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Recent advances in single-cell assay for transposase accessible chromatin using sequenc-
ing (scATAC-seq) and its coassays have transformed the field of single-cell epigenomics
and transcriptomics. However, the low detection efficiency of current methods has
limited our understanding of the true complexity of chromatin accessibility and its
relationship with gene expression in single cells. Here, we report a high-sensitivity scA-
TAC-seq method, termed multiplexed end-tagging amplification of transposase accessi-
ble chromatin (METATAC), which detects a large number of accessible sites per cell
and is compatible with automation. Our high detectability and statistical framework
allowed precise linking of enhancers to promoters without merging single cells. We sys-
tematically investigated allele-specific accessibility in the mouse cerebral cortex, reveal-
ing allele-specific accessibility of promotors of certain imprinted genes but biallelic
accessibility of their enhancers. Finally, we combined METATAC with our high-
sensitivity single-cell RNA sequencing (scRNA-seq) method, multiple annealing and
looping based amplification cycles for digital transcriptomics (MALBAC-DT), to
develop a joint ATAC–RNA assay, termed METATAC and MALBAC-DT coassay by
sequencing (M2C-seq). M2C-seq achieved significant improvements for both ATAC
and RNA compared with previous methods, with consistent performance across cell
lines and early mouse embryos.
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Eukaryotic DNA is wrapped around a core of histone proteins (1), hierarchically organized
into chromatin and having limited accessibility to external factors. Chromatin accessibility to
regulatory factors is dynamically regulated in a cell type–specific manner (2, 3). Various
genome-wide methods have been developed to identify active regulatory regions and tran-
scription factor (TF) footprints (4–7). However, these methods measure ensemble chromatin
states from a population of cells, omitting the heterogeneity among cells. The development
of single-cell chromatin accessibility assays (e.g., single-cell assay for transposase accessible
chromatin using sequencing [scATAC-seq]) enabled the capture of accessible chromatin
regions at single-cell resolution. However, current scATAC-seq methods have low detection
efficiency (8–15), detecting a limited number of accessible regions from each cell. Therefore,
it is often necessary to average over many chromatin regions [e.g., regions with the same TF
binding motifs or all peaks from a chromatin immunoprecipitation followed by sequencing
(ChIP-seq) experiment (16)] and/or merge many single cells for downstream analysis (10).
The low sensitivity of these methods also presents a major hurdle for understanding gene reg-
ulation mechanisms through single-cell multimodal coassays. Simultaneous measurement of
chromatin accessibility and gene expression from the same cells could in principle assign cis-
regulatory elements (CREs) to target genes and identify primed chromatin states foreshadow-
ing gene expression. However, existing single-cell ATAC-RNA coassays have low sensitivity
(17–22), restricting their ability to recover biologically important correlations between chro-
matin accessibility and gene expression.
Here we present multiplexed end-tagging amplification of transposase accessible chroma-

tin (METATAC), a plate-based, automation-compatible, high-sensitivity scATAC-seq
method and its coassay with simultaneous single-cell RNA sequencing (scRNA-seq) meas-
urements. Through extensive biochemical optimization, METATAC exhibits dramatically
improved sensitivity in detecting accessible chromatin regions from single cells. We further
developed a coaccessibility metric without merging single-cell data, which precisely links
enhancers to promoters and recapitulates long-range interactions between CREs. Applying
METATAC to the cerebral cortex of an F1 hybrid mouse, we identified thousands of cell
type–specific, monoallelically accessible sites and studied the allele-specific accessibility state
of imprinted genes. Finally, we combined METATAC with our scRNA-seq method multi-
ple annealing and looping based amplification cycles for digital transcriptomics (MAL-
BAC-DT) (23), which offers high mRNA capture efficiency and accurate unique
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molecular identifier (UMI) counting, to develop a sensitive single-
cell joint ATAC-RNA method—METATAC and MALBAC-DT
coassay by sequencing (M2C-seq). This coassay consistently out-
performed most previous methods on different cell lines. We fur-
ther applied M2C-seq to early mouse embryos and recapitulated
the differentiation trajectories of embryonic and extraembryonic
lineages.

Results

Highly Sensitive scATAC-seq with METATAC. In METATAC,
nuclei are extracted with an improved permeabilization procedure,
followed by bulk transposition with our META transposome (24).
Transposed nuclei are then isolated via fluorescence-activated cell

sorting into 96-well plates, where Tn5 release, DNA amplification,
and cell barcoding are performed. All steps are robotically auto-
mated with a pipette-free, acoustic liquid transfer system, which
can simultaneously profile 2,000 cells (Fig. 1A).

We increased sensitivity from three aspects. First, we adopted the
permeabilization step from Omni-ATAC (25), which significantly
reduced backgrounds and mitochondrial reads fraction and has
been independently adopted by another method (12). Second, we
used our META transposome instead of the conventional (Nextera)
Tn5 transposome in the transposition step, which avoids a 50%
loss of starting fragments caused by self-looping in the traditional
transposon design (24). Third, we used an ionic detergent, sodium
dodecyl sulfate (SDS), to remove Tn5 from bound chromatin
before amplification to maximize DNA recovery.
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Fig. 1. METATAC shows high detection efficiency in single cells. (A) Schematic workflow of METATAC. Cells are permeabilized with Omni-ATAC lysis; then
nuclei are transposed with META transposome, single nuclei are sorted to 96-well plates via flow cytometry, Tn5 is removed with SDS from bound DNA, and
META amplification and cell barcoding are conducted in two steps via an acoustic liquid transfer system. (B) Spearman correlation of chromatin accessibility
peaks across bulk and single-cell datasets for K562 and GM12878. (C) Comparison of library size between META transposome (n = 1,099) and conventional
Nextera transposome (n = 87) using GM12878 cells. Two samples are sequenced at the same depth, and library size was estimated with the
Lander–Waterman equation. QC metrics of scATAC-seq technologies: (D) Library size of all technologies. The median library size for METATAC is 587,707
reads (n = 1,099, GM12878), as compared with s3-ATAC (26) (97,142 reads, n = 2,174, human prefrontal cortex), 10× scATAC-seq (13) (45,515 reads,
n = 5,297, GM12878), dscATAC (12) (66,618 reads, n = 2,295, GM12878), Chen plate-based scATAC-seq (14) (26,700 reads, n = 384, K562), HyDrop-ATAC (27)
(2,114 reads, n = 1,141, MCF-7), Fluidigm C1 (8) (33,529 reads, n = 382, GM12878), and sciATAC-seq methods (9) (5,300 reads, n = 533, GM12878). (E) Fraction
of reads mapped in peaks. For this comparison, peaks are called for each technology individually. The median FRiP of METATAC is 75.412%. (F) Proportion of
reads mapped to nuclear genome. The median for METATAC is 95.552%. (G) Comparison of detected DHSs versus cell number across different techniques
of GM12878. Each cell number is randomly performed three times.
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We performed a proof-of-concept experiment on two well-
characterized human cell lines, GM12878 (lymphoblastoid)
and K562 (leukemia), profiling 1,224 and 768 cells, respec-
tively; after rigorous quality control (QC) (Materials and
Methods), we finally got 1,099 (89.8%) GM12878 cells and
747 (97.2%) K562 cells, each of which contained 142,280
and 206,435 unique fragments (median), respectively, at cur-
rent sequencing depth (479,951 reads and 724,412 reads per
cell, respectively [median], nearly saturated). We compared our
averaged data with published datasets and found the highest
correlation to be between METATAC and bulk DNase-seq
data from respective cell lines (Fig. 1B). To demonstrate the
advantage of using META transposome, we performed a side-
by-side comparison on GM12878 cells and found the library
complexity generated by the META transposome is much
higher than the Nextera transposome (median number of
unique fragment per cell = 142,280 versus 98,123) (Fig. 1C).
Using GM12878 for benchmarking, we found METATAC to
have a 9- to 100-fold increase in library complexity (Fig. 1D)
compared with the previous methods (8, 9, 12–14, 26, 27).
Besides, our data show negligible mitochondrial reads (less than
0.5%) and significant enrichment for fragments in accessible
chromatin regions (75% fraction of reads in peaks [FRiP])
(Fig. 1 E and F). We detected only 1 doublet in 345 high-
quality nuclei (0.3%; SI Appendix, Fig. S1A) from a 1:1
mixture of human and mouse cells, suggesting a much lower
collision rate compared with other methods (9, 12, 13).
METATAC also showed significant enrichment for fragments
within transcription start site (TSS) regions and a fragment-size
distribution similar to other methods (SI Appendix, Fig. S1 B
and C). For counting unique fragments detected in single cells,
specifically, to avoid potential cell-to-cell contamination due to
cell barcode switching during library preparation or index hop-
ping during sequencing, we introduced a stringent decontami-
nation procedure, which only kept the fragment in cells with
the highest frequency (Materials and Methods).
To demonstrate METATAC’s sensitivity in detecting DNaseI

hypersensitive sites (DHSs), a gold standard for accessible chroma-
tin regions in bulk cells, we averaged our data from different num-
bers of cells. Here we defined that if peaks called from merged
cells overlapped with DHSs, then the DHS is considered as
detected. Compared with other techniques, METATAC detected
many more DHSs at small cell numbers (median 71,600 from
10 cells, median 81,500 from 20 cells) and detected an additional
∼26,000 DHSs even when other techniques are saturated
(Fig. 1G). We found our data to have a higher fraction of reads in
DHSs (48.46%) compared with other methods (SI Appendix,
Fig. S1E). Aggregating chromatin accessibility profiles at different
cell numbers showed that METATAC detects 45.6% of total
DHSs even with as few as 10 cells (SI Appendix, Fig. S1F), sug-
gesting high sensitivity and low background.
Altogether, these improvements combined with an acoustic

liquid transfer system make METATAC a high-efficiency,
high-quality, and high-throughput single-cell epigenome profil-
ing method.

High-Sensitivity Data Revealed Coaccessibility of Functionally
Related Regulatory Elements. Previous coaccessibility algorithms
need to merge multiple cells to alleviate data sparsity, which may
introduce false positives and false negatives due to cellular hetero-
geneity (10). Here, using our high-detectability data, we developed
a statistical strategy to quantify coaccessibility between two accessi-
ble chromatin regions, which is not limited by their separating
genomic distance and does not merge single cells. First, we called

93,155 accessible chromatin regions (peaks) from GM12878 with
a median of 31,378 peaks detected in each cell. We then imple-
mented a hypergeometric test for each pair of peaks, taking indi-
vidual peak accessibility into account (Fig. 2A). With this metric,
we investigated coaccessibility between neighboring peaks as a
function of linear distance with GM12878 cells (n = 1,099),
which decreases very quickly within 1 kb (Fig. 2B), concordant
with long-read single-molecule sequencing data (28).

Next, we compared our coaccessibility metric with a popular
coaccessibility algorithm Cicero (10), using the MYC locus as
an example because it has independent CRISPRi validation
results (29). We found our coaccessibility links (calculated with
K562 cells, n = 747) to precisely recover validated long-range
interactions (Fig. 2C), including four enhancers (e1 to e4) iden-
tified by CRISPR interference (CRISPRi), while Cicero missed
the most distal two (e3 and e4). To systematically compare the
performance of the hypergeometric test and Cicero, we used
another CRISPRi dataset (30) to calculate the precision-recall sta-
tistics. We found that the hypergeometric test outperforms Cicero
(Area Under Curve [AUC] = 0.697 versus 0.625) for
enhancer–promoter (E–P) pairs within 10 kb; for E–P pairs >10
kb, Cicero exhibits a slightly better result (AUC = 0.084 versus
0.043) (SI Appendix, Fig. S2D). Indeed, validated E–P pairs have
higher coaccessibility scores (SI Appendix, Fig. S2B). These results
indicate coaccessibility alone has weak prediction ability for true
E–P pairs; it would be better to incorporate other experimental
datasets (e.g., High-throughput Chromosome Conformation Cap-
ture (Hi-C), Chromatin Interaction Analysis with Paired-End Tag
(ChIA-PET), Proximity Ligation-Assisted ChIP-Seq (PLAC-seq),
HiChIP, and CRISPRi).

Besides, our hypergeometric test enables custom peak sets
(including long-range peak pairs and interchromosomal peak
pairs), but Cicero only restricts to promoter-centered peak sets.
Benefiting from this, we found our coaccessibility metric to
recapitulate megabase-scale long-range interactions, for exam-
ple, in the HIST1 clusters that span 2 Mb (SI Appendix, Fig.
S2C). These results indicate that our hypergeometric test is well
suited for coaccessibility analysis.

Enhancers are known to activate target genes by forming physi-
cal interactions with promoters via bound TFs and cofactors (31);
however, whether E–P loop anchors tend to be coaccessible is
unknown. We inspected their coaccessibility using E–P loops
called from high-resolution in situ Hi-C data (32) and found loop
anchors are more likely to be coaccessible compared with neigh-
boring nonloop anchor peaks (calculated with GM12878 cells,
n = 1,099), which is not dependent on linear distance (Fig. 2D).
All these results indicate that our coaccessibility score accurately
reflects enhancer regulatory potential on target genes and recovers
long-range three-dimensional genome architecture.

It remains unknown whether TF binding sites, which are
scattered across different chromosomes, show coaccessibility.
To explore this property, we calculated coaccessibility scores for
ChIP-seq peaks of a subunit of NFκB, RELB, in GM12878.
We found RELB binding sites cluster as two groups. One
group exhibited a high-coaccessibility pattern (Fig. 2E), while
the other did not. To explain this phenomenon, we conducted
motif enrichment within the two groups. To our surprise,
we found that the NFκB motif was enriched only in the
high-coaccessibility group (Fig. 2F). ChIP-seq peaks have false
positives due to indirect TF binding and nonspecific binding.
Binding sites that showed high coaccessibility might indicate
direct TF binding, and sites without significant coaccessibility
may be derived from indirect TF binding or nonspecific bind-
ing. This needs experiments and further analysis to validate.
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The Epigenomic Landscape of Adult Mouse Cerebral Cortex.
To further demonstrate the superiority of METATAC, we profiled
accessible chromatin in 1,536 cells (after filtering, 1,370 cells
retained) from the adult mouse cerebral cortex. After cell clustering,
we identified 18 clusters, capturing all main cell types, including
astrocytes, microglia, oligodendrocytes, oligodendrocyte progenitor
cells, mural cells, endothelial cells, eight types of excitatory neurons,
and four types of inhibitory neurons (Fig. 3A). After rigorous filter-
ing, the median number of unique fragments per cell is 66,064.

The fragment length distribution and TSS enrichment indicate the
high quality of the dataset (SI Appendix, Fig. S3 A and B). We
faithfully conducted TF footprint analysis with high detectability
even with the modest cell count (SI Appendix, Fig. S3C). Correla-
tion with a published scRNA-seq dataset (33) (SI Appendix, Fig.
S3D) and marker gene activity projection further validated our cell
type annotation (SI Appendix, Fig. S3 E–J).

Using the resulting data, we aggregated the METATAC pro-
files in each cluster and determined the accessible chromatin
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regions with ArchR (34). We identified 197,464 candidate
CREs (cCREs) in total, overlapping with 74.62% DHSs
mapped in bulk mouse cortex tissues by the Encyclopedia of
DNA Elements (ENCODE) consortium (35) (SI Appendix,
Fig. S4A).
For further analysis, we identified 161,390 cell-type-specific

cCREs (SI Appendix, Fig. S4B). Calculating the deviation of TF
activities across clusters with chromVAR (16), we could deter-
mine cell type–specific TF regulators for each cluster (SI
Appendix, Fig. S4C). Many of them overlapped with known
master regulators for each cell identity. Among the identified
TFs, we found FOS motif activity shows variability within neu-
ron clusters, reflecting neural activity (12, 36), with one cluster

of inhibitory neurons IN_2 showing much higher Fos activity
than other inhibitory neurons (SI Appendix, Fig. S4D). Neurons
EX.4 and EX.6 were enriched with NEUROG11, NEUROD1,
and NEUROD2, which are essential TFs for the development
of the cerebral cortex. These known key TFs (SI Appendix, Fig.
S4 E–G) suggest that our methods are sufficient to study gene
regulation programs for various lineage with a relatively modest
cell number.

Systematic Interrogation of Allele-Specific Accessibility in
Mouse Brain. Because the cerebral cortex we used is from F1
mouse hybrids of CAST/EiJ and C57BL/6J cross, we sought to
study allele-specific accessibility landscape in the mouse cerebral

A B
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F G

H

D E

Fig. 3. Allele-specific accessibility landscape of mouse brain. (A) Uniform Manifold Approximation and Projection (UMAP) visualization of cells derived from mouse
cerebral cortex (n = 1,370). (B) Allele-specific accessibility of cell types in A. Red indicates maternal-specific, and blue indicates paternal-specific. (C) TFs motif enrichment
for allele-specifically accessible peaks. (D) Allele-specific accessibility of imprinted genes, grouped as maternally imprinted genes and paternally imprinted genes. Positive
value indicates maternal-specific accessibility, and negative value indicates paternal-specific accessibility. (E) Scatterplot between expression specificity and accessibility
specificity of imprinted genes. (F) The accessibility specificity of enhancers linked to imprinted genes, grouped by maternal/paternal imprinting. (G) A paternal-specifically
accessible region (chr7, 59.5 to 62.5 Mb). (H) A maternal-specifically accessible region (chr12, 109.54 to 109.74 Mb). Two microRNA clusters are labeled.
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cortex (37). Within the defined cCREs, we identified 10,243
allele-specifically accessible peaks in total, among which 48.5%
are paternally accessible, and the remaining peaks are mater-
nally accessible (Fig. 3B). Interestingly, most monoallelically
accessible peaks are cell type–specific peaks as well (SI
Appendix, Fig. S5A). Among all the monoallelically accessible
peaks, 39.1% are distal elements, 7.6% are promoters, 4.5%
are located at exons, and the remaining overlap with intronic
regions. We then checked the TF motif enrichment in these
monoallelically accessible sites; we identified EGR3 specifically
enriched in maternally accessible peaks of most neuron types
(Fig. 3C). Egr3 shows corresponding activity in neurons (SI
Appendix, Fig. S5B), indicating that EGR3 may play an essential
role in regulating neuronal monoallelic accessibility, but we could
not exclude the strain-specific binding difference of EGR3.
Next, we were curious whether imprinted genes show mono-

allelic accessibility. We calculated the allele specificity of accessi-
bility at the promoter region of all known imprinted genes
(binomial test; Materials and Methods). Surprisingly, we found
most maternally imprinted genes show no significant accessibil-
ity difference between the two alleles, while most paternally
imprinted genes show paternally specific accessibility (Fig. 3D
and SI Appendix, Fig. S5 E and F). We examined the accessibil-
ity profile in each cell type and found that this pattern was con-
sistent across cell types. We then examined whether maternally
imprinted genes had lower accessibility, but we found accessi-
bility specificity did not correlate with accessibility level (SI
Appendix, Fig. S5C). In order to focus on imprinted genes that
are expressed in adult mouse cerebral cortex, we performed a
bulk RNA-seq on the mouse cerebral cortex from mice the
same as used for METATAC. We detected 38 maternally
imprinted genes and 25 paternally imprinted genes in the bulk
RNA-seq dataset. Of these, 29 maternally imprinted genes have
<80% transcripts originating from the maternal allele, among
which 18 have <60% (SI Appendix, Fig. S5D), while 70% of
paternally imprinted genes have >90% transcripts originating
from the paternal allele, indicating most of the maternally
imprinted genes exhibit maternally biased expression and the
majority of paternally imprinted genes show almost monoallelic
expression. We then plotted promoter accessibility specificity
versus expression specificity of imprinted genes (binomial test;
Materials and Methods). We found that paternally imprinted
genes show a high correlation but not maternally imprinted
genes (Fig. 3E). Taken together, we found many maternally
imprinted genes show biallelic accessibility; we speculated they
may adopt a posttranscriptional mechanism to achieve mater-
nally biased expression, such as previously reported miRNA-
mediated paternal mRNA degradation (38). For paternally
imprinted genes, we could not rule out the possibility that the
observed monoallelic accessibility is derived from strain-specific
accessibility. We found isoform-specific imprinting genes show
no accessibility difference at gene promoter for both alleles but
show allele-specific accessibility at specific gene body regions (SI
Appendix, Fig. S5H). Inspecting all genes did not show a strong
correlation between accessibility specificity and expression specif-
icity, and many genes with maternally biased expression showed
no allele-specific accessibility (SI Appendix, Fig. S5G).
Next, we are curious about whether enhancers regulating

imprinted genes have allele-specific accessibility. We first con-
nected putative enhancers to imprinted genes by measuring the
coaccessibility, then calculated the accessibility allelic specificity.
Interestingly, we found almost all enhancers showed biallelic acces-
sibility, no matter whether they are regulating maternally or pater-
nally imprinted genes (Fig. 3F and SI Appendix, Fig. S5I), except

for those genes linked to other imprinted genes (e.g., Ndn, Peg3,
and Ypel4). Among the monoallelically accessible sites, most of
their flanking peaks were biallelically accessible with two notable
exceptions. One is Prader–Willi syndrome and Angelman syn-
drome (PWS/AS) locus on chr7 (chr7, 59.5 to 62.5 Mb), a 3-Mb
region that shows paternal-specific accessibility (Fig. 3G), which
encompasses 20 paternally imprinted genes. Another is a 200-Kb
region on chromosome 12 (chr12, 109.54 to 109.74 Mb) that
shows maternal-specific accessibility (Fig. 3H), including seven
maternally imprinted genes (e.g., Meg3, Rian, and Mirg) and two
known imprinted microRNA clusters (39).

Construct In Vivo Active/Inactive X Chromosome Accessibility
Landscape. It is challenging to study the allele-specific accessi-
bility of chromosome X in vivo due to random paternal/mater-
nal X chromosome inactivation. To construct the active and
inactive X chromosome accessibility landscape of in vivo mouse
brain, we first determined which X chromosome was inacti-
vated in single cells by calculating the maternal fragment ratio
in all SNP-informative fragments mapped to the X chromo-
some. As expected, we observed a bimodal distribution, which
peaked near 0 and 1 (SI Appendix, Fig. S6A), corresponding to
maternal X (Xm) and paternal X (Xp) inactivation, respectively.
Xp and Xm inactivation ratio shows no significant difference
among cell types (SI Appendix, Fig. S6B), and Xp/Xm inacti-
vated cells mixed within the same cell type (SI Appendix, Fig.
S6C). Then we merged all the fragments from the active
X chromosome and inactivated X chromosome (SI Appendix,
Fig. S6E). As expected, the inactive X chromosome exhibits
limited accessible sites, among which most accessible sites over-
lap with known escapees in the brain (40) (e.g., Kdm5c,
Kdm6a, Ddx3x, and Tmen29). Nonbrain escapees show nearly
no accessibility in Xi (SI Appendix, Fig. S6D). We then focused
on regions essential for X chromosome inactivation, the X inac-
tivation center (Xic), and the Firre locus. Xic contains noncod-
ing RNA Xist and its regulators. Xist is Xi-specific accessible as
expected, while neighboring regulators, like Jpx and Ftx, are
biallelically accessible (SI Appendix, Fig. S6 E, Right). Rlim
shows Xa-specific accessibility in the adult mouse brain, while
it is biallelically accessible in neural progenitor cells (NPC) (41)
(SI Appendix, Fig. S6F), indicating X chromosome inactivation
is not fully completed in NPC. Interestingly, the Firre pro-
moter region is Xa-specific accessible, while the Firre gene body
is Xi-specific (SI Appendix, Fig. S6 E, Left), which showed bial-
lelic accessibility in NPC (SI Appendix, Fig. S6F).

Development of a High-Sensitivity Single-Cell Joint ATAC-RNA
Assay. The precise spatiotemporal gene expression program is
regulated by the underlying epigenomic landscape, including
chromatin accessibility. To better understand the epigenomic
programs regulating cell type–specific gene expression, it is vital
to jointly profile gene expression and chromatin states within
the same cells. Several joint ATAC–RNA assays have been
developed (17–22, 42). However, all these methods show low
detectability, recovering only hundreds to several thousands of
fragments or RNA molecules for ATAC and RNA.

To achieve high sensitivity in both modalities, we optimized
the procedure from two aspects, including optimization of the
fixation condition and the combination of two high-resolution
methods, METATAC and MALBAC-DT (23), and we devel-
oped M2C-seq. Briefly, fixed cells were permeabilized and bulk
transposed with the META transposome and were isolated into
96-well plates via flow cytometry; then we conducted cDNA
and ATAC fragment coamplification in the same well; finally,
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amplified products were split into two parts for ATAC and
RNA enrichment. Specifically, we incorporated the amplifica-
tion steps with an acoustic liquid transfer system (Fig. 4A).
To validate data quality, we profiled the human lymphoblas-

toid cell line GM12878. We generated two replicates with a
total of 960 cells, of which 862 (89.8%) passed ATAC QC and
745 (77.6%) passed RNA QC, and finally retained 682 (71%)
cells that passed both QCs. For GM12878, the median number
of unique ATAC fragments is 88,767 (52.11% FRiP) (Fig.
4B); the median number of RNA UMIs is 12,068 (median
3,438 genes) (Fig. 4C), and both modalities outperformed
most published joint ATAC–RNA methods. The fragment size
distribution, enrichment at TSS, and high FRiP indicate the
high quality of our data (SI Appendix, Fig. S7 A, B, and H).
We noted that coassay detects fewer ATAC fragments than
METATAC alone, which might arise from fixation needed to
retain more RNA. However, fixation affects Tn5 transposition
specificity and reduces tagmented DNA recovery.

Our method shows a high correlation between replicates
(Fig. 4 D and E) and exhibits high consistency with bulk
DNase and METATAC profiles (SI Appendix, Fig. S7E). In
addition, our method has a similar performance on other cell
lines (Fig. 4 B and C and SI Appendix, Fig. S7D). To estimate
data specificity, we performed an experiment on a mixture of
human (K562) and mouse (mESC V6.5) cell lines. Human
and mouse reads separate well for both modalities (Fig. 4 F
and G), showing low contamination. Both gene expression pro-
file and chromatin accessibility separate GM12878 (n = 511)
and K562 (n = 359) cell lines well (SI Appendix, Fig. S7 F
and G), and differential gene expression analysis identified
marker genes for each cell type (SI Appendix, Fig. S7I).

Taken together, through fixation optimization and the com-
bination of two sensitive methods, METATAC and MALBAC-
DT, we developed a single-cell high-sensitivity simultaneous
ATAC-RNA assay, achieving a high detection rate of gene
expression and chromatin accessibility within the same cells.
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Fig. 4. Joint single-cell transcriptome and chromatin accessibility sequencing. (A) Workflow of our simultaneous ATAC-RNA method. (B) Number of ATAC fragments
in peaks. The median number of M2C-seq (GM12878, 31,790, n = 511; K562, 18,540, n = 359) is compared with METATAC only (GM12878, 108,792, n = 1,186),
SHARE-seq (17) (GM12878, 5,363, n = 1,204), 10× multiome (GM12878, 10,924, n = 2,714), SNuBar-ARC (42) (K562, 17,369, n = 5,131), ASTAR-seq (21) (K562, 24,231,
n = 136), sci-CAR (18) (HEK293T, 558, n = 711; A549, 545, n = 3,427), SNARE-seq (19) (GM12878, 507, n = 140; K562, 507, n = 200), and Paired-seq (20) (HEK293T,
885, n = 1,833; HepG2, 843, n = 1,186). (C) Number of RNA UMIs. The median number of M2C-seq (GM12878, 12,068, n = 560; K562, 12,494, n = 359) is compared
with MALBAC-DT only (GM12878, 87,728, n = 948), SHARE-seq (17) (GM12878, 6,173, n = 1,159), 10× multiome (GM12878, 3,716, n = 2,714), SNuBar-ARC (K562,
12,642, n = 6,136), ASTAR-seq (K562, n = 192), sci-CAR (18) (HEK293T, 2,752, n = 812; A549, 2,419, n = 4,277), SNARE-seq (19) (GM12878, 346, n = 140; K562, 482,
n = 200), and Paired-seq (20) (HEK293T, 628, n = 1,174; HepG2, 620, n = 1,141). Scatterplots show the correlation of read counts from two technical replicates of
(D) RNA profiles and (E) ATAC fragment profiles. (F) Unique ATAC fragments and (G) RNA UMIs mapped to human or mouse genome. The species mixing experi-
ment is performed on a mix of human (K562) and mouse (mESC V6.5) cell lines.

PNAS 2022 Vol. 119 No. 40 e2206450119 https://doi.org/10.1073/pnas.2206450119 7 of 12

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206450119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206450119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206450119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206450119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206450119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206450119/-/DCSupplemental


Joint Profiling of Chromatin Accessibility and Gene Expression
from Mouse Blastocyst Embryo. Next, we profiled 512 cells
from mouse E4.5 and E5.5 embryos to demonstrate M2C-seq
performance on tissue samples (SI Appendix, Fig. S9 A–D).
After rigorous QC, we retained 328 high-quality cells (E4.5,
185 cells; E5.5, 143 cells), of which cells passing QC had a
median of 73,716 unique ATAC fragments and 18,070 RNA
UMIs (4,523 genes) (SI Appendix, Fig. S8C).
We then clustered and annotated cell types based on known

marker genes (43–45). For RNA, we got seven clusters, includ-
ing three clusters of epiblasts (Epi), two types of primitive
endoderm (PrE), parietal endoderm (PE), and visceral endo-
derm (VE) (SI Appendix, Fig. S8A). Marker gene expression
confirmed our cell type annotation (SI Appendix, Figs. S8B and
S9J). ATAC clusters show high congruence with RNA clusters
(SI Appendix, Figs. S8E and S9 E–H). E4.5 epiblasts separate as
two types according to the transcriptome, while their epige-
nome is indistinguishable (SI Appendix, Figs. S8E and S9 G
and H). Primitive endoderm shows a differential transcriptional
and epigenomic state at E4.5, implying future differentiation
into PE and VE at E5.5, respectively. For most genes, their
accessibility is highly consistent with their expression (SI
Appendix, Figs. S8F and S9 K–M). In comparison, some genes’
accessibility foreshadows gene expression, indicating chromatin
priming (SI Appendix, Fig. S8D). In addition, we found
Dnmt3b and Tet1 expression is divergent among PE and VE
lineage (SI Appendix, Fig. S9 I and J). Taken together, our data
precisely recaptured early mouse embryonic and extraembry-
onic lineage development, revealing chromatin priming for lin-
eage genes, which is predictive of cell state transition.

Discussion

Our work presents a highly sensitive, fully automated single-cell
ATAC-seq method, termed METATAC. With high detectability,
we defined a coaccessibility metric without merging single cells,
which could link more distal enhancers to target genes and reca-
pitulates the three-dimensional long-range interactions between
CREs. Then we systematically investigated allele-specific accessi-
bility landscape in mouse cerebral cortex and the allele specificity
of accessibility of imprinted genes. Specifically, we found many
maternally imprinted genes show biallelic accessibility, while
paternally imprinted genes show paternal-specific accessibility.
We speculated that this is related to their different expression pat-
terns, in which most maternally imprinted genes show maternally
biased expression (except Kcnk9 and Blcap), while the majority
of paternally imprinted genes show almost monoallelic expres-
sion. Thus, different mechanisms maybe are adopted to regulate
their expression. Next, to demonstrate METATAC compatibility,
we combined a high-sensitivity scRNA-seq method, MALBAC-
DT, to develop a high-resolution single-cell joint ATAC–RNA
assay, which consistently outperformed most previously published
methods and shows similar performance on different cell lines
and mouse early embryos.
Only a few studies addressed monoallelic accessibility, including

profiles of mouse ESC-derived clonal NPCs (46) and human
induced pluripotent stem cell (iPSC)-derived neurons (47), reveal-
ing that allele-specific accessible chromatin regions are enriched
with neuropsychiatric disease risk variants. We profiled in vivo
allele-specific accessibility in the mouse brain and revealed cell
type–specific accessibility patterns, which offer a valuable resource
for neuropsychiatric disease study. This needs reciprocal cross to
filter out strain-specific accessible sites. We found Egr3 is enriched

in neuronal maternally accessible peaks, and Egr3 is a potential
susceptibility candidate in schizophrenia (48).

Regarding high-throughput single-cell ATAC-seq techniques,
single-cell combinatorial indexing (sci)-based and droplet-based
techniques achieve 1 × 103 to 8 × 104 cells per experiment,
while current METATAC only profiles 2,000 cells in a single
experiment, although with high sensitivity. However, the three
levels of sci-ATAC-seq3 suffer from low sensitivity and poor
data quality (estimated library size is 9,878, and fraction of
reads in DHSs is 0.2) (49), and droplet-based scATAC-seq
(e.g., 10× Chromium scATAC-seq) generates a noticeable
proportion of “barcode multiplets”—a single droplet contains
multiple oligonucleotide barcode sequences (50), which could
confound single-cell analysis. For tissues or systems with
defined cell types, thousands to tens of thousands of cells are
enough to analyze the epigenetic regulation, while the cell atlas
study requires single-cell sequencing at scales of hundreds of
thousands to millions of cells (49, 51–53). The increasing
application of single-cell omics technologies to cell atlas study
prompts us to adopt sci strategy to increase throughput (9, 11,
54) in the future. In combination with combinatorial indexing,
we could increase throughput to 20,000 to 50,000 cells in a
single experiment without compromising data quality too
much, which needs the usage of molecularly barcoded Tn5,
limiting its wide adoption. Besides, we need to make a trade-
off between cell number and sequencing depth when perform-
ing cell atlas study. The adoption of acoustic liquid transfer
system helps us to reduce labor costs and increase throughput, but
the cost of Echo liquid handler is prohibitive; we also validated
our workflow on cheaper alternative liquid handlers—I-DOT and
mosquito.

Materials and Methods

Ethics Statement. The study was approved by the Peking University Institu-
tional Animal Care and Use Committee. All the animal experiments were con-
ducted following their guidelines.

Cell Culture. All cell lines were grown at 37 °C with 5% CO2 at recommended
density. K562 (ATCC) chronic myeloid leukemia cells were cultured in Iscove’s
Modified Dulbecco’s medium (Gibco, cat. no. 12440053) supplemented with
10% FBS (Gibco, Thermo Fisher Scientific, Cat. #10099141) and 1% Penicillin
Streptomycin (Pen/Strep) (Gibco, Thermo Fisher Scientific, cat. no. 15140148).
K562 cells used in this study were from a single cell clone. GM12878 (ATCC)
lymphoblastoid cells were grown in Roswell Park Memorial Institute 1640
Medium (Gibco, Thermo Fisher Scientific, cat. no. 11875093) media supple-
mented with 15% FBS and 1% Pen/Strep. GM12878 cells were grown from a
single cell clone. V6.5 mouse embryonic stem cells (kind gift from the Peng Du
laboratory, Peking University, Beijing, China) were cultured in Glasgow Mini-
mum Essential Medium (Sigma-Aldrich) supplemented with 15% FBS, 2 mM
L-glutamine (Sigma-Aldrich, G8540), 1% Pen/Strep, 1 mM sodium pyruvate
(Sigma-Aldrich, P5280), 1,000 units per mL Leukemia Inhibitory Factor
(LIF, Millipore, LIF2005), 1× Minimum Essential Medium Nonessential Amino
Acids (MEM NEAA, Invitrogen, 11140050), and 50 μM β-Mercaptoethanol
(Thermo Fisher Scientific, cat. no. 21985023). When used, adherent V6.5 mESC
were washed twice in 1× PBS, detached using 0.25% Trypsin-EDTA (Thermo
Fisher Scientific, cat. no. 25200072) for 5 min, diluted in complete culture
medium, collected by centrifuge at 350 × g for 5 min, and resuspended in
complete medium.

Sample Dissection and Single-Cell Isolation. Mouse cortex nuclei were iso-
lated based on the protocol from ref. 55. Briefly, the mouse used in this study
was female from the F1 hybrid of male CAST/EiJ (JAX 000928) and female
C57BL/6J (JAX 000664) at the age of P42. Cortex was dissected in ice-cold 1×
PBS and placed in 1 mL nuclei isolation medium with Triton (0.25 M sucrose,
25 mM KCl, 5 mM MgCl2, 10 mM Hepes, pH 8.0, 1 μM DTT, 0.1% Triton X-100)
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in a 2 mL Dounce homogenizer. Tissues were homogenized with 5 strokes of
the loose (A) pestle and 15 strokes of the tight (B) pestle. The homogenate was
centrifuged for 8 min at 100 × g, 4 °C, and the supernatant was discarded care-
fully. The pellet was washed twice with 1 mL nuclei isolation medium without Tri-
ton (0.25 M sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM Hepes, pH 8.0, 1 μM
DTT), then filtered with 40 μm strainer.

METATAC Protocol. Transposome assembly was performed as previously
described (56). The transposase was purified after expression from the pTXB1-Tn5
plasmid (Addgene). Transposon oligonucleotides were synthesized from Invitrogen
(polyacrylamide gel electrophoresis [PAGE] purification). META tags used in this
study are 16, the same as ref. 57. Each of the transposon strands was dissolved in
0.1× TE to a final concentration of 100 μM. For each of the META tags, two strands
were annealed at a final concentration of 5 μM and then pooled with equal vol-
umes. For transposome preparation, equal amounts of Tn5 transposase and the
annealed transposon were mixed and incubated for 30 min at room temperature
in the dark. Transposome was assembled at a final concentration of 2.5 μMmono-
mer. The resulting assembly was aliquoted and stored at�80 °C until use.

We increased sensitivity from three key modifications. First, for nuclei extrac-
tion, we use Omni-ATAC protocol (25), which reduces the mitochondrial reads
ratio and increases the signal-to-noise ratio. Second, after transposition, we carry
out Tn5 release with an ionic detergent (SDS) treatment, which enabled
maximum recovery of DNA yield. Finally, we use META transposome in the
transposition step, to avoid half loss compared with the conventional Nextera
transposome (24).

Cryopreserved cells were quickly thawed in a 37 °C water bath. Cultured cells
or thawed cells were washed twice with ice-cold PBS. Cell number was counted
with Hemocytometer (Incyto). A total of 50,000 cells were aliquoted to a 200-μL
PCR tube and then pelleted at 500 × g for 5 min at 4 °C with a swing bucket
centrifuge. Nuclei were extracted with Omni-ATAC protocol (25). Briefly, cells
were resuspended in 50 μL ice-cold Omni lysis buffer (10 mM Tris�HCl, pH 7.5,
10 mM NaCl, 3 mM MgCl2, 0.01% Digitonin, 0.1% Tween-20, 0.1% IGEPAL
CA630), pipetted up and down 10 times, incubated on ice for 3 min, washed
twice with 100 μL ATAC wash buffer (10 mM Tris, pH 7.5, 10 mM NaCl, 3 mM
MgCl2, 0.1% Tween-20), and centrifuged at 500 × g for 10 min at 4 °C. Nuclei
were then resuspended in 25 μL transposition mix (12.5 μL 2× TD buffer from
Nextera kit, 10 μL 1× PBS [pH 7.4], 0.25 μL 1% Digitonin, 0.25 μL 10% Tween,
2 μL 1.25 μM META transposome) and incubated on a thermomixer (Eppendorf)
at 1,000 rpm, 37 °C for 30 min. The reaction was stopped by adding 25 μL 2×
STOP buffer (40 mM EDTA, 10 mM Tris, pH 8.5, 1 mM spermidine) and left on
ice for 15 min.

Then we performed plate-based single-cell amplification. All liquid transfer
steps were conducted with an acoustic liquid transfer system (Echo 525, Beck-
man Coulter). Transposed nuclei were resuspended in 1 mL 1× PBS containing
0.5% BSA and sorted to 96-well PCR plates (Eppendorf) containing 1 uL lysis
buffer (10 mM Tris, pH 8.0, 20 mM NaCl, 1 mM EDTA, 0.1% SDS, 500 nM Car-
rier ssDNA, 60 μg/mL QIAGEN protease) by a BD flow cytometer (BD, AriaII). Lysis
buffer was aliquot with 384PP_AQ_BP calibration. Lysis buffer could be stored
at �80 °C for several weeks. Nuclei were incubated at 65 °C for 15 min to
release Tn5 from DNA, then 1 μL 3% Triton X-100 was added to quench SDS. Tri-
ton was added with 384PP_AQ_SPHigh calibration. Plates were stored at
�80 °C or continued to downstream amplification. Then, 4 μL preamplification
mix (3 μL 2× high-fidelity Q5 Master mix, 0.192 μL 50 μM META16 primer
mix, 0.05 μL 100 mM MgCl2, 0.758 μL H2O) were added to each well using
384PP_AQ_BP calibration. META16 primer sequences were in the form of
50-[META tag]-AGATGTGTATAAG. The preamplification step was performed on
Thermocycler with 72 °C, 5 min, 98 °C, 30 s, 16 cycles of [98 °C, 10 s, 62 °C,
30 s, 72 °C, 1 min], 72 °C, 5 min. Then 0.225 μL 50 μM indexed META16-ADP1
primer and 0.225 μL 50 μM META16-ADP2 primer were added to each well
with 384PP_AQ_BP calibration. Plates were amplified to incorporate cell barco-
des with the following cycle conditions: 98 °C, 30 s, five cycles [98 °C, 10 s,
62 °C, 30 s, 72 °C, 1 min], 72 °C, 5 min. META16-ADP1 primer is in the form of
50-CTTTCCCTACACGACGCTCTTCCGATCT-NNNNNN (cell barcode)-[META Tag]-AGATG
TGTATAAG. META16-ADP2 primers are in the form of 50-GAGTTCAGACGTGTGCTCT
TCCGATCT-NNNNNN (Cell Barcode)-[META Tag]-AGATGTGTATAAG. Finally, a whole
plate of PCR products was pooled together and purified with a ZYMO DCC5 kit.
All primer sequences are in SI Appendix, Table S1.

For library preparation, a unique dual index combination was used to reduce
index hopping. Briefly, we took 120 ng purified amplicon from each plate as
input, then 21 μL PCR mix (15 μL 2× Q5 Master mix, 3 μL NEBNext index
primer i5, and 3 μL NEBNext index primer i7, 0.05 μL 100 mM MgCl2) were
added and then incubated at 98 °C, 30 s, two cycles of [98 °C, 10 s, 68 °C, 30 s,
72 °C, 1 min], 72 °C, 5 min. Library was purified with ZYMO DCC5 kit, then puri-
fied with 1.1× SPRIselect beads to remove the residual primer.

To estimate the collision rate introduced by sample processing steps and flow
cytometry, we conducted species mixing experiments. We mixed an equal num-
ber of cells from the human cell line (K562) and mouse cell line (mESC V6.5)
before processing, then processed together from permeabilization to bulk trans-
position and sequenced the resulting library at the same sequencing depth.

Single-Cell Joint ATAC–RNA Assay. We adopted a modified cell cross-link
method for multiomics experiment to retain more cytoplasmic mRNA. For fresh
prepared single-cell suspension, wash once with ice-cold PBS, count cell number,
aliquot 50,000 cells to a 200-μL PCR tube, then resuspend in 200 μL ice-cold
4% PFA in PBS, incubate on ice for 10 min, then quench by adding 600 μL 1M
Tris (pH 7.5). Then wash twice with 200 μL ice-cold PBS containing 1% BSA sup-
plemented with 1 U/μL RNase inhibitor. Snap frozen with liquid nitrogen, then
store at�80 °C.

Thaw cell pellet on ice, then permeabilize cells with 50 μL (10 mM Tris�HCl,
pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.01% Digitonin, 0.1% Tween-20, 0.2%
IGEPAL CA630, 1 U/μL RNase inhibitor), incubate on ice for 5 min, then wash
twice with 100 μL (10 mM Tris, pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.1%
Tween-20, 1 U/μL RNase inhibitor) and centrifuge at 500 × g for 5 min at 4 °C.
Nuclei were then resuspended in 25 μL transposition mix (12.5 μL 2× TD buffer
from Nextera kit, 8.75 μL 1× PBS [pH 7.4], 0.25 μL 1% Digitonin, 0.25 μL 10%
Tween, 2 μL 1.25 μM META transposome, 1.25 μL 20 U/μL RNase inhibitor) and
incubated on a thermomixer (Eppendorf) at 500 rpm, 37 °C for 30 min. The
reaction was stopped by adding 25 μL 2× STOP buffer (40 mM EDTA, 10 mM
Tris, pH 8.5, 1 mM spermidine, 1 U/μL RNase inhibitor) and left on ice for
15 min.

Reverse transcription and cDNA second strand synthesis were adopted from
MALBAC-DT (23). Briefly, cells were sorted to a 96-well plate, containing 1 μL
lysis buffer (1× SSIV buffer, 1 mM dNTP, 5% PEG8000, 0.5% Nonidet P-40,
0.5 U/μL SUPERase inhibitor, 50 μM RT primer “A”), incubated at 72 °C
for 10 min, held at 4 °C to make polyT primer binding. Then add 1 μL RT mix
(1× SSIV buffer, 5 mM DTT, 6 mM MgSO4, 2 U/μL SSIV RTase, 1 U/μL SUPERase
inhibitor); reverse transcription incubates at 55 °C for 10 min. For Tn5 release,
add 0.25 μL 0.3% SDS, incubate at 65 °C for 15 min, then add 0.25 μL 9%
Triton X-100 to quench SDS. To digest excess RT primers and avoid rebinding
during the preamplification step, causing overcounting of UMIs, 2 μL EXOI mix
(1× EXOI buffer, 2.5 μM primer “B,” 5 U/μL EXOI) were added, incubate at
37 °C, 30 min, 80 °C, 20 min.

For cDNA second strand synthesis, add 10 μL PCR mix (1× Thermopol Buffer,
0.2 mM dNTP, 1.33 mM MgSO4, 0.67 μM GAT5-B1-7N, 0.67 μM GAT5-B1-Com,
0.1 U/μL Deep Vent [exo-]). Then incubate at 72 °C, 5 min; 95 °C, 5 min;
11 cycles of [4 °C, 50 s, 10 °C, 50 s, 20 °C, 50 s, 30 °C, 50 s, 40 °C, 45 s, 50 °C,
45 s, 65 °C, 4 min, 95 °C, 20 s, 58 °C, 20 s].

After cDNA second strand synthesis, we performed ATAC fragment and cDNA
preamplification, then split as two parts for cDNA and DNA enrichment, respec-
tively. Add 0.5 μL 50 μM META16 primer mix, incubate at 95 °C, 1 min; five
cycles of [95 °C, 20 s, 58 °C, 30 s, 72 °C, 3 min], 72 °C, 5 min. Then split as two
parts, 5 μL for ATAC DNA enrichment, by adding 5 μL DNA enrichment mix
(1× Thermopol Buffer, 0.2 mM dNTP, 1.6 mM MgCl2, 3.2 μM META16 primer
mix, 0.2 U/μL Deep Vent [exo-]), incubate at 95 °C, 1 min; 12 cycles of [95 °C,
20 s, 62 °C, 30 s, 72 °C, 1 min], 72 °C, 5 min, then add 0.65 μL META16-ADP1-
ADP2 cell barcode to each well, incubate at 95 °C, 1 min; five cycles of [95 °C,
20 s, 62 °C, 30 s, 72 °C, 1 min], 72 °C, 5 min. For cDNA enrichment, take 10 μL
preamplification product, add 10 μL cDNA enrichment mix (1× Thermopol
Buffer, 0.2 mM dNTP, 1.6 mM MgCl2, 1 μM GAT5-B1-Com, 0.2 U/μL Deep Vent
[exo-]), incubate at 95 °C, 1 min; 12 cycles of [95 °C, 20 s, 58 °C, 30 s, 72 °C,
3 min], 72 °C, 5 min. Then add 0.5 μL 20 μM primerG to add Illumine sequenc-
ing adaptor to 30, incubate at 95 °C, 1 min; five cycles of [95 °C, 20 s, 58 °C,
30 s, 72 °C, 3 min], 72 °C, 5 min. After amplification, pool a whole plate for
purification.
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For cDNA library preparation, we take 50 ng (2 μL) as input for each plate,
then tagment with Nextera transposome by adding 6 μL transposition mix (lead-
ing to a final concentration of 10 mM TAPS, pH 8.5, 5 mM MgCl2, 8% PEG
8000, 28 nM Nextera transposome dimer), incubation at 55 °C for 10 min. Then
add 2 μL stop mix (250 mM NaCl, 37.5 mM EDTA, 2 mg/mL QIAGEN protease)
and incubation at 50 °C for 30 min, 70 °C for 15 min. Add 20 μL PCR mix
(15 μL 2× Q5 master mix, 0.5 100 mM MgCl2, 2 μL i5 index, 2 μL i7 index),
incubate at 72 °C, 5 min, 98 °C, 30 s, 12 cycles of [98 °C, 10 s, 62 °C, 30 s,
72 °C, 1 min], 72 °C, 5 min. Then size selection with first 0.55×, then
0.25× SPRIselect beads. All MALBAC-DT–related oligos sequences are the same
as ref. 28 and could be found in SI Appendix, Table S1.

Sequencing. METATAC library were sequenced with paired-end 2 × 150 bp on
an Illumina Hiseq 4000/Hiseq ×10; 10% PhiX (Illumina; FC-110-3001) were
added to avoid low complexity at 19-bp mosaic end sequence. Typically, each sin-
gle cell was sequenced to 500,000 reads, 15G base/96-well plate. MALBAC-DT
library was sequenced with paired-end 2 × 150 bp on an Illumina Hiseq 4000/
Hiseq ×10. Typically, each single cell was sequenced to 500,000 to 1 million
reads, 15 to 30G base/96-well plate.

Raw Read Preprocessing. For both read 1 and read 2, the first 4 to 7 bases
and the following 11 to 13 bases are paired cell barcodes and META sequence,
respectively (SI Appendix, Table S1). We used a custom Python script to parse
barcodes and split reads into individual fastq files for each cell, allowing up to
one mismatch. Meanwhile, META sequences were annotated to read the name,
allowing up to two mismatches. Then we used cutadapt to trim adapter sequen-
ces from both ends according to the 19-bp mosaic end (ME) sequence, with
parameters -e 0.22 -a CTGTCTCTTATACACATCT and -e 0.22 -g AGATGTGTATAAGA-
GACAG for both read 1 and read 2. Processed reads were mapped to reference
genome with bowtie2 -X 2000 –local –mm –no-discordant –no-mixed. hg38
(GRCh38, v26) reference genome was used for human cells, and mm10
(GRCm38, vM19) reference genome was used for mouse cells. Reads with map-
ping quality less than 30 were filtered out from further analysis. PCR duplicates
were identified and removed with a custom script, according to their positions
on genome and META tags. Paired-end reads were converted to fragments with
Tn5 insertion centering correction (R1 start +4 and R2 end�5). Finally, for each
cell, contaminated fragments from other cells were removed based on the
aligned coordinates, META sequences, and read frequency.

QC for METATAC. The preprocessed fragments of all cells were input to ArchR
(Version 0.9.4) (34) to create an ArchR object. Cells were filtered based on sev-
eral criteria: number of reads, alignment rate, number of fragments, contamina-
tion rate, mitochondrial fragment rate, TSS enrichment score, promoter ratio,
and doublet enrichments. About 10% of cells would be filtered (SI Appendix,
Table S3).

Cell Clustering and Peak Calling. After cell filtering, iterative latent semantic
indexing was performed using ArchR to reduce dimensions (13, 58). Cells were
clustered using Seurat’s FindClusters function (59) and embedded using the
addUMAP function. The marker genes were identified by the getMarkerFeatures
function with gene score matrix calculated by ArchR. Cell clusters were annotated
based on the marker gene expressions (33). Chromatin accessible peaks were
called by addReproduciblePeakSet function using MACS2 (60). The length of
each peak was fixed as 501 bp.

Species Mixing Experiment. The sequencing reads were aligned to a com-
bined reference genome of hg38 and mm10. The low-quality cells were filtered
out by the number of reads, alignment rate, number of fragments, contamina-
tion rate, and mitochondrial fragment rate. For the remaining cells, we calcu-
lated the fraction of fragments that aligned to the human chromosomes. If the
fraction is larger than 0.9, the cell is classified as a human cell; if the fraction is
smaller than 0.1, the cell is classified as a mouse cell. Otherwise, the cell is clas-
sified as a doublet.

Comparison with Previous Methods. To compare METATAC and other reported
scATAC-seq approaches, raw sequencing data of GM12878 and K562 cells from bulk
Omni-ATAC-seq, sci-ATAC-seq (Cusanovich), Fluidigm C1, and dscATAC-seq are down-
loaded from the Sequence Read Archive (SRA) database and processed with a similar
pipeline as described above. GM12878 and K562 DNase-seq peak files are

downloaded from the ENCODE project (ENCFF962MMN and ENCFF185XRG). After
peak calling with MACS2, we count the fragments which intersect with at least one
peak as the number of fragments in peaks using bedtools for each cell. The fraction
of fragments in DNase-seq peaks is calculated similarly. For scATAC-seq (14), raw
sequencing data (fastq files) of K562 cells were downloaded from https://www.ebi.
ac.uk/biostudies/arrayexpress/studies/E-MTAB-6714. Nextera adapter sequences were
trimmed using cutadapt (v4.0), and then reads were mapped to GRCh38 reference
genome. The library complexity was estimated from the mapped BAM file of each
cell using Picard EstimateLibraryComplexity (v2.27.3). Mapped fragments of all cells
were merged, and peaks were identified using macs2 (v2.2.7.1, with parameters
–nomodel –nolambda -B –SPMR –keep-dup all). Number of fragments in peaks were
calculated using bedtools intersect (v2.30.0, with parameters -a $FRAGMENT -b
$PEAKS). For 10× scATAC-seq, metadata and BAM files containing mapped reads
were downloaded from https://www.10xgenomics.com/resources/datasets/10k-1-1-
11mixture-of-human-gm12878-and-mouse-el4-cells-atac-v2-chromium-controller-
2-standard. Reads from each GM12878 cell (according to the annotation in
metadata) were extracted from the BAM file and split into individual BAM files.
Then BAM files were processed as processing data in ref. 14. For s3ATAC, meta-
data of human cortex dataset were downloaded from Gene Expression Omnibus
(GEO) (GSM5289636), and library complexities were estimated manually using
the Lander–Waterman equation from the “total_reads” and “uniq_reads” col-
umns in the metadata table. For HyDropATAC, fragments were downloaded from
GEO (GSM5343842). Number of total fragments, mitochondrial fragments, and
unique fragments of each cell were then calculated, and library sizes were esti-
mated as mentioned above.

To investigate correlations among different methods across the two cell lines,
we merge the DNase-seq peaks of GM12878 and K562 cells, and all cells are
aggregated for single-cell datasets. We count the number of fragments in each
peak for each method and cell type and then calculate Spearman’s correlation in
pairs. For cell down-sample analysis, we randomly sample a certain number of
cells from GM12878 datasets of each method. Fragments of the selected cells
are aggregated and served to MACS2 for peak calling. We calculate the number
of DNase-seq peaks that intersect with at least one of the resulting down-sample
peaks. We perform 10 independent down-sample processes for each method
and each cell number, to reduce random noise and give a standard derivation
as error bars (Fig. 1G).

Coaccessibility Score. The coaccessibility score of a pair of chromatin regions
was defined by a hypergeometric test. Suppose the number of cells was N. If
region 1 was detected to be accessible within M cells and region 2 was detected
to be accessible within n cells, then if the accessibilities of these two regions are
independent with each other, the number of cells with both regions accessible,
denoted as X, is a random variable that follows a hypergeometric distribution. If
these two regions were detected to be both accessible within x cells, then the
coaccessible score was computed as follows:

score = �log10
�
PðX ≥ xÞ

�
= �log10 ∑

k≥x

CkMC
n�k
N�M

CnN

 !
,

where C represents the number of combinations. This score was a nonnegative
value. A high score indicated the two regions are highly coaccessible.

Monoallelic Accessibility. The allele-specific alignment step followed ref. 46.
First, SNP sites between CAST/EiJ and the reference genome (C57BL/6J) were
downloaded from Mouse Genomes Project (REL-1505) (37, 61). The SNP sites
were replaced by “N” in the reference genome. Then, processed reads were
aligned to the modified reference genome to remove mapping bias. Reads
aligned to SNP sites were labeled as paternal or maternal according to the geno-
type. Reads not aligned to SNP sites, those that contained SNP of both parents,
or those in which the genotype was inconsistent with either parent are labeled
as inconclusive and were excluded for allele-specific analysis. Finally, for each
accessible peak, the monoallelic accessibility was calculated by the number of
inserts from corresponding parental fragments.

Allele Specificity. The quantification of allele specificity was based on a bino-
mial test. For a given peak, assume its paternal accessibility was n, while its
maternal accessibility was m. If both alleles are equally accessible, then the
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paternal accessibility is a random variable that follows binomial distribution,
with a probability of 0.5. The allele specificity was computed as follows:

S = log10 ∑
n+m

k=n
Ckn+m

1
2

� �k
 !

� log10 ∑
n+m

k=m
Ckn+m

1
2

� �k
 !

:

A positive S indicates the maternal allele is more accessible, and vice versa.

Joint ATAC–RNA Methods Benchmark. For simultaneous METATAC and
MALBAC-DT profiling benchmark, we downloaded the processed count matrices
or fragments of different cell lines from other methods from GEO, including
Paired-Seq, simultaneous high-throughput ATAC and RNA expression with
sequencing (SHARE-seq), single-nucleus chromatin accessibility and mRNA
expression sequencing (SNARE-seq), and single-cell combinatorial indexing joint
chromatin accessibility and mRNA (sciCAR). The per-cell number of UMIs or
fragments in peaks are calculated from the count matrix, by summing the count
values across all genome regions for ATAC or genes for RNA-seq. For 10× ATAC-
RNA multiomics, metadata of the human peripheral blood mononuclear cell
(PBMC) dataset were downloaded from https://www.10xgenomics.com/resources/
datasets/pbmc-from-a-healthy-donor-granulocytes-removed-through-cell-sorting-3-k-1-
standard-1-0-0. For assay for single-cell transcriptome and accessibility regions
(ASTAR-seq), K562 ATAC raw sequencing reads were downloaded from SRA
(SRP265830) and processed as described above. For RNA-seq comparison,
count matrix was downloaded from GEO (GSE113415). For SNuBar-ARC, count
matrices of both ATAC and RNA parts were downloaded from GEO
(GSM4960042 and GSM5494071).

Raw Reads Preprocessing for Joint ATAC–RNA. The raw reads preprocess-
ing for ATAC-seq library was the same as that for METATAC. For RNA-seq library,
we used the pipeline developed for MALBAC-DT (23). First, the raw reads for
each 96-well plate were demultiplexed based on the cell barcodes in the R2
reads, where at most one mismatch was allowed. The demultiplexed R2 reads
which contained more than three bases inconsistent to designed UMI patterns
or contained less than 4 T in the 5 bp downstream regions of UMIs were filtered.
For the remaining R1 reads, the polyA sequences were trimmed, followed by fil-
tering for high-quality reads with the following criteria: 1) not less than 40 bp,
2) more than half of the bases have sequence quality scores greater than 38,
and 3) less than 10% of bases are N.

The processed R1 reads were mapped to the hg38 or mm10 genome using
Spliced Transcripts Alignment to a Reference (STAR) (2.5.3a) (62). The uniquely
mapped reads were kept and assigned to genes using htseq-count in HTSeq
(0.11.2) (63). For each gene, the UMIs with a hamming distance of no more
than 1 were collapsed. Finally, the gene expression matrix was output using the
UMI count for each gene.

QC for Joint ATAC–RNA. The QC for the ATAC-seq data was the same as that
for METATAC data. For RNA-seq data, cells were filtered based on several criteria:
ratio of reads with correct UMI pattern, number of reads after filtering, alignment
rate, detected gene number, detected UMI number, mitochondrial gene UMI
rate, and External RNA Controls Consortium (ERCC) rate (SI Appendix, Table S3).
Cells passing QC for both RNA-seq and ATAC-seq were kept for further analyses.

Data, Materials, and Software Availability. Raw sequencing data are avail-
able at the SRA (accession no. PRJNA789047 [64]). Code is available via GitHub
(https://github.com/sunneyxielab/METATAC_pipeline).
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