the cell 
gradually acquire more interactions). Such a method is 
capable of realizing scale-free networks; however, it only 
considers protein change, which is only one of the possible 
network rewiring mechanisms [49]. To capture additional 
topological attributes found in biological networks, a 
crystal growth model has been proposed [50], whereby 
network growth is governed by the availability of 
unoccupied protein interaction surface. In this model, new 
nodes are added to an existing cluster of nodes or used to 
start a new cluster upon which interactions to other nodes 

Figure 2. Models of biological network evolution. Network 
evolution models can be grouped into three categories depending 
on how the models ‘grow’ the network. The green, blue and black 
nodes represent a selected node in the network, a new node added 
to the network, and the rest of the network, respectively. Red, gray 
and black lines represent gained, lost and unchanged interactions, 
respectively. Orange circles are different clusters, a parameter 
specific for the crystal growth model. From the starting network, the 
evolutionary models expand the network in different ways. The steps 
each model makes can be followed by reading the figure from top 
to bottom.
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are made based on the availability of unoccupied 
interaction surface area. If the new node (i) is added to an 
existing cluster, a two-step extension process is per-
formed: (1) selecting a cluster member, node j, based on 
the available unoccupied inter action surface area; and 
(2)  adding neighbors of node j randomly as interaction 
partners to the new node i (Figure 2). Interestingly, this 
physical constraint approach creates networks that not 
only have scale-free topology, but also hierarchic 
modularity and degree-dissortativity, properties found in 
experimentally derived PPI networks [50].

To comprehensively describe the evolutionary events 
giving rise to the network architectures we observe today, 
knowledge about the ancestral networks are required. 
While ancestral network reconstruction methods exist, 
they require the complete interaction networks [51]. Since 
complete interaction networks are currently un available, 
the validity of different evolutionary models is evaluated 
by their ability to recapitulate known topo logical network 
properties, thereby demonstrating that these models 
provide insight into the origins and putative mechanisms 
giving rise to the organization of present day networks. By 
these metrics, the crystal growth model is likely to capture 
the underlying principals resulting in different network 
architectures. Interestingly, the models presented here all 
randomly grow the network while capturing many 
network topological features without including any explicit 
selective pressure, suggesting a stochastic component is 
responsible for network evolu tion. Additionally, current 
models of network evolution only grow the interaction 
network. Once the nodes and interactions are created, 
they remain unaltered for the duration of the simulation. 
Future models should not only consider network growth 
but also network rewiring events to nodes other than the 
newly created node, thereby incorporating a larger number 
of observed network mechanisms.

Conserved network elements
Conserved network elements such as protein orthologs 
and interologs were some of the first features discovered 
in networks. These conserved elements can be considered 
analogous to conserved motifs or domains in protein 
sequences. Focusing on proteins, or conserved inter-
actions between proteins and their binding partners, led 
to the discovery of several features that are evolutionarily 
conserved [33,52,53].

Conservation of hub proteins
The basic feature of a network is a highly connected 
protein. In biological networks with scale-free topology, 
such proteins, known as hubs, are of special importance 
[38]. Fraser and colleagues [52] found these hub proteins 
to be more conserved at the sequence level. This finding 
was initially considered contentious due to arguments of 

dataset biases [54] and confounding variables such as 
gene expression levels, which appeared to be a better 
predictor of protein evolutionary rate [55]. Ultimately, 
this was resolved by distinguishing between hub types by 
the number of interaction interfaces available on their 
surface. This demonstrated that multi-interface hubs but 
not single-interface hubs (Figure 3a) are more evolu tion-
arily conserved compared with other proteins. Interest-
ingly, multi-interface hubs were further shown to be 
more essential and more likely to be members of stable 
complexes than single-interface hubs. The actin-related 
protein 2 (Arp2p) protein is an example of a multi-inter-
face hub and is part of the seven-member Arp2/3 
complex, which is highly conserved across eukaryotes 
and is responsible for initiation of new actin filaments 
[56,57]. An example of a single-interface hub is the 
sucrose non-fermenting 1 (Snf1p) protein kinase, whose 
complex is important for yeast to grow in carbon sources 
other than glucose, rendering Snf1 null mutants viable in 
the presence of glucose [56,58]. This structural pers pec-
tive provided a simple explanation for the previously 
observed date (single-interface) and party (multi-inter-
face) hubs, whose interaction partners were expressed at 
different and at concurrent times, respectively [56,59].

Network motifs, conserved interaction patterns
The binary classification between hub and non-hub 
proteins only considers the total number of interactions 
in which a protein participates. The network motif is 
used to help describe interaction patterns among 
multiple proteins; where a network motif is an interaction 
pattern within an interaction network that occurs 
significantly more or less frequently than in a randomized 
network (Figure  3b). Network motifs are analogous to 
sequence motifs. They were first found in the Escherichia 
coli and S. cerevisiae transcription regulation networks 
and their discovery helped uncover local network sub-
structures, such as feed-forward loops, highlighting a 
preference for specific protein arrangement within these 
regulation networks [60]. A subsequent study by Wuchty 
et al. [53] asked whether proteins participating within a 
network motif were more conserved. Using the presence 
of an ortholog in the comparison species to determine 
protein conservation, they found that proteins that are 
members of larger and more interconnected motifs are 
more likely to be conserved than proteins that are not. This 
is most probably because highly interconnected motifs 
tend to be protein complexes, whereby the inter action 
partners place evolutionary constraints on each other.

Network comparisons
While functional conserved network elements such as 
motifs have been identified, functional conservation itself 
can also be used for interaction prediction because 
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conserved proteins are likely to maintain the same func-
tionality. Thus, in a given species interaction network, 
functional knowledge about an interaction can likely be 
transferred to another species if both interaction partners 
are identifiable as orthologs. The additional constraint of 
an interaction further increases the likelihood that the 
conserved proteins maintain the same functionality 
across different species [61]. Hence, we can transfer an 
interaction by identifying its so-called interolog of the 

queried interaction in a PPI network or the regulog in the 
transcription factor-target regulation network [33,35]. 
Taking this a step further, we can identify conserved 
pathways between species using network alignments. 
Similar to sequence alignments, network alignments must 
account for gaps and mismatches corresponding to the 
loss or gain of a protein and dissimilar proteins, respect-
ively, in the alignment [62-65]. In this manner, it is 
possible to assign functionality by transferring knowledge 
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Figure 3. Conserved network elements. (a) Hub proteins can be 
categorized into single-interface and multi-interface hubs based on the 
number of physical interaction surfaces available on the hub protein 
[56]. (b) Network motifs are interaction patterns found in interaction 
networks that occur significantly more or less frequently that in a 
randomized network. Examples are shown of an overrepresented 
network motif in the protein-protein interaction network involving 
members of the regulatory particle non-ATPase complex [53], and an 
underrepresented network motif in the transcription factor-target 
network involving the minichromosome maintenance 1 (Mcm1), 
switching deficient 5 (Swi5) and asymmetric synthesis of HO 1 (Ash1) 
genes [5] for Saccharomyces cerevisiae. (c) A protein interaction network 
alignment of three species: S. cerevisiae (yeast), Caenorhabditis elegans 
(worm) and Drosophila melanogaster (fly), whose proteins are involved 
in transcriptional regulation (adapted from Sharan et al. [66]). Nodes, 
continuous edges and dashed edges represent proteins, protein-
protein interactions and ortholog relationships, respectively. Nodes of 
the same color indicate orthologous proteins. Proteins in the illustrated 
subnetwork (1) for yeast are chromatin organization modifier helicase 
and DNA-binding domains 1 (Chd1p), human sap homolog 49 (Hsh49p) 
and target of Sbf (Tos8p); (2) for worm are C27B7.4, excretory canal 
abnormal 7 (Exc-7), T28F12.2 and F31E3.2; and (3) for fly are CG33070, 
homothorax (Hth) and extradenticle (Exd) [66].
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to conserved protein groups across species or to make 
interaction predictions based on sequence similarity and 
the concurrence of interaction partners. Using the protein 
interaction networks of three species, S. cerevisiae, 
C.  elegans and D. melanogaster, interactions can be 
predicted with relatively high accuracy, resulting in a 40% 
to 52% success rate upon experimental validation. In this 
manner Sharan et al. [66] could predict and experi ment-
ally validate the interaction between the non-ATPase 
subunit 2 (Nas2p) and the regulatory particle triphos-
phatase 4 (Rpt4p) proteins in S. cerevisiae. One-to-many 
orthology relationships and lost or gained interactions 
add to the complexity of aligning conserved protein 
groups that modern approaches have overcome. For an 
example of a network alignment of the S. cerevisiae, 
C.  elegans and D. melanogaster protein interaction net-
works, see Figure 3c [66].

Divergent network elements
To observe evolutionary change, one has to look beyond 
conserved elements and examine divergent network 
features. The increase in the number and completeness of 
biological networks has now enabled researchers to study 
the differences between biological networks of species in 
more detail, highlighting the heterogeneous nature of 
interaction networks within the cell [67-69]. However, 
network incompleteness remains a concern - either false 
negatives or interactions that were never queried may 
lead to erroneous conclusions about changes between 
networks in two species. To study global properties of 
diverged interactions while minimizing the effect of 
varying network coverage for different species, early 
network rewiring studies used the interaction network of 
a single species to derive changing rates of interaction by 
comparing paralogs, which are proteins derived from 
genes that are related by a gene duplication event. This 
strategy has been used in experimental studies to 
characterize the functional divergence of transcription 
factors. Therefore, such studies can perform the same 
assay for different paralogous genes within the same 
species, thereby facilitating the ability to compare the 
elucidated interactions directly [70,71]. Generating more 
complete biological networks can be attained by compu-
tational methods using experimentally determined 
binding specificity maps. However, these computational 
methods are currently restricted to proteins with 
domains that bind linear motifs such as SH3, kinase and 
transcription-factor domains [68,72,73]. Experimental 
identification of all interaction partners for the same 
protein orthologs across multiple species has been per-
formed, but only for few proteins, such as the Ste12p and 
Tec1p transcription factors in three closely related yeast 
species [68], and the CEBPA and HNF4A transcription 
factors across five and three vertebrates, respectively 

(both sets include human and mouse) [74]. Such work 
provides a high resolution network, enabling one to 
delineate the evolutionary mechanisms contributing to the 
formation of the network. Future technologies capable of 
interrogating the interaction network in a high-throughput 
manner for multiple species will enable more compre hen-
sive and reliable network characterization across species.

Determining the network rewiring rates for interaction 
networks enables one to select appropriate species based 
on their divergence distance when performing com para-
tive network analyses. For example, a recent evolutionary 
study showed that the kinase-substrate phosphorylation 
and PPI networks rewired at different rates in S. cerevisiae 
and H. sapiens (who shared a common ancestor 1 billion 
years ago) [75], the former at 2.2  ×  10-5 interaction 
changes per protein pair per million years and the latter 
at 1.1  ×  10-6 interaction changes per protein pair per 
million years [69]. When they considered only network 
rewiring events involving the loss of an interaction using 
S. cerevisiae as the reference, 100% (0/4,068) and 98.5% 
(30,247/30,695) of the kinase-substrate phosphorylation 
and PPI networks were lost, respectively [69], indicating 
that the use of highly divergent species for global system 
comparisons is likely to be inappropriate, especially for 
kinase-substrate phosphorylation networks.

Neutral changes play an important role in molecular 
evolution. Kimura’s neutral theory of molecular evolution 
postulates that most genomic mutations are neutral and 
do not affect the fitness of an organism [76]. In network 
evolution, changes to neutral interactions can be thought 
of in a similar way. Neutral interactions are non-func-
tional interactions within a network and their existence 
can provide an explanation for the poor interaction 
conservation found across species [77]. Such neutral 
interactions and their associated network rewirings are 
especially thought to be common in kinase-substrate 
interactions, suggesting that only a fraction of kinase-
substrate interactions are functional [67,78]. Likewise, 
spurious DNA-binding sites found in recent transcrip-
tion-factor-binding studies with no apparent functional 
role are also likely to evolve in an unconstrained manner 
[79], resulting in an apparent rate of network rewiring 
faster than that found within the kinase-substrate 
interaction network [67]. This phenomenon is analogous 
to neutral changes in sequence evolution; these occur at a 
faster rate than negatively selected changes. Finding the 
rate of neutral interactions across different networks will 
help identify the extent to which these interactions shape 
networks and the evolutionary constraints they define 
com pared with those applied by selective pressures [77,80].

Indirectly measuring network rewiring rates using paralogs
It is often difficult to compare networks across different 
species because of the differing degrees of completeness 
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of their interaction networks. To mitigate the varying 
completeness across different species, early efforts 
focused on the network rewiring rates within the PPI 
network of a single species, such as that of S. cerevisiae. 
Under the assumption that new genomic content is 
created via gene duplication, then both protein paralogs 
will have the same interaction partners after the dupli-
cation event. Therefore, any difference in interaction 
partners between the protein paralogs enables the identi-
fi cation of network rewiring events (for example, changes 
in interaction partners) and hence estimation of the 
network rewiring rate within the PPI network (Figure 4). 
The divergence time between paralogous proteins can be 
estimated by triangulating the time of the gene duplica-
tion event using different species as a reference. Initial 
estimates of the rate of acquiring new interactions were 
3  ×  10-6 interactions per protein pair per million years, 
equating to approximately 60 new interactions per million 
years for the yeast proteome. Rates of interaction loss 
were estimated to be significantly higher at 2.2  ×  10-3 
interactions per protein pair per million years, resulting 
in half of the interactions being lost after 300  million 
years [43]. Paralogs are likely to be under weaker purify-
ing selection and more likely to diverge than non-
duplicated genes [81]; therefore, this rate of interaction 
loss is expected to be an overestimate.

To obtain more accurate network rewiring rates, subse-
quent studies utilized multiple species’ interaction maps 
of greater coverage [69,82], as the rates based on paralogs 
within the S.  cerevisiae PPI network used only a small 
subset of the interactions [43]. Beltrao and Serrano [82] 
determined the interaction rewiring rate for the PPI 
networks for four species: S.  cerevisiae, C.  elegans, 
D.  melanogaster and H.  sapiens. Because these species 
are highly divergent from each other (sharing a common 
ancestor over 1 billion years ago) [83], a direct com pari-
son results in a small overlap between these PPI networks 
[84]. Since many of the PPI networks were elucidated 
using high-throughput methods with relatively high 
false-negative and false-positive rates, the observed small 
overlap is likely to be due to a combination of poor 
coverage and data quality [85]. In a similar vein to earlier 
work by Wagner [43], paralogs were used to estimate the 
network rewiring rates indirectly within the PPI network 
of each species by using a number of closely related 
species to establish orthology relationships to identify 
recently duplicated genes. Using this approach, the diver-
gence time to a reference species was less than 100 
million years and estimated that the network rewiring 
rate (including rates of both interaction gain and inter-
action loss) was in the order of 1 × 10-5 interactions per 
protein pair per million years [82]; this is ten times faster 
than the rate found by Wagner [43]. The difference in the 
estimated rates shows the importance of selecting the 

appropriate species when performing network compari-
sons, because of the dependence between rates and 
divergence distance between the compared species.

Different biological networks change interaction partners 
at different rates
PPIs span a range of different interaction types from the 
binding of large globular domains [86] to the binding of 
domain-peptide-mediated interactions of SH3 domains 
[87]. Different types of interactions evolve at different 
rates, probably due to a number of biophysical differences 
in the protein interaction, such as the amount of protein 
surface participating in the interaction. Interactions 
between two globular proteins or between members of 
stable complexes often involve large interaction surface 
areas and tend to be conserved throughout evolution. 
This is mainly due to the large number of mutations 
needed to abolish this interaction [88]. Conversely, in the 
case of peptide mediated interactions, the interaction 
surface provided by the binding motif is small: between 
three and ten amino acids in length [29]. These short 
regions of interaction binding render it relatively 
dynamic, since a single or few mutations will abolish the 
interaction. Similarly, only a few mutations are required 
for the formation of a new binding site [89]. The rapid 
rate of binding site loss can be observed in the experi-
mentally determined transcription factor-target binding 
sites of specific transcription factors [68,90-92] was 
highlighted in the comparison between yeast species, 
where up to 80% of the target binding sites are lost over 
about 300 million years of divergence [68,91]. However, 
using closely related species sharing a common ancestor 
10 million years ago reveals that only 1% to 5% of the 
binding sites change [92,93]. Changes in specificity and 
target binding sites are not the only means by which 
interactions may diverge. Alternatively, changes to 
protein localization, expression timing and novel inhibi-

Figure 4. Estimating the rate of interaction rewiring using 
paralogs. Red, gray and black lines represent gained, lost and 
unchanged interactions, respectively. Immediately after gene 
duplication, the paralogs P and P’ will have the same interaction 
partners. Over the course of evolution, the paralogs will acquire and 
lose different interactions [43].

Paralogs

A

C

A

C

P P’ P P’B

D

B
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tors can also change interaction binding, either perma-
nently or temporarily.

Different types of protein interactions have been 
associated with specific biological processes. For exam-
ple, domain-peptide interactions are common in regula-
tory networks, such as in cell signaling [87], transcription 
factor-target regulation and kinase-substrate phosphory-
lation [89], which have been the focus of current studies. 
One would expect that these biological networks would 
rewire at a faster rate than the general PPI network, and 
this appears indeed to be the case [67,69]. Unfortunately, 
a direct comparison between network rewiring rates is 
difficult due to the different reference species used in the 
different studies. Owing to low coverage of current net-
works, no authoritative answer can be given at this point 
as to the exact degree to which these biological networks 
differ in terms of network rewiring rates. Nevertheless, 
indirect methods can be applied to compare the network 
rewiring between multiple interaction networks from 
different reference species. Shou and colleagues [69] 
fitted a linear model to each biological network using 
different species as a reference, enabling them to extra-
polate the rate of interaction rewiring to a predetermined 
divergence distance chosen to perform the comparison. 
Ordering the network rewiring rates for biological 
networks from the fastest to slowest after 800  million 
years of divergence, they found the following order: 
transcription factor-target > phosphorylation-substrate > 
genetic interactions  ~ PPIs  > metabolic pathway [69]. 
While the network rewiring rates for each biological net-
work is likely to be underestimated due to the inability to 
observe multiple rewiring events since the last common 
ancestor, such a method is capable of elucidat ing the 
network ordering. It is tempting to speculate that this 
ordering suggests that regulatory networks of trans cription 
factor-target and phosphorylation-substrate net works 
rapidly reorganize to adapt to selective constraints while 
maintaining a core network that coordinates basic 
cellular functionality with regulatory inputs.

Conclusions and outlook
While theoretical models have driven initial advances in 
network evolution, ultimately, more comparative cross-
species data are needed. Although technological advances 
have enabled early biological network comparisons, the 
availability and coverage of biological interaction network 
data remain as obstacles. The varying degrees of coverage 
between interaction networks of different species make it 
difficult to perform direct network comparisons. Several 
approaches have been developed to overcome this limita-
tion, thus enabling network comparisons on a limited 
scale. Technologies permitting the elucidation of com-
plete interaction networks for multiple species will allow 
the precise evolutionary mechanisms to be revealed. 

Despite the current lack of complete interaction net-
works, network alignment methods have been developed 
to compare the interaction networks of multiple species. 
Ultimately, such comparisons will lead to more sophis ti-
cated evolutionary models that will enable the recon-
struc tion of putative ancestral networks. Both conserved 
and divergent elements of biological network evolution 
have been identified, providing the raw material upon 
which evolution may act upon to form the observed 
biological interaction networks. Conserved network 
elements have provided insights into the essentiality of 
particular topological arrangements, such as the impor-
tance of hub proteins for cell viability. Analyses into 
network rewiring have revealed a wide range of rewiring 
rates between different biological networks, providing 
the stepping stones for future network evolutionary 
models. Such models might enable identification of 
evolutionary events that are under selective pressure, 
analogous to models in molecular evolution. Ultimately, 
they will enable a mesoscale view of evolution and, as 
such, provide a link between molecular evolution and 
evolution at the whole organism level.
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