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The human respiratory syncytial virus (hRSV) remains one of the leading pathogens

causing acute respiratory tract infections (ARTIs) in children younger than 2 years

old, worldwide. Hospitalizations during the winter season due to hRSV-induced

bronchiolitis and pneumonia increase every year. Despite this, there are no available

vaccines to mitigate the health and economic burden caused by hRSV infection. The

pathology caused by hRSV induces significant damage to the pulmonary epithelium,

due to an excessive inflammatory response at the airways. Cytokines are considered

essential players for the establishment and modulation of the immune and inflammatory

responses, which can either be beneficial or harmful for the host. The deleterious effect

observed upon hRSV infection is mainly due to tissue damage caused by immune

cells recruited to the site of infection. This cellular recruitment takes place due to an

altered profile of cytokines secreted by epithelial cells. As a result of inflammatory

cell recruitment, the amounts of cytokines, such as IL-1, IL-6, IL-10, and CCL5 are

further increased, while IL-10 and IFN-γ are decreased. However, additional studies

are required to elicit the mediators directly associated with hRSV damage entirely. In

addition to the detrimental induction of inflammatory mediators in the respiratory tract

caused by hRSV, reports indicating alterations in the central nervous system (CNS)

have been published. Indeed, elevated levels of IL-6, IL-8 (CXCL8), CCL2, and CCL4

have been reported in cerebrospinal fluid from patients with severe bronchiolitis and

hRSV-associated encephalopathy. In this review article, we provide an in-depth analysis

of the role of cytokines secreted upon hRSV infection and their potentially harmful

contribution to tissue damage of the respiratory tract and the CNS.
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INTRODUCTION

Prevalence of hRSV Infection Worldwide
The human respiratory syncytial virus (hRSV) is one of the primary viral agents causing
hospitalizations due to acute lower respiratory tract infection (ALRTI) in young children,
immunocompromised and elderly individuals worldwide (1, 2). The epidemic period for hRSV
infections usually takes place during the winter season in areas with temperate climates (3).
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This pathogen causes pulmonary manifestations mainly in the
upper and lower respiratory tract, promoting the development
of bronchiolitis and pneumonia (Figure 1) (4, 5). Some of the
risk factors associated with the development of hRSV-associated
ALRTI are premature birth, low birth weight, maternal smoking,
history of atopy and no history of breastfeeding in infancy,
among others (6). A recent report estimated that -during 2015-
hRSV-associated ALRTI episodes reached a global burden of
33.1 million, resulting in 3.2 millions hospital admissions and
around 60,000 in-hospital deaths in children under the age of 5
(1), although, no global studies of other populations such as the
elderly or patients with underlying medical conditions have been
conducted (7). Reinfections during childhood and adulthood are
very common, and the severity of hRSV infections in healthy
adults is mild. This decrease in severity has been related to higher
neutralizing antibody titers induced by constant challenges with
the virus throughout life (8). Besides children, the elderly have
been described as another high-risk population, probably because
of their senescent immune system (9). In this population, hRSV is
the leading viral pathogen, which causesmorbidity andmortality,
followed by influenza A (10).

Besides the airway pathologies caused by hRSV, neurologic
complications have also been described after infection with this
virus, although less frequently (11–13). The etiology of the
neurological alterations remains unknown. However, it has been
proposed that inflammatory mediators, such as cytokines could
be playing an essential role in the development of neurologic
alterations (14, 15).

The hRSV is a highly contagious virus, as it can live outside of
the host for about 6 h on hard surfaces, and as much as 20min
on the skin (16). Also, people that are infected with this virus
remain contagious up to 8 days starting from the day of infection
(17). Studies have shown that at least a third of the children
experiencing hRSV infection within their first year of life will
get re-infected during their second or third year of life (18).
Patients infected with this virus cannot promote an adequate
immunological response and, therefore, can get infected again
with the same virus in the same cohort (19). In this regard, it
has been described that this virus can impair the assembly of a
proper immunological synapse between the antigen-presenting
cells (APC), such as the dendritic cells, and T cells (Figure 1B)
(20). In this way, hRSV renders T cells unable to respond
correctly, which may lead to a poor adaptive immune response
against the virus and, consequently, the reinfections mentioned
above (Figure 1).

Most studies, aimed to determine the economic burden
associated with hRSV, measure its immediate impact on health-
care resources, such as hospitalizations, ambulatory care, and
emergency department visits, focusing primarily on infant
populations (21–23). It is noteworthy that hRSV has been
associated with long-term illness such as asthma and recurrent
wheezing (24, 25), which could represent a substantial increase
in the economic burden related to this pathogen (26, 27).

Currently, there are no licensed vaccines available for
preventing hRSV infection although several groups are working
in the development of potentially effective vaccines and therapies.
Nowadays, the only drug available on the market designed to

ameliorate this disease is palivizumab, a humanized monoclonal
antibody against the fusion protein (F-protein) of the virus. This
product is used as a prophylactic option, along with ribavirin
as a therapeutic option, although this strategy is only used in
high-risk patients, such as children born after ≤29 weeks of
gestation and preterm infants with chronic pulmonary disease
(28, 29). Because this treatment fails to target most of the
population susceptible to hRSV-caused disease, (i.e., healthy
infants, children, and the elderly), the development of an effective
vaccine is imperative (21, 22, 30). Several studies have concluded
that the cost-effectiveness of palivizumab might not be enough
to recommend the massive use of this antibody (22, 31–33).
However, other studies have concluded that it does reduce
the severity of infection and long-term effects on children,
suggesting that it can diminish the spending of health-care
resources (34, 35).

hRSV: General Characteristics and
Infective Cycle
The hRSV has been recently defined as a member of the
Orthopneumovirus genus from the Pneumoviridae family being
also recently renamed as human Orthopneumovirus and is an
enveloped, negative-sense and single-stranded RNA virus with
a genome of about 15.2 kb, possessing 10 genes that encode
for 11 proteins (36–38). The viral particle displays 3 surface
proteins, the F-protein, the glycoprotein (G) and the small
hydrophobic (SH) protein (Figure 1A). Of all these, the G-
protein is responsible for the attachment with the membrane of
the host cell (39), mainly by binding to the CX3CR1 receptor on
ciliated epithelial cells (40, 41). The fpre F-protein is responsible
for the fusion of the viral membrane with the host cell membrane
and further entry of the viral genetic material into the cytosol,
apparently by its interaction with the surface protein nucleolin,
although other receptors have been described to play a role in
this process (42).

This virus can be transmitted by aerosol particles person-to-
person, or via direct contact of these aerosol particles with the
exposed mucosa, such as conjunctival (43). After infection, the
incubation period can vary between 2 and 8 days in healthy
individuals (44). At the beginning of hRSV infection, the virus
meets the first line of defense of the organism, consisting of
epithelial cells from the nasal and upper respiratory tract (45, 46).

The airway epithelium presents the apical junctional complex
(AJC), which seals the space between the layer of epithelial cells
and acts as a barrier that prevents the entry of pathogens into
the organism (47). It has been described that hRSV infection
induces a dysfunction in the epithelial barrier in a protein kinase
D (PKD)-dependent manner (48). After infection by hRSV,
cells exhibit a disruption of the AJC, which can be prevented
when PKD-inhibitors are added, as described previously (48).
As mentioned above, once hRSV reaches the apical side of
the ciliated epithelial cells, the G and F proteins allow the
attachment and fusion of the virus to the host membrane,
respectively (39, 42).

After the virus has fused with the membrane of the host cells,
it then begins the mechanism of entering the cells. The entry of
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FIGURE 1 | hRSV structure and impact over epithelial cells and respiratory tract. (A) The viral particle is composed of 9 structural proteins: 3 in the surface (F, G, and

SH) and the other 5 inside the particle (L, N, P, M, M2.1, and M2.2). (B) Upon infection, it has been described that epithelial cells upregulates their expression of

several TLRs and secrete mainly pro-inflammatory cytokines. Remarkably, it has also been described that hRSV infection of antigen presenting cells (APC) renders

them unable to properly activate T cells, as this virus is able to inhibit the assembly of an immunological synapse. (C) hRSV infection induces the secretion of several

pro-inflammatory cytokines that will induce the infiltration of many immune cells. These immune cells, along with the hypersecretion of mucus and the shedding of the

infected epithelial cells, will induce the collapse of the lower respiratory tract. Finally, it has been described that hRSV infection can cause CNS pathologies, although

the mechanism underlying this have not been described.

the virus is through an endocytosis-dependent mechanism and
allows the entering of the whole virus, including its lipid envelope
(49). Then, the virus is carried within endocytic vacuoles, and
undergoes a second fusion, this time with the vacuole itself, that
occurs when the F-protein is cleaved by a furin-like convertase,
to render the virus able to infect the cell (49). Then the virus
reaches the cytoplasmic inclusion bodies (IBs) of the cells, where
it can replicate its RNA using the viral RNA-dependent RNA
polymerase (RdRp) complex, which is composed of the large
protein (L) and the phosphoprotein (P) of the virus (50). As
transcription goes on, the viral protein M2-1 is added to the
complex allowing the synthesis of the mRNA (50, 51). The
virus starts the replication of its RNA in the nasal epithelial
cells and then it moves toward the bronchioles, where the
replication becomes more effective (44). The virus spreads via
intercellular extensions between two cells or through the cell to
cell transmission, and in both cases, the infected cell is the one
who passes the virus to the target cell (52).

To study the pathology associated with hRSV and the immune
response during the infection, the use of several animal models
has shown to be extremely important (53, 54). Lately, mice
have been the animal model of choice for most immunology
studies on this virus (53), although it is important to emphasize
that the immune response observed in mice is not necessarily

identical to the one observed in human patients. Some of these
differences in the immune response between mice and humans
are remarkable, for instance, the fact that older mice are more
susceptible to hRSV-infection as compared to younger mice
(55). Some techniques and methods to determine hRSV disease
severity used in murine models are also different from those used
to evaluate these parameters in humans. For instance, recording
the body weight changes as a parameter of disease severity
(more weight loss implies a more severe disease) is frequently
used in the murine model, but it is not used as a parameter
in humans disease (53). Also, obtaining bronchoalveolar lavage
fluid (BALF) samples from mice is a standard procedure to
evaluate inflammatory parameters, and these results can vary
significantly from those observed in humans (53, 56). Although
some differences can be observed, the data relative to cytokines
and chemokines in the lower respiratory tract of mice and
humans varies little, and to our knowledge, no published studies
are describing these molecules in the upper respiratory tract and
central nervous system (CNS) of mice (Table 1).

Further, in this review, we will provide an in-depth analysis
of the current information available regarding the inflammatory
mediators that are induced upon hRSV infection, and which
ones are produced, up-regulated and down-regulated in the
different sections of the respiratory tract and the CNS (Table 1).
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TABLE 1 | Effect of hRSV infection on the expression profile of cytokines in the

upper and lower respiratory tract and entral nervous system.

Organism Upper

respiratory

tract

Lower

respiratory tract

Central

nervous

system

Human IL-6 (57, 58) IL-6

(14, 15, 59)

TNF-α (57, 58)

IL-4 (60–62)

TNF-α

(63, 64)

IL-6 (60)

IL-12 (65) IL-9 (60, 66)

IL-23 (65) IL-10

(60–62, 67–69)

IL-13 (60–62)

IFN-γ (66)

IL-17 (70, 71)

TSLP (72)

CXCL8

(57, 58, 73)

CXCL8 (74) CCL3

(57, 58, 75)

CCL2 (15)

CCL5 (74) CCL4 (57, 58) CCL4 (15)

CXCL10 (74) CCL2 (57, 58) CXCL8

(15)

CCL5

(57, 58, 75)

Mouse – IL-6 (76) –

IL-1β (77)

TNF-α (77)

IFN-γ (77)

IL-12 (77)

TSLP (78)

– CCL3 (77) –

CCL5 (77)

Additionally, we will discuss the contribution of cytokines to
the immune response and immunopathology observed after
hRSV infection.

CYTOKINES ELICITED BY hRSV
INFECTION

Among the inflammatory mediators that have been described
to play an essential role in the hRSV pathology are cytokines
and chemokines. Cytokines are small secreted molecules that
contribute significantly to the modulation of the immune
response and T cells differentiation (79). Several cell types
can produce and secrete cytokines including immune cells,
epithelial cells, and endothelial cells, amongst others (80, 81).
Depending on the effect that they generate over immune cells,
they can be classified into two groups; pro-inflammatory and
anti-inflammatory (79). Interleukin (IL)-1, tumor necrosis factor
alpha (TNF-α), interferon-gamma (IFN-γ), and IL-6, among

others (79, 82, 83) belong to the pro-inflammatory group, IL-10 is
anti-inflammatory, and IL-12 can be pro- and anti-inflammatory
cytokine (Figure 1C) (84, 85).

Among cytokines, chemokines are a group of proteins
with chemoattractant properties and are characterized by three
to four cysteine residues present in their structure (80, 84).
These proteins can be classified -according to the position of
the cysteines residues in their N-terminal portion- into four
families. The first family is the C-C chemokines present the
cysteine residues continuously. The second family is the C-X-C
chemokines present one amino acid between the two cysteine
residues. The third family is the X-C chemokine only present one
cysteine residue in a conserved position (this family is composed
of only one member; XCL1). Finally, the four family is the C-X-
3-C chemokine, which presents two cysteine residues separated
by three interchangeable amino acids (This family possesses only
one member; CX3CL1) (84, 86). Another relevant characteristic
of chemokines is that they are considered to be promiscuous
proteins, as they can interact with more than one chemokine
receptor and one receptor can bind more than one chemokine
(86). Additionally to their chemoattractant function, chemokines
play an essential role in maintaining the homeostasis during
the development of the brain, heart, and hematopoietic system,
among others (86). Besides, they are also critical players in the
modulation of the immune response during infections, as they
are responsible for the infiltration of immune cells into the site of
injury (84, 86).

CYTOKINES INDUCED BY hRSV
INFECTION IN THE UPPER RESPIRATORY
TRACT

As mentioned above, the hRSV infection starts with the virus
reaching the mucous membranes of the eyes, nose or mouth,
allowing it to enter the organism (87). The first zone of infection
is the upper respiratory tract, where it targets the ciliated
epithelium of the nasopharynx, and then it moves toward the
lungs, blocking the airways as the infection proceeds (Figure 1C)
(88). This inflammation -known as bronchiolitis or pneumonia,
accordingly to the degree of the disease- involves infiltration
of polymorphonuclear cells (PMNs) such as neutrophils and
eosinophils. Moreover, the rounding and shedding of the infected
epithelial cells apparently caused by the NS2 protein, as described
by Liesman et al. (74) inducing the collapse of the alveolar spaces
and, therefore, impaired oxygen exchange (89). Remarkably,
humans are born with at least a third of the alveoli that they
will possess once the lungs are fully developed, with alveolar
walls similar to the ones seen in an adult (90, 91). However,
during childhood, these structures exhibit a lower area/volume
ratio when compared with a fully developed lung, a rate that
is increased until adolescence. Therefore, the useful space for
gas exchange is reduced in early stages of human development.
This phenomenon could explain for the exacerbated pathology
observed in children, compared to teenagers and adults, with
even further complications the younger they are (90, 91).
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Several reports have described the changes in the ciliated
epithelium upon infection with this virus. For instance, Wong
et al. described that, upon infection, total loss of cilia is reported,
mainly associated with microtubule damage (92). These could be
in direct relation with reports indicating that this virus replicates
in the apical cell surface of these cells (93). Remarkably, Smith
et al. described that infection with hRSV could induce ciliary
dyskinesia and ciliary loss of epithelial cells early during the
infection, impairing in this way the clearance of the respiratory
tract (94). Interestingly, Jumat et al. recently described the
morphogenesis of hRSV in epithelial cells, using a primary
culture of nasal epithelial cells as a model. They detected the
presence of the F-protein of hRSV predominantly in cilia, but
not the N-protein, observing this and several other proteins in
the non-cilia locations of the cells, indicating that, probably the
hRSV-F protein may be responsible for the damage to the cilia
(46). Therefore, upon infection, hRSV seems to replicate and
exit from non-cilia locations in the apical side of epithelial cells,
somehow causing loss of ciliary function.

In response to all this damage, the airway epithelium generates
cytokines and chemokines to recruit effector cells to the site of
infection and restrict its propagation (95), causing an exacerbated
immune response where infiltrating immune cells such as PMNs,
T cells and inflammatory mediators cause damage to the tissues
(63, 84). This exaggerated inflammatory response is increased
as the infection progresses, with hRSV inducing a Th2-like
immune response, promoting the inflammation (64). Notably,
it has been described that primary infection with hRSV induces
the transcription of nuclear factor kappa B (NF-κB) mainly
through its M2-1 protein (96). This factor, in turn, produces the
secretion of IL-8/CXCL8, TNF-α, CCL5, and CXCL10, among
others. Accordingly, transcription factor AP-1 is also required
for the expression of IL-8, as described by Dey et al. (97). Both
NF-κB and AP-1 are regulated in their expression by the TGF-
ß activation kinase 1 (TAK1), as deletion or inactivation of
this kinase reduce gene expression of the transcription factors
and decrease their nuclear translocation and DNA-binding
activity (97), suggesting that the virus could be modulating these
pathways. Finally, it has also been reported that STAT1 regulates
the secretion of IL-4 by basophils upon infection with hRSV. In
this line, Moore et al. described that KO mice for STAT1 showed
higher levels of IL-4 in lungs, upon infection; a phenomenon
that was reverted when mice were depleted from basophils.
Remarkably, this increase in the expression of IL-4 correlated
with more marked lung histopathology (98).

In light of all this, Das et al. reported that human nasal
epithelial cells infected with hRSV exhibits increased levels of
IL-6, CXCL8, and CCL5, as compared to non-infected cells (65).
Remarkably, IL-2 levels in nasopharyngeal aspirates do not seem
to correlate with hRSV infection, as Giugno et al. described that
the concentration of this cytokine was heterogeneous among
infected and non-infected children (99). The secretion of these
pro-inflammatory cytokines may be adding to the exacerbated
inflammation described in this disease (Figures 1C, 2).

Since hRSV-infected children are only brought onto health
centers once the disease has reached an advanced development
stage, it is hard to determine the temporality of the secretion

of cytokines and chemokines in humans, during this disease.
In this line, Blanco et al. performed a study in cotton rats
where they measured the transcription levels of several of these
molecules during primary and secondary infection (100). Therein
the authors show an increase in the transcription levels of all
the cytokines measured except for IL-10 during the first day
post-infection. A peak for IL-6, IFN-α, and TNF-α, was detected
during day 1 post-primary infection, decreasing the first two by
day 3, while the latter remained high up until day 10. Likewise,
IL-1β, CCL5, CXCL1, and CXCL10 transcription levels peaked
at day 2, remaining high up until days 5 or 6. The cytokines
that peaked during day 3 were IL-10 and CCL4, recovering
normal levels by day 7. The last molecule to reach its peak was
IFN-γ, at day 4 post-primary infection which correlates with
previous studies indicating that this virus inhibits the expression
of this cytokine. Then, at day 14, the levels of IFN-γ were
returned to normal levels (100). Remarkably, infectious virus
was not detected in the lungs of cotton rats challenged in a
secondary infection; however, changes in the lung structure were
detected even earlier than in primarily infected cotton rats (100).
Despite all this, and as indicated above, these data are all related
to transcript expression level, and it is not a direct measure
of proteins. Therefore, this information must be taken into
account cautiously.

Another work performed by Legg et al. examined the cytokine
response to the hRSV through nasal lavage fluid in infants (101).
In this study when some respiratory symptoms the research team
visited the infant to whom they performed a clinical examination
and nasal lavage, considering this collection of samples days 1 and
2. The same procedure was performed at day 5 and 6 since the
development of the symptoms. They found that IL-4/IFN-γ ratio
was elevated at day 1–2 and 5–6, and during the first two days,
the IL-10/IL-12 ratio reached its peak (101). The results obtained
with IFN-γ in infants correlates with the results obtained in mice
since during the first couple of days the secretion of this cytokine
has a similar pattern, suggesting that the other cytokines should
behave similarly in humans as it does in cotton rats.

Toll-like receptors (TLRs) are pathogen recognition receptors
(PRRs) that are activated upon the recognition of pathogen-
associated molecular patterns (PAMPs) (102). They are expressed
in several cell types such as immune cells and epithelial cells.
Moreover, they are significant players in the early response
against pathogens, as they can regulate the secretion of several
cytokines and chemokines (103, 104). In this line, the role of TLRs
in the innate immune response against hRSV is significant, as
TLR3, TLR4, TLR7, and TLR8 are upregulated upon infection
(Figure 1B) (105–107). TLR4 has been described to interact
with the F-hRSV protein, leading to the activation of NF-κB
and the secretion of the cytokines mentioned above, such as
CXCL8 and TNF-α (108, 109). In humans, mutations in TLR4
impair the activation of this pathway and, in mice this renders
the organism unable to clear the virus, and the persistence of
the virus has been described in TLR4 deficient mice (57, 58).
TLR3, which recognizes viral double-stranded RNA, induces
the secretion of type I IFN and the activation of the NF-κB
pathway (105). Remarkably, TLR3 deficient mice have shown
a Th2-like biased immune response, further exacerbating the

Frontiers in Immunology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 452

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bohmwald et al. Cytokines Induced by hRSV Infection

FIGURE 2 | Lower respiratory tract inflammatory response induced by hRSV infection. Upon hRSV infection in the lower respiratory tract, the epithelial cells secrete

IL-6, IFN-γ, CCL3, CCL5, CXCL8, and TSLP among others inflammatory mediators. This inflammatory immune response promotes the infiltration of immune cells

(such as monocytes, eosinophil, neutrophils and lymphocytes, among other) into the lungs, causing an obstruction of the airways and damage to the tissue.

eosinophils infiltration and mucus secretion (60). TLR7, in turn,
recognizes viral single-stranded RNA and induces the secretion
of T cells-activator and mucus-secreting cytokines such as IL-12
and IL-23 (61).

Mucus secretion is also a significant factor associated with
hRSV infection. The production of this thick layer that works
as another defense mechanism of the organism is performed
by goblet cells (Figures 1C, 2) (62). These cells are activated
by cytokines such as IL-13, IL-17, and IL-23 (67), TLRs such
as TLR3, and TLR7 (60) and immune receptors such as
CXCR2 (68). As described above, TLR3 upregulation, secretion
of IL-13 by infiltrating eosinophils and activation of several
immune receptors are hallmarks of hRSV infection. Therefore,
higher production of mucus usually correlates with more
severe disease. Remarkably, Mukherjee et al. described that
upon blockade of IL-17 through neutralizing antibodies, the
secretion of mucus by hRSV-infected mice was significantly
reduced, leading to a less exacerbated obstruction of the
airways (69).

As it can be seen, the immune response against hRSV
may be redundant at some points, but this redundancy
itself is in part aiding the exacerbated inflammation and
the production of pro-inflammatory cytokines. Although
the organism exhibits several mechanisms to impede
the advance of hRSV throughout the upper respiratory
tract, this virus can avoid and even take advantage of
many of these, eventually reaching the lower respiratory
tract, where it will continue to replicate and progress in
its pathology.

Cytokines Induced by hRSV Infection in the
Lower Respiratory Tract
It has been described that hRSV is a mucosa-restricted virus,
as in natural infections it initially replicates in the epithelium
of the nasopharynx (110). In immunologically naïve infants,
hRSV spreads through a cell to cell transfer and extracellular
binding, producing discontinuous foci of infection in the tracheal
epithelium (110). The lower respiratory tract is essential for the
respiratory system and is composed of trachea, bronchi (primary
and secondary) and alveoli (111). Under normal conditions,
inhaled pathogens are cleared via the mucociliary escalator from
ciliated epithelial cells. This defense mechanism is coordinated
with the actions of the airway lining fluid, rich in antioxidants,
defensins, and lysozyme secreted by Clara cells and submucosal
glands, along with mucous glycoproteins secreted by goblet cells
(Figure 2) (66).

An exacerbated hRSV infection is characterized by several
symptoms including severe chesty cough, wheezing, apnea and
cyanosis and all of these symptoms can be signs of a lower
respiratory tract infection (LRTI) (112). In infants, the leading
pathology caused by LRTI is bronchiolitis, which has been
described to involve an acute inflammation—mainly associated
with exacerbated infiltration of neutrophils- necrosis of epithelial
airway cells and increased production of mucus, among others
(113, 114). Additionally, it has been described that the damage
observed in the respiratory tract is not only induced by the viral
infection itself, but also by the local production of cytokines
(88). In the bronchioles samples from post-mortem patients,
hRSV was detected mainly in the ciliated cells (115). Moreover,
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the majority of inflammation observed was at the submucosa
level (115).

To understand the nature of this inflammation, the majority
of the studies that have been performed in patients are focused
on the analysis of the production of cytokines that coordinate
the infiltration of immune cells. Since it is difficult to obtain
bronchoalveolar lavage fluids (BALFs) samples from patients,
these studies have been performed on ventilated hRSV-infected
infants (116, 117). McNamara et al. collected these samples
from term and pre-term infants to determine the inflammatory
mediator profile in these children. An increase of the transcript
and protein levels of cytokines such as IL-6, TNF-α, CXCL8,
CCL3, CCL4, CCL2, and CCL5 was observed, as compared to
control groups (Figure 2) (116, 117).

It has been reported that cytokines associated with a Th2-like
response, such as IL-4, IL-6, IL-9, IL-10, and IL-13, are elevated
in nasal washes and lungs of children with hRSV-induced
LRTI (Figure 2) (72). Among these, IL-6 is a pro-inflammatory
cytokine which has been described to play an essential role in the
host immune response against hRSV infection (116). McNamara
et al. also showed in pre-term and term infants with hRSV-
induced bronchiolitis that IL-6 levels were elevated at day 1
of intubation, in term infants as compared to pre-term and
control group (116). According to this observation, it is possible
that IL-6 plays a relevant role in the hRSV pathogenesis in the
lung of infected infants. When comparing the concentration of
chemokines on the first day of intubation and the extubating
day, no differences were found between these critical days (57).
During another study performed in children under the age of
2 with clinical manifestations of respiratory obstruction and
distress due to viral infection, different cytokines related to
hRSV-infection were evaluated at three-time points: admission-
hospitalization, discharge and 1 month after release (70). At
the beginning of the study, the children admitted exhibited an
increase in Th2-like cytokines such as IL-4, IL-5, and IL-13 (70).
The increase in these cytokines decayed progressively until 1
month after discharge. In another study in children with signs
of severe LRTI and positive for hRSV infection (71), cytokines
were evaluated at two points: discharge and 1 year after release.
Th2-like cytokines, such as IL-4 and IL-6, decayed 1 year after
the infection. Surprisingly, IL-13 levels remained higher in the
initially infected group when compared with the control group 1
year after the viral infection, although the authors could not rule
out the effects of other diseases or environmental factors (71).
Furthermore, children admitted in hospital with bronchiolitis
due to hRSV-infection exhibited higher concentrations of IL-6 in
nasal swabs as compared with their older siblings (118).

IL-10 has also been described as a key cytokine in the response
against this virus (119–121). The varying levels and the role of
IL-10 during hRSV infection have not been entirely determined,
as IL-10 fluctuates with the age of children (120). Importantly, a
study found that lower levels of IL-10 correlate with the severity
of the hRSV disease in infants (120). Additionally, it has been
described that in infants older than 3 months of age with mild
hRSV infection exhibit high IL-10 levels, which can be related to
a protector effect. Nonetheless, in infants below 3 months of age,

high IL-10 levels were reported in those with severe bronchiolitis,
therefore being considered as a hallmark of disease (121).

Interestingly, it has been reported that infants younger
than 3 months, hospitalized with hRSV-induced bronchiolitis,
presented elevated amounts of Th2-related cytokines in BALF
samples, such as IL-3, IL-4, IL-10, and IL-13 (75). Furthermore,
an increase of pro-inflammatory cytokines such as IL-1β, IL-
6, TNF-α, and also IL-12-p40 -a Th1-like related cytokine-
was also reported (75). Importantly, IL-3 -which is involved in
the infiltration of immune cells that are related to the asthma
development- and IL-12p40 are necessary for the secretion of
IFN-γ. Therefore, the increase of both cytokines correlates with
recurrent episodes of wheezing in hRSV infection (75).

IFN-γ is a cytokine that stimulates viral clearance by
promoting anti-viral immune effector responses. Therefore,
low levels of this cytokine in patients have been associated
with a higher severity index in the bronchiolitis caused by
hRSV (Figure 2) (122). Semple et al. reported that in infants
hospitalized due to hRSV-induced bronchiolitis who needed
oxygenation or ventilated support, IFN-γ levels in BALFwere low
when compared with the infants that never required oxygenation
(122). These low IFN-γ levels correlated with increased severity
of the disease and its reduction is significant in the development
of the bronchiolitis (122). Contrary to these findings, recent
studies performed by Thwaites et al. shows high levels of IFN-
γ in patients from the pediatric intensive care unit (PICU)
with hRSV-infection, along with high levels of IL-1 and IL-10
respect to the healthy controls (123). Also, reduced IFN-γ levels
were detected in children with moderate bronchiolitis; however,
in children with severe bronchiolitis, the levels of IL-17A and
MUC5AC were increased (123). Considering the data mentioned
above, the amount of IFN-γ in patients with hRSV-bronchiolitis
is controversial.

Additionally, Semple et al. also analyzed the production of
IL-9 (122). This cytokine is produced in Th9-like immune
response and has been implicated in the severity of the hRSV
pathology (124). The data obtained showed that IL-9 levels
in BALF were increased in infants with severe bronchiolitis
that required oxygenation. However, no differences were
found when compared with infants that never needed oxygen
supplementation (122). In another study performed in pre-term
and term infants with hRSV bronchiolitis, the expression of the
IL-9 mRNA in BALF was increased in both groups, as compared
to control groups (124). Moreover, no significant differences
were found in the levels of IL-9 transcript among pre-term
and term infants. However, the protein secretion was increased
in term infants when compared to both pre-term and control
groups (124). Furthermore, the primary source of these cytokines
in the lungs of hRSV-infected infants were neutrophils (124).
Remarkably, it has been reported that IL-9 can upregulate genes
involved in the mucus production in goblet cells, which could
explain the elevated amounts of mucus in patients with hRSV-
induced bronchiolitis (124). Additionally, it has been reported
that IL-9 polymorphism has a different effect in the hRSV
disease severity in boy and girls (125). The single nucleotide
polymorphism (SNP) rs2069885 of the IL-9 gene was associated
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with higher susceptibility of severe disease caused by hRSV while
in boys, is associated with a lower susceptibility (125).

Also, it has been described an association of the
polymorphism of the IL-4 and IL-4Rα genes with hRSV
disease severity (73). Hoebee et al. found that the−590T allele
of the IL-4 gene was expressed more frequently in infants
hospitalized by hRSV bronchiolitis compared to the control
group (73). Moreover, the authors found an association of the
hRSV disease severity and the IL-4 locus in children older than
6 months that were hospitalized by hRSV bronchiolitis (73).
Additionally, this study found that 2 polymorphisms of the
IL-4Rα gene, the I50V, and the Q551R. Only the Q551R SNP
show an association with the children older than 6 months who
were hospitalized by a severe hRSV bronchiolitis (73).

Another relevant cytokine reported upon hRSV infection is
the thymic stromal lymphopoietin (TSLP), a cytokine associated
with asthma development (126). Also, a strong association in
Th2-like effector cytokines, such as IL-4 and IL-5, and IL-13
has been reported (127, 128). TSLP is secreted by epithelial
cells associated with barriers (129) and bronchial smooth muscle
cells (130, 131). In infants with hRSV-induced bronchiolitis,
this cytokine was elevated as compared to healthy controls,
suggesting that TSLP could play an essential role in the hRSV
immunopathology (132).

Importantly, the response associated with IL-17 can be
harmful to the patients, as mentioned above. Higher levels of
IL-17 have been reported in patients with mechanic ventilation
due to hRSV-induced bronchiolitis (76, 78). IFN-λ is a cytokine
discovered in the year 2003 (77) and it has been reported to play
a role in the establishment of the adaptive response to hRSV,
with an increase in the secretion of IL-6, CXCL8, and IL-10 in
peripheral blood mononuclear cells (PBMC) (133). Moreover, a
deleterious effect of IFN-λ in hRSV infection has been seen (134),
as a study of acute bronchiolitis-patients reported a significant
increase in the transcription of IFN-λ in patients with increased
respiration rate, a sign of acute bronchiolitis induced by hRSV-
infection (134).

As we described earlier, chemokines are also involved
in the inflammatory response elicited by hRSV-infection.
One of these is CCL3, a small pleiotropic chemoattractant
protein whose function is to attract or activate immune cells
such as eosinophils, monocytes, basophils and lymphocyte
subpopulations (135). This chemokine was increased in lower
respiratory tract secretions from infants under 2 months old
that were hospitalized with hRSV-induced bronchiolitis (135).
Interestingly, this increase was correlated with the detection
of eosinophil degranulation products, which suggests that
CCL3 has an active role in this process during hRSV-induced
bronchiolitis (135). In addition to this, it was also reported
that CCL5 was increased in these infants (135). CCL5 is a
chemoattractant cytokine that principally recruits monocytes,
T cells, and eosinophils, acting via three chemokine receptors:
CCR1, CCR3, and CCR5 (136). Evidence obtained from children
with hRSV infection shows an increase of the CCL5 protein
levels in both upper and lower airway secretions, and levels of
CCL5 in upper airway secretions correlate positively with disease
severity (137, 138). Recently a prospective study of 173 patients

with bronchiolitis caused by hRSV was performed, holding
536 healthy controls whose samples of nasopharyngeal aspirate
were taken (139). Therein, the authors found a single SNP in
CCL5 (rs2107538∗CT), exhibiting an association with hRSV-
bronchiolitis and also with the need for mechanical ventilation
(139). These data suggest that CCL5 contributes to bronchiolitis
leading to airways damage in patients.

Furthermore, McNamara et al. also evaluated this chemokine
in BALF from infants that required ventilation support and found
an increase at the first day of themechanical ventilation, but these
levels decreased over time (117). This phenomenon was also
observed for CXCL8 (117), which is a chemokine that attracts
mainly neutrophils, one of the most frequent immune cells found
in the airways of hRSV-infected infants (140). Subsequently to
these results, another study performed in BALF samples from
intubated infants reported elevated levels of CXCL8 transcript,
which also correlates with the finding of this chemokine in
nasopharyngeal aspirates (NPA) (141). Thus, the NPA samples
might be an excellent alternative to study the implications of the
infection caused by hRSV in the respiratory tract (Figure 2).

CYTOKINES SECRETED BY EPITHELIAL
CELLS IN RESPONSE TO THE hRSV
INFECTION IN VITRO

The majority of the knowledge available about the induction of
pro-inflammatory cytokines and chemokines production upon
hRSV infection has been described in vitro using airway epithelial
cells (AECs) models such as A549, primary human small airway
epithelial cells (SAECs), BEAS-2B and primary normal human
bronchial epithelial cells (NHBE), among others (88, 142, 143).
The data obtained using these models can vary depending on
the cell line. According to this, experiments in the A549 cell line
(human alveolar type II-like epithelial) with the Long strain of
hRSV showed that infection with hRSV induces the secretion of
IL-6, CCL3, and CCL5 at 48 h post-infection as compared to non-
infected cells (144, 145). On the other hand, a study performed in
this cell line but with a different strain and subgroup of hRSV
obtained from clinical isolates showed that the induction of IL-6
and CCL5 could be variable and dependent on the virus strain
used (146).

BEAS-2B is an SV40 transformed human normal bronchial
epithelium cell line that exhibits a limited susceptibility to hRSV-
infection and profile of virus resistance as compared to the A549
cell line (142). Infection of this cell line with the hRSV Long
strain showed an increase in the transcript levels for CXCL8 at
4 h post-infection, which was observed up to 24 h post-infection
(143). Regarding the upregulation of IL-6, it was observed only
at 96 h post-infection (143). However, another study performed
using the hRSV Long strain showed that CXCL8 levels were
not changed upon infection with hRSV, while CCL3 and CCL5
levels were increased (64). Importantly, the authors observed
that the amounts of CCL5 produced by the epithelial cells were
enough to attract eosinophils (64). Furthermore, infected BEAS-
2B cells with the hRSV strain A2 also exhibited an induction in
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the secretion of IL-6 and CXCL8 as compared to non-infected
cells (145).

Currently, primary or normal epithelial cells are the most used
model for hRSV infection as it is thought to be representative of
the effects of hRSV infection in the respiratory tract. Accordingly,
it has been reported that primary AECs obtained from hRSV-
infected infants exhibited higher viral titers as compared to the
BEAS-2B cell line when infected with the same virus (147).
Besides, the amounts of IL-6 and CXCL8 were higher in the
primary AECs as compared to BEAS-2B cells (147). Considering
these data, AECs can be considered as an excellent model for
understanding the effects of hRSV-infection and the production
of cytokines and chemokines as may occur in infants.

Additionally, in a study in vitro using a WT hRSV A2
strain (6340WT) and a recombinant strain that lacks the G-
protein gene (63401G), infection of NHBEs cells induced the
secretion of CCL2, CCL5, and CXCL8 by both viruses (148).
However, only the recombinant virus was able to promote the
secretion of CXCL10 in NHBEs (148). On the other hand,
both F- and G-protein promoted the secretion of CXCL8 and
CXCL10, whereas only G-protein induced the secretion CCL5
(148). In contrast to these findings, infection with the hRSV
Long strain in NHBEs cells did not lead to the secretion of
CCL2 and CCL3, but the levels of CCL5 were increased as
compared to uninfected cells (149). Additionally, it has been
described that hRSV infection in NHBEs cells induced the
expression of TSLP transcript at 12 h post-infection and TSLP
secretion exhibited a peak at 24 h post-infection as compared
to ultraviolet (UV)-hRSV inactivated (150). This phenomenon
was also seen in NHBEs cells obtained from asthmatic patients
and infected with hRSV, as TSLP concentration were high
when compared to healthy patients with hRSV-infection (150).
Moreover, studies using A549 cells co-transfected with the
human TSLP promoter with a reporter, and a dominant-
negative form of RIG-I (DN-RIG-I), showed that hRSV-infection
could induce activation of this pathway to increase TSLP
expression (150).

hRSV INDUCED CYTOKINE PRODUCTION
AND TISSUE DAMAGE IN MICE

It has been described that hRSV-infected BALB/c mice can
exhibit increased levels of IL-6 in BALFs at 12 h post-infection
that remains elevated up until 14 days post-infection (59).
Similar results were observed in lungs parenchyma and sera
of hRSV-infected mice (59). The contribution of IL-6 to the
hRSV immunopathology was evaluated by the depletion of this
cytokine one day before hRSV infection, parameters of disease,
such as weight loss were more severe (59). Furthermore, in
these hRSV-infected mice the lung vascular permeability was
evaluated by measurement of albumin in the airways, which was
increased as compared to the isotype control at 7, 11, and 14
days post-infection (59). Further, in the absence of IL-6, hRSV-
infected mice displayed an increase of lymphocyte recruitment
at 7 days post-infection, while neutrophil infiltration was similar
to the isotype control (59). These results suggest that the early

production of IL-6 is essential to control the severity of the
disease and to limit lung damage.

Furthermore, it has also been described that hRSV infection
promotes an increase of IL-1β, TNF-α, IFN-γ IL-12, IL-6, CCL3,
and CCL5 in BALF samples from mice (151). The elevated levels
of IL-1β and TNF-α on the first day of hRSV infection correlate
with the peak of weight loss, whereas increased levels of IL-
12 were found before the induction of IFN-γ (151). Besides,
histological analyses have shown that hRSV infection produces
changes in the lung that are associated with airway and vascular
cuffing and interstitial pneumonia (144). On the other hand,
an effect of TNF-α alone over the hRSV-infection has not
been demonstrated with knockout mice. However, in a study
in BALB/cJ mice with pretreatment with antibody for TNF-α
before the hRSV-infection, mice showed a significant increase
of weight loss and slow recovery as compared to control mice
(152). Therefore, these observations suggest that TNF-α can
be established as a participant in the hRSV-infection, and in
the absence of this cytokine the mice showed a delay in the
viral clearance.

The role of IFN-γ during hRSV pathogenesis was evaluated
using both an IFN-γ knockout mice model and the blockade
of IFN-γ (153). The data obtained from this study shows that,
both in IFN-γ knockout (IFN-γ−/−) mice and in the anti-IFN-γ
treatedmice, the immune cell infiltration (principally neutrophils
and eosinophils) in BALF samples were higher than in control
mice. However, when the respiratory rate was evaluated [the ratio
between inspiration time and expiration time (Ti/Te)] the anti-
IFN-γ treated hRSV-infected mice shows no difference in the
ratio compared to control mice (153). Besides, in the absence
of IFN-γ also increase the viral load of these mice compared
to control mice. These results suggest that IFN-γ plays a dual
role during hRSV infection, been necessary to control the viral
replication and also prevents the obstruction of the airways (153).

Regarding to the role of chemokines, has been reported that
elevated concentrations of CCL3 and CCL5 at day one post-
infection are consistent with recruitment of monocytes and
lymphocytes into the mice lungs (151, 154). Additionally, it
has been described that CCL5 induction by hRSV infection
contributes to a subsequent allergic pulmonary inflammation
(155). Moreover, in mice, the secretion of CCL5 in the lungs was
correlated with airway hyperreactivity (AHR). This association
was evaluated by antibody neutralization of CCL5, showing that
while viral loads were not affected by this treatment, a significant
decrease for hRSV-induced AHR was observed, down to control
mice levels (156). Furthermore, it was described that CCL5
exhibits a biphasic response during the hRSV infection, with
an initial phase of innate immune response and a second phase
consisting of lymphocyte-mediated responses (157). Besides,
mice sensitized with recombinant vaccinia expressing G-hRSV
protein (rVV-G) showed a significant increase of both mRNA
and protein levels for CCL5 during the first 24 h post-infection
(157). Then, CCL5 is also increased in the second phase of hRSV
infection at 168 h post-infection (157). To understand the role
of CCL5 when viral replication was eliminated, an inhibitory
analog of CCL5, Met-RANTES, was used to treat hRSV-infected
mice. These studies showed that mice treated with Met-RANTES
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exhibited a significant reduction of CD4+ and CD8+ T cell
recruitment into the lungs after infection (157). Along these lines,
blockage of CCL5 reduced both weight loss and eosinophilia,
suggesting that this cytokine plays an essential role during lung
inflammation (157). Accordingly, the induction of CCL5 by
hRSV infection is involved in lung inflammation, although there
is no evidence of a contribution or a direct role in airway damage.

Regarding the contribution of CCL3 to hRSV infection, it
was shown that equivalent to CCL5, CCL3 displays a biphasic
expression both for mRNA and protein, at day 1 and 7 post-
infection (158). Moreover, blockage of CCL3 with a neutralizing
antibody showed no change in the recruitment of NK cells and
did not affect viral loads in the lungs of hRSV-infected mice
after 4 days of infection (158). However, at 7 days post-infection,
the number of CD4+ and CD8+ T cells was reduced in the
lungs of infectedmice (158). Accordingly, hRSV-infected BALB/c
WT mice exhibited an infiltration of about 80% of mononuclear
cells close to vessels and bronchioles, while CCL3−/− hRSV-
infected mice exhibited a decrease of infiltrating cells in the
lungs. Interestingly, in both mice, the viral loads were equivalent
(154). Additionally, in CCL3−/− hRSV-infected mice the mRNA
of CCL5, CCL2, and CXCL2 were decreased as compared to
their wildtype littermates, suggesting that CCL3 is required for
the development of the hRSV-induced immunopathology (154).
Despite these data, there is no direct evidence of the pulmonary
damage caused by CCL3, which be relevant to determine.

Related with the production of TSLP in hRSV-infected mice, it
has been reported that at the peak of the immunopathology, high
amounts of this cytokine are produced (150). The contribution of
TSLP to the hRSV pulmonary immunopathology was analyzed
using TSLP KO mice and results showed that expression of
Gob5, IL-13, and mucus production decreased as compared to
hRSV-infected WTmice (150). Moreover, Stier et al. showed that
knockout mice for the TLSP receptor (TSLPR KO) infected with
hRSV displayed moderate mucous cell metaplasia, as the WT
hRSV-infected mice. However, the accumulation of intraluminal
mucus was lower when compared toWTmice (159). The airways
obstruction of both hRSV-infected WT and TSLPR KO mice,
was evaluated by methacholine challenge. Consistently, hRSV-
infected WT mice displayed an increase in the airway reactivity
(increased amounts of methacholine) as compared to the hRSV-
infected TSLPRKOmice. These later animals showed only minor
symptoms of the disease, which were equivalent to the mock-
treated mice (159). Accordingly, these results suggest that TSLP
activity is relevant for the hRSV immunopathology and that also
contributes to lung damage in murine models (150).

As described above, most of the work in this field suggests
what cytokines are either up- or down-modulated during hRSV
infection. However, little or nothing has been reported about
the direct contribution of these mediators to the airway damage
caused by hRSV. The development of new methodological
approaches is still necessary to achieve a better understanding
of the effects that this virus produces on the respiratory tract by
inducing inflammatory mediators. However, it could be possible
to suggest that, like what is seen for the upper respiratory
tract, hRSV exhibits several redundant mechanisms that induce
damage and inflammation in the lower respiratory tract.

hRSV INFECTION IS ASSOCIATED WITH
ELEVATED LEVELS OF CYTOKINES IN
THE CNS

As described above, hRSV infection induces cytokines that
damage the respiratory tract, but also these cytokines could
affect the CNS. Years ago, a small number of hRSV-infected
patients were reported to exhibit clinical signs associated
with neurological complications, such as seizures (160, 161),
apnea (12), encephalopathy (162) and encephalitis (163, 164).
Nowadays, the cases of neurological abnormalities related to
hRSV infection reported are increasing. However, our knowledge
regarding the mechanisms involved in this phenomenon remains
limited and controversial (Figure 1).

One of the first findings in patients with neurological
manifestations associated with hRSV infection was the detection
of virus-specific antibodies in cerebrospinal fluid (CSF) (165).
Later, after many efforts to find viral genetic material in CSF,
hRSV RNA belonging to the serogroup B was detected in the
CSF of an infant with febrile convulsion and pneumonia (13).
Researchers not only have focused on hRSV detection, but also on
the possible production of cytokines that could be a consequence
of viral infection and that could explain the symptoms affecting
the CNS. Accordingly, an increase of IL-6 in CSF from an hRSV-
infected patient was reported (14). The observation that serum
IL-6 levels in these patients were normal (14) would suggest
that this cytokine is produced locally in the CNS, most likely by
CNS-resident cells, such as microglia and astrocytes. A report
about 3 clinical cases where children infected by hRSV suffered
from seizures, showed that the levels of IL-6 were increased
and that the serogroup of hRSV found in the CFS belonged
to the serogroup A (166). Additionally, the same authors also
found viral RNA in the CSF of a different cohort of hRSV-
infected patients, with increased levels of IL-6, IL-8, CCL2, and
CCL4, suggesting that these inflammatory mediators may play a
critical role during the hRSV-infection in the CNS pathogenesis
(15). Importantly, the increased levels of IL-6 correlate with
the severity of the CNS encephalitis mediated by a cytokine
storm, which can be useful as a molecular marker of neurological
prognosis (167). Based on all the data described above, it is
possible that hRSV spreads from the lungs to the CNS and infects
local cells, initiating an inflammatory immune responsemediated
by cytokines.

As we mentioned above, there is controversy in this field
due to reports in which hRSV-derived genetic material was not
found in CSF samples from patients with severe bronchiolitis
(168). Analyses of blood and CSF samples from 10 patients
with apneas showed that only 7 were positive for hRSV (168).
This study showed that hRSV RNA was detected in PBMC of
two patients, but was not found in their CSF (168). Possible
explanations for this controversy could be due to differences
in the clinical signs of the patients, to the hRSV serogroups
found infecting them and also to technical differences used by
the researchers.

Although there is clinical relevance in the CNS pathologies
caused by hRSV infection, there is little research in this aspect
that could provide conclusive evidence. A study using the mouse
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model described that hRSV could infect sensory neurons in
the lungs through the interaction of the G-hRSV glycoprotein
with the chemokine receptor CX3CR1 located at the surface
of these cells (169). Experiments with mouse neuronal primary
cultures showed that hRSV infected about 5% of these cells
and this percentage decrease when CX3CR1 was blocked (169).
Nevertheless, in this study, the authors did not evaluate the effect
of hRSV infection in these cells or whether the neurons secreted
inflammatory mediators. To approach these questions, neuronal
N2a cells were infected with hRSV showing that these cells secrete
IL-6 and TNF-α in vitro (170).

While these reports advance the knowledge in this field,
there is still no evidence of neuronal infection by hRSV in
vivo. In this regard, Espinoza et al. described that hRSV could
be detected in several areas of the brain from infected mice,
such as the cortex, ventromedial hypothalamic nucleus, and
hippocampus (171). Interestingly, the finding of the virus in the
hippocampus led to hypothesize that behavioral and learning
processes may be altered. Marble burying (MB) and Morris
Water Maze (MWM) test were performed 30 days after hRSV
infection to test this hypothesis. In both trials, behavioral (MB)
and spatial learning (MWM), performance was altered in hRSV-
infected mice (171). The authors also evaluated the possible
impairment in the functionality of the synaptic plasticity in the
hippocampus. The data shows that the long-term potentiation
(LTP) and the long-term depression (LTD) were altered in hRSV-
infected mice, suggesting damage in the brain of these animals
(171). It is possible to think that impairment in the behavior
and learning is due to the neuronal infection by hRSV, which
alters the normal function of these cells. Besides, it is also possible
that hRSV infection promotes the secretion of several cytokines
in the CNS, either by neurons or other resident cells, which
could contribute to this neurological-associated phenomenon.
However, more research is still necessary in this field to further
advance our knowledge of the effects that this virus has on
our CNS.

CONCLUDING REMARKS

HRSV remains one of the primary viral agents causing
respiratory tract infections worldwide, for which there is no
vaccine available. Once hRSV infection reaches the epithelium
of the respiratory tract, it produces several symptoms such as
wheezing, apnea, cyanosis, and bronchiolitis, related to acute

lower tract infection. Most of the damage seen in patients with
complications associated with hRSV infection is caused by an
exacerbated immune response triggered mainly by the cytokines
secreted by the infected cells of the respiratory tract epithelium.

In human studies, cytokines and chemokines have been
detected in nasopharyngeal aspirates, tracheobronchial aspirates
or bronchoalveolar lavage fluids, in children with mechanic
ventilation due to bronchiolitis associated with hRSV infection.
In these patients -usually children younger than 2 years
of age- the cytokines that predominated were IL-4, IL-5,
IL-6, IL-10, and IL-13. A low concentration of cytokines
associated with a Th1-like response such as IFN-γ is also
seen, which could be considered as a severity index. Also,
chemokines such as CCL3, CCL5, and CXCL8 are increased
in the lower respiratory tract of individuals infected with
hRSV. These components contribute to generating a severe
pathology in the patients, which is associated with an
unbalance between Th1- and Th2-like cytokines, and an
increase in chemokines that attract more inflammatory cells like
granulocytes, which in turn generates a deleterious effect on
the patient. Moreover, the secretion of many of the cytokines
described above has also been seen in mice models, with
associated tissue damage, although further studies are still
required to fully elicit the specific role of each cytokine in
this pathology.

Furthermore, infection by hRSV seems to reach
CNS, which produces high levels of IL-6 in the zone.
This infection might generate problems in the behavior
and learning process of the children, but further
studies are required to elucidate more information in
this regard.
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