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The regulation of insulin secretion is under control of a complex inter-organ/cells crosstalk
involving various metabolites and/or physical connections. In this review, we try to
illustrate with current knowledge how b-cells communicate with other cell types and
organs in physiological and pathological contexts. Moreover, this review will provide a
better understanding of the microenvironment and of the context in which b-cells exist and
how this can influence their survival and function. Recent studies showed that b-cell insulin
secretion is regulated also by a direct and indirect inter-organ/inter-cellular communication
involving various factors, illustrating the idea of “the hidden face of the iceberg”. Moreover,
any disruption on the physiological communication between b-cells and other cells or
organs can participate on diabetes onset. Therefore, for new anti-diabetic treatments’
development, it is necessary to consider the entire network of cells and organs involved in
the regulation of b-cellular function and no longer just b-cell or pancreatic islet alone. In this
context, we discuss here the intra-islet communication, the b-cell/skeletal muscle, b-cell/
adipose tissue and b-cell/liver cross talk.

Keywords: Beta cell (B-cell), insulin secretion, islets, skeletal muscle, adipose tissue, Liver
INTRODUCTION

Maintaining glucose homeostasis requires pancreatic islets cells’ secretion of several hormones
including insulin by b-cells, glucagon by a-cells, somatostatin by d-cells and the pancreatic
polypeptide (PP) by PP-cells. Glycaemia regulation is also allowed thanks to several insulin
sensitive/responsive tissues like liver, adipose tissue and skeletal muscle (1, 2). Specifically, b-cells
releasing insulin, a hypoglycaemic hormone, play a critical role in this physiological regulation.
Indeed, defective insulin secretion is the cause of all forms of diabetes (3).

Diabetes in its two main forms is characterized by an absolute or relative insulin deficit. Several
signals are thought to lead to impaired cell function and possibly a decrease in cell mass in type 2
diabetes (T2D), with autoimmune cell destruction underlying type 1 diabetes (T1D). More
precisely, T1D results from the destruction of pancreatic b-cells that is mediated by the immune
system. Multiple genetic and environmental factors found in variable combinations in individual
patients are involved in the development of T1D. It was recently described that the two first auto-
antibodies which initiate the autoimmune process are insulin autoantibodies or glutamic acid
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decarboxylase autoantibodies. Furthermore, the autoimmune
response is affected by environmental factors such as nutrition
etc… (4). T2D concerns the majority of diabetic patients (around
90–95%) and is due to the development of insulin resistance that
can result in a progressive loss of b-cell insulin secretion (5).

Insulin resistance is defined as the inability of cells to respond
normally to the insulin, leading to a decrease in glucose uptake in
primary insulin-sensitive organs such as skeletal muscle and
adipose tissue. Moreover, hepatic insulin resistance impairs
suppression of glucose production by insulin in hepatocytes,
participating in the chronic increase in glycaemia characteristic
of diabetes (6, 7). In parallel with alterations in glucose
metabolism, insulin resistance induces an accumulation of
circulating free fatty acids due to an increase in adipose tissue
lipolysis and hepatic de novo lipogenesis (8). This contributes to
ectopic fat deposition in liver or skeletal muscle, which in turn
exacerbate insulin resistance. Usually, it appears that insulin
resistance onset involves multiple and complex pathways, with
inter-linking and multidirectional effects (9). These mechanisms
include inflammation, lipotoxicity, endothelial reticulum stress
and mitochondrial dysfunction (10). Moreover, insulin
resistance plays a larger role in T1D pathological process than
it is generally recognized. Along with the increasing incidence of
T1D, obesity and physical inactivity have steadily increased in
children and adolescents. The role of insulin resistance in T1D
has only recently been accepted.

Interestingly, the insulin resistance alone does not induce
T2D. Indeed, healthy b-cells are able to compensate this insulin
resistance by increasing in number and enhancing their secretory
capacities (11). Thus, insulin resistance, in addition to impaired
b-cell function, is a hallmark of T2D. Therefore, for a long time,
b-cell was considered as the main target for the treatment of
diabetes. However, it is now well established that optimal
glycaemic regulation involves cross communication between
several cell type, organs and tissues such as intra-islet cells,
intestine L-cells, pancreas, liver, skeletal muscle, adipose tissue
etc… (12–14). Moreover, for adaptation to nutritional and
environmental conditions, this close conversation is essential.
Therefore, to treat diabetes mellitus, it seems important to
consider not only a cell type but all the organs involved in this
glycaemic regulation. In addition, it is widely described that this
inter-organ communication involves many metabolites,
including myokines, adipokines, hepatokines, isletokines,
extracellular vesicles (EV) etc… (12–14). To prove the
importance of this communication network, numerous studies
have shown that any disruption of it induces metabolic
dysfunctions and metabolic syndromes such as obesity and
diabetes (12–15).

In this review, we sought to illustrate with current knowledge
how b-cells communicate with other cell types and organs in
physiological and pathological contexts. Moreover, this review
will provide a better understanding of the microenvironment
and the context in which b-cells exist and how this can influence
their survival and function. In this context, we discuss here the
intra-islet communication, the b-cell/skeletal muscle, b-cell/
adipose tissue and b-cell/liver cross talk.
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B-CELL COMMUNICATION IN
PANCREATIC ISLET

In response to glucose elevation, b-cells secrete insulin
through the canonical insulin pathway involving GLUT2
transporter, KATP channels, intra-cellular Ca 2+ increasing
etc…. Conversely, at low levels, b-cells employ a negative
feedback mechanism to help maintain the blood glucose within
a safe range (16–18). However, it is clearly established that b-cell
insulin secretion mechanism is even more complex and is
regulated also by a close inter-organ/cells cross-talk involving
various metabolites and/or physical connections. This
communication is also found into the islet.

b-Cell to b-Cell Communication
For decades, the challenge has been to determine how b-cells
finely regulate their insulin secretion linked to glucose
concentration and whether this resides in a collective response
via a close communication between b-cells.

Role of “Hub Cells” in b-Cell Function
The arrangement of b-cells within pancreatic islets plays a
critical role for insulin secretion through the generation of
rhythmic activity. Indeed, Johnston NR et al. demonstrated
that the islet functional architecture is composed of hub b-cells
with pacemaker properties. Moreover, authors showed that
silencing of hubs abolished coordinated islet responses to
glucose, whereas specific stimulation restored communication
patterns (19). Activation of these “Hub cells”, recently renamed
“Leader cells” (20), may trigger [Ca 2+]i waves that diffuse to the
other cells within the islets, called “Followers cells”. Then, the
coordinated increases and decreases in [Ca 2+]i drive pulses of
insulin secretion (21, 22). Interestingly, it was demonstrated that
these “Hub cells” are targeted by pro-inflammatory and
glucolipotoxic factors inducing b-cells dysfunction (19).
Therefore, these “Hub cells” are essential for regulating
synchronization of islet insulin secretion and any disruption of
it could contribute to diabetes onset. Nevertheless, Satin LS et al.
have recently reported that depolarization of “Hub cells” is
sufficient to trigger electrical activity and [Ca 2+]i waves but it
is difficult for one cell to supply enough current to repolarize the
entire islet. Thus, authors suggest the involvement of diffusible
factors released by specialized cells or groups of cells within islets
like nitric oxide, carbon monoxide, GABA … but more studies
are necessary to conclude (22).

Role of Gap Junction in b-Cell Function
It is widely described in the literature that Gap junctions provide
one of the micro-anatomical bases for appropriate glucose-
induced insulin release (23, 24). Indeed, b-cell is known to
express gap junctions involved in cell coupling and in the
exchange of ions and small metabolites between b-cells (24–
26). Particularly, Speier S et al. highlighted an important role for
Cx36-gap junctions in modulating stimulation threshold and
kinetics of insulin release (24). Moreover, it was shown that
coupling of b-cells improves insulin synthesis and secretion,
February 2022 | Volume 13 | Article 836344
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while uncoupling leads to altered b-cell function (27). Very
recently, in order to improve knowledge about the exact role
and effects of b-cell/b-cell communication on glucose
homeostasis, Boris P et al. developed a new study model. This
consists on a dynamical network model in which N network
nodes represent individual b-cells and network links represent
couplings with k neighboring cells (18). Thanks to their study
model, they demonstrated the existence of a glucose-induced
transition in b-cell activity thanks to increasing coordination
through gap-junctional signaling and paracrine interactions. In
conclusion, insulin b-cell response to glucose stimulation is a
collective and coordinated action involving Gap junctions.

Role of EVs in b-Cell Function
Among elements involved in b-cell to b-cell communication, it is
well established that EVs play a critical role and can influence b-cell
function (28). Indeed, Javeed N et al. have recently showed that pro-
inflammatory b-cell EVs induce a complete loss of insulin secretion
in response to glucose and promote a pro-inflammatory islet
transcriptome (29). More precisely, Guay C et al. demonstrated
that these effects are mediated by miRNA derived-Evs, which are
transferred to neighboring b-cells. Indeed, down-regulation of the
miRNA-mediating silencing protein Ago2 in recipient cells prevent
deleterious effect of non-coding RNAs (30).

In conclusion, EVs transfer is an important cell-to-cell
communication mechanism regulating b-cell function and
constitute targets of interest to develop therapeutic strategies.

Crosstalk Between b-Cells and a-Cells
a-cells, with b-cells, are among the two most abundant and
essential endocrine cell type in the pancreatic islet for the
maintenance of glycaemia balance. The role of a-cells is to
release glucagon into the bloodstream in order to increase blood
glucose levels in opposition to b-cells that secrete a hypoglycaemic
hormone (31). Thus, they were considered for long time as
functional antagonists but the function of these two cellular
types is influenced by each other. Indeed, glucagon produced by
the pancreatic a-cell stimulates b-cell function while insulin has
an inhibitory effect on glucagon release (32). This cross
communication between b and a-cells enables active regulation
to maintain stable blood glucose concentration (15, 31, 33). For
that, b-cells release some inhibitory factors of a-cellular function
including insulin, Zn2+, ATP and g-aminobutyric acid (31, 34).
Conversely,a-cells produce, in addition of glucagon, factors which
affect the regulation of b-cells activity. These can have both
autocrine and paracrine signaling properties (15, 31).

Rodriguez-Diaz R et al. have recently shown that glucagon
input increases insulin secretion also from the neighboring b-cell
in human pancreatic islet (35). For that, authors transplanted
human islets into the anterior chamber of the eye of diabetic
nude mice. Once restoring normoglycaemia, they inhibited
human glucagon receptors with a specific antagonist (L-
168,049). Then, they showed that this treatment decreased
insulin secretion from human islet grafts and increased
glycaemia to pre-diabetic levels. Consequently, for the first
time, it was demonstrated that insulin secretion has to be
amplified by input from adjacent a-cells (35).
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Furthermore, in intestinal L-cells, proglucagon, release by a-
cells, is converted to GLP-1 by PC1/3 that is able to potentiate
insulin secretion under conditions of elevated blood glucose
concentration (36). Moreover, some studies suggest that GLP-1
may be also directly produced in the a-cell, also through PC1/3
expression, in order to increase insulin secretion (37–39).
Recently, it was shown that this a- to b-cell communication
and the subsequent enhancement of insulin secretion are lost in
KO mice for proglucagon peptides in the a-cell. The same
observation was done if the receptors for proglucagon peptides
(GLP-1R and GCGR) are silenced (37, 40, 41). Therefore, b- to
a-cell communication seems currently attributed to proglucagon
products but further studies are necessary to clarify the exact
contribution of glucagon and GLP-1 in this communication and
the mechanisms involved.

Finally, Human a-cells secrete acetylcholine, which strongly
potentiates the glucose-induced insulin secretion (42, 43).
Indeed, human a-cells provide paracrine cholinergic input to
surrounding endocrine cells, whose b-cells. Particularly, human
a-cells express acetylcholine transporter, release acetylcholine in
response to glucose concentration and amplify b-cell answer to
increase glucose concentration (43).

In conclusion, a very close and complex relationship exists
between the two cell types that is fundamental for setting the
regulation of insulin secretion and thus for glucose homeostasis,
involving the secretion of various metabolites. Moreover, a/b-
cell communication is not only a direct but is also an indirect
crosstalk involving other intermediate cell types as intestine.
Consequently, any cell dysfunction can alter this communication
between a- and b-cells and thus can affect insulin secretion in
response to glucose elevation. Therefore, for the development of
therapeutic strategies it is necessary to be not only interested in
the communication between two cell types but also in the impact
that other organs/cells could have on this communication. This
increases sharply the task.

Communication Between b- and d-Cell
Other component of pancreatic islet cyto-architecture are the d-
cells. With a- et b-cells, these 3 cell types constitute the
endocrine functional part of the islet which are finely
connected to allow an adequate response to glycaemic
variations (44–46). d-cell is an important paracrine regulator of
b and a-cell’s secretory activity by secreting somatostatin. More
precisely, somatostatin is an inhibitor of both glucagon and
insulin release and so, is an important regulator of glucose
homeostasis (46). It acts through different isoforms of the
somatostatin receptor (47, 48). Furthermore, the interaction
between d-cells and other intra-islet cells also becomes
defective in diabetes. Indeed, this defect reduces paracrine
feedback to b-cells to exacerbate hyperglycemia or enhanced
inhibition of a-cells, disabling counter-regulation, to cause
hypoglycemia (49).

d-cell release somatostatin in response to high glucose and to
local-acting signaling molecules secreted by islet cells, such as
acetylcholine, glutamate, urocortin3 (Ucn3), ghrelin (48, 50–53).
In addition, b- and d-cells can regulate glucagon secretion by a-
cells through gap junction communication (54).
February 2022 | Volume 13 | Article 836344
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Interestingly, Arrojo e Drigo R et al. have shown that d-cell
structure is composed of filopodia, which play a crucial role in b-
cell function regulation. Indeed, authors observed that these
filopodia are dynamic structures that contain a secretory
machinery, enabling the d-cell to reach a large number of b-
cells within the islet (46). Furthermore, they showed that
endogenous IGF-1/VEGF-A signaling modulates this.
Therefore, any disruption in this regulation may contribute to
early stages of beta cell failure and diabetes pathophysiology
(46, 55).

In order to bring new knowledge on intra-islet cells
communication, a recent study from Germany aimed to
determine how a- and b-cells regulate somatostatin secretion
(56). For that, authors studied in transgenic mice models the
effects of varying glucose concentrations together with infusions
of arginine, glucagon, insulin and somatostatin, as well as
infusions of antagonists of insulin, somatostatin and GLP-1
receptors. Interestingly, they demonstrated that somatostatin
and glucagon secretion are linked in a reciprocal feedback
cycle with somatostatin inhibiting glucagon secretion at low
and high glucose levels. Moreover, they observed that glucagon
stimulates somatostatin secretion thanks to glucagon and GLP-1
receptors activation. Conversely, they showed that insulin or
activation of its receptor did not affect somatostatin secretion.
Therefore, glucagon pathway plays a crucial role on somatostatin
secretion and could be an interesting therapeutic target to
control somatostatin secretion as this hormone is a strong
regulator of glucagon and insulin secretion.

Relationship Between b-Cell Function and
Intra-Islet Endothelial Cell
Pancreatic islets are highly vascularized and composed of
fenestrated capillaries. This dense and tortuous vascular
network is essential to deliver quickly insulin in the
bloodstream in response to glucose elevation. Indeed, islets
receive 6–20% of the pancreas’s direct arterial blood flow,
although they only represent 1–2% of the organ mass (57–59).
Moreover, the connection between endothelial cells and
endocrine cells enables proper gas and nutrition’s exchange
and waste removal via the bloodstream.

The existence of cross-talk between b-cells and intra-islet
endothelial cells which play a crucial role in b-cell development
and function providing non-nutritional signals to islets, has been
well established for decades (58, 60). For example, few years ago
it was shown that endothelial cell signals regulate the expression
of transcription factors in order to initiate dorsal pancreas
development by selectively inducing the transcription factor
Ptf1a (61). Moreover, using transgenic mice, Lammert E et al.
discovered that vessels not only provide metabolic sustenance,
but also provide inductive signals inducing insulin expression
and islet hyperplasia (62). Among these signals, the main ones is
the Vascular Endothelial Growth Factor A (VEGF-A) known to
promote endothelial migration and proliferation after binding to
its receptor (63). Thus, a defect in VEGF-A signaling can impairs
b cell proliferation, insulin secretion and glucose homeostasis
(58, 64). Furthermore, Hepatocyte Growth Factor (HGF) produced
Frontiers in Endocrinology | www.frontiersin.org 4
by intra-islets vessels, also regulates b-cell proliferation. Moreover, it
is essential for b cell differentiation, function, and proliferation (58).
Then, it was demonstrated that markers of endothelial cell
function (E-selectin, Il6, endothelin-1 and endothelial nitric
oxide synthase) are overexpressed in islet endothelial cells from
diabetic db/db mice and the exposure of these molecules on
pancreatic islets decreases insulin secretion during a glucose
stimulation test (GSIS) and decreases insulin content. Thus,
authors highlighted that in diabetes, islet endothelial cells have
a dysfunctional phenotype, which may contribute to loss of b-cell
function (65, 66). Finally, it is widely described that endothelial
cells modulate b-cell function in mature islets by secreting
basement membrane components that interact with specific
receptors in b-cells (67–70). For example, Daniel B et al,
showed the existence of an effective paracrine interaction
between islets microcapillary endothelial cells and b-cells that
modulates glucose-induced insulin secretion via the TPI-
sulfonylurea receptor-KATP channel (SUR1-Kir6.2) complex
attenuating interactions (70).

Interestingly, b-cells also release factors, which influence
intra-islet endothelial cell function. Indeed, Figliolini et al.
demonstrated that biologically active islet-derived EVs are able
to shuttle anti-apoptotic and pro-angiogenic mRNAs and
miRNAs into endothelial cells, which is a promising target to
improve islet transplantation (71).

On this part, the role of intra-islet endothelial cells is not only
to deliver quickly hormones into the bloodstream to regulate
glucose homeostasis but is also to influence the function and
survival of cells through a close communication with b-cells
involving secreted molecules. In conclusion, this is a two-way
communication and any endothelial and/or b-cell dysfunction
will participate in diabetes onset.

Cellular Plasticity in the Pancreas
Cellular plasticity in the pancreas also plays a crucial role in
glycaemia homeostasis and it represents a strong illustration of
pancreatic cell communication. Interestingly, maintaining
normoglycaemia involves a certain degree of pancreatic islet’s
biological adaptation. For example, an increased demand for
insulin can lead to an increase in b-cell mass. Moreover, any
changes in these adaptive mechanisms can lead to the incapacity
in maintaining normoglycaemia and to the development of
diabetes (72).

It is well described that pancreatic cells are able to
transdifferentiate in functional b-cells to compensate insulin
secretion impairment to maintain normoglycaemia. Indeed, it
was demonstrated that pancreatic a-cells and d-cells become
insulin expressers upon ablation of insulin-secreting b-cells,
promoting diabetes recovery (73). Interestingly, in young mice,
d-cells (but not a-cells) undergo spontaneous conversion into b-
cells, proceeding through a dedifferentiated intermediate (74, 75).
Moreover, it was recently shown that a-cells and PPY-producing
g–cells, obtained from deceased non-diabetic or diabetic human
donors, can be lineage-traced and reprogrammed by the
transcription factors Pdx1 and MafA to produce and secrete
insulin in response to glucose (73, 76). Furthermore, Furuyama
February 2022 | Volume 13 | Article 836344
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K et al. demonstrated that transplantation of human a-cells
converted in b-cells in diabetic mice reverses diabetes and that
the graft remains functional for 6 months (73). However, in
diabetic patients it was observed a b-cell plasticity and a loss of
b-cell identity. Thus, it is proposed that b-cells fail to maintain a
fully differentiated glucose-responsive and drug-responsive state
in diabetic individuals with poorly controlled and long-lasting
periods of hyperglycemia (77). Then, it has been demonstrated
that b-cell neogenesis occurs via transdifferentiation of acinar or
ductal cells, differentiation of progenitors to b-cells in exocrine
and endocrine tissue or by replication of preexisting b-cells
(78, 79).

Finally, this concept of cellular plasticity is primordial to
understand the importance of the role of pancreatic cell
intercommunication in b-cell function and glycaemia regulation.
Indeed, the loss of cell identity due to transdifferentiation process
will disturb intra and inter pancreatic cell communication
(described all along this chapter) essential for optimal b-cell
function. Thus, it represents another way of interest for future
diabetic patients’ treatments.
CROSSTALK BETWEEN B-CELL AND
SKELETAL MUSCLE

Skeletal muscle is the largest insulin-sensitive organ in the
body, so it plays a major role in postprandial glucose
homeostasis. Consequently, altered insulin action in skeletal
muscle can lead to a pathological state of insulin resistance, in
which normal concentrations of insulin induce an impaired
biological response (80). Interestingly, Dr Bente Klarlund
Pedersen was the first to suggest that skeletal muscle is as an
endocrine organ. Indeed, she suggested that certain cytokines
and other peptides, called “myokines”, were produced,
expressed and released by muscle fibers (81). Moreover,
several studies have shown that the contraction of skeletal
muscles releases a selected panel of myokines, which can act
hormonally both locally and in distant tissues. For example,
these secreted myokines exert specific endocrine effects on
visceral or median fat and have direct anti-inflammatory
effects (82–84). Other myokines act locally within muscle via
paracrine mechanisms, exerting their effects on signaling
pathways involved in lipid metabolism (83).

Skeletal muscle tissue is composed of a heterogeneous
population of muscle fibers ranging from slow contraction type
I fibers to fast contraction type IIx/d fibers (85). Type I fibers will
use lipids for their function, while type IIx/d fibers will mostly
use glucose (86, 87). Recently, our laboratory showed that
skeletal muscle cells can secrete different myokine profiles
depending on their insulin sensitivity and fibrillar composition
and can impact b-cell function and survival (12).

Impact of Human Skeletal Muscle Cell
Secretome on Pancreatic b-Cells
Our team showed that skeletal muscle with different insulin
sensitivity can have a differential impact on pancreatic b cell
Frontiers in Endocrinology | www.frontiersin.org 5
function and survival (12). Moreover, our work demonstrated
that myokines secreted by insulin-sensitive skeletal muscle
increased pancreatic b-cell proliferation as well as glucose-
induced insulin secretion. In contrast, myokines secreted by
insulin-resistant skeletal muscle induce loss of insulin secretion
and destruction of pancreatic b-cells. In conclusion, skeletal
muscle secretome contains factors that can have either a
positive (insulin-sensitive muscle) or a negative (insulin-
resistant muscle) impact on pancreatic b-cells. For this review,
we have chosen to discuss about cytokines and chemokines
independently tested for their effects on pancreatic b cells.

Cytokines and Chemokines
For example, IL-1b alone can have a positive or a negative impact
on b-cell function, survival and proliferation. Furthermore, these
differential effects are depending on its concentration and on its
duration of exhibition (88). In addition, we have also shown
positive effects on b-cell survival and proliferation for low levels
of IL-1b secreted by the cells themselves when cultured on a
particular extracellular matrix (89, 90).

Moreover, we showed that TNF-a, at high concentration,
decreases insulin secretion induced by glucose and stimulates
apoptosis. However, as observed with IL-1b , at low
concentration, TNF-a promotes b-cell proliferation and
improves insulin secretion. Thus, this indicates the existence of
bimodal effects for this cytokine (12).

Then, the interferon-gamma-inducible protein (IP-10), also
called C-X-C motif chemokine ligand 10 (CXCL10), is increased
in the secretome of insulin-resistant human skeletal muscle cells
(12). In addition, its circulating level is increased in the serum of
patients with type 1 and type 2 diabetes (91, 92). This has led
several groups to study the impact of this chemokine on the
endocrine pancreas. The expression of CXCL10 in the pancreas
was first shown to accelerate the autoimmune process (93).
Secondly, a direct impact of CXCL10 on the function and
survival of pancreatic b cells was shown with induction of
their apoptosis, altered insulin secretion and decrease in
insulin mRNA.

Studies on the effects of IL-6 on b-cell function have shown
mixed results, with some finding a negative effect (94) and others
a positive effect on insulin production (95, 96). Furthermore, it
appears that these effects are more complex than a direct effect.
Indeed, IL-6 plays an essential role in a muscle-entero-pancreatic
communication loop. During exercise IL-6 releases GLP-1 from
L cells in the intestine and further improves b-cell function
through local production of GLP-1 in a-cells, leading to better
glycaemic control (97). Interestingly, high and acute secretion of
IL-6, observed during exercise, have beneficial effects. However,
chronic elevation of plasma IL-6 is associated with negative
clinical parameters, including the development of type 2
diabetes (98).

Follistatin
A decade ago, it was shown that plasma follistatin is rapidly
elevated during physical activity, peaks during the recovery phase
and remains elevated for a few hours (99). The origin of exercise-
induced follistatin appears to depend on the type of exercise
February 2022 | Volume 13 | Article 836344
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performed. During resistance exercise such as weight training,
follistatin mRNA expression increases in skeletal muscle tissue
biopsies from women on hormone replacement therapy (100).
The same observation was made in healthy young men after a
session of strength training (101). However, recently we have
shown that follistatin is also secreted by the liver in response to
exercise. This follistatin secreted into the bloodstream can then
target the pancreas and regulate the secretion of insulin and
glucagon. The latter will subsequently target the liver and in turn
regulate the secretion of follistatin (102). This example perfectly
illustrates the complexity of the role played by the inter-organs
communication on b-cell function and survival.

Fractalkine
Another myokine has generated great interest in the treatment of
diabetic patients, fractalkine, also known as CX3CL1. It is a
CX3C chemokine expressed in various cell types such as skeletal
muscle cells and pancreatic b-cells (103–105). Furthermore,
knockdown of CX3CR1 (fractalkine receptor) in a mouse
model was found to induce hyperglycaemia and to reduce
nutrient-stimulated insulin secretion. In addition, the injection
of fractalkine into C57BL/6N mice made it possible to potentiate
their b-cell function, to increase plasma insulin levels and to
improve their glucose tolerance (106). In another study
conducted by our team, we showed that fractalkine protects
human b-cells from the harmful effects of TNFa on the
molecular mechanisms involved in the trafficking of insulin
granules. We then highlighted that this myokine restored the
phosphorylation and expression of key proteins involved in the
insulin secretion pathway such as AKT, AS160, paxillin, IRS2 for
example (105). In summary, all these data suggest that the
Fractalkine-CX3CR1 axis could be a target of interest for
treating diabetes and that fractalkine could be an interesting
pharmacological candidate for treating diabetic patients.

Osteoprotegerin
Recently, we have highlighted a set of myokines secreted by
glycolytic skeletal muscles. These myokines, such as
osteoprotegerin (OPG), a member of the TNF receptor
superfamily, are being evaluated therapeutically for
replacement of pancreatic b-cells destroyed in T1D. Indeed,
recent studies have shown that OPG enables the replication of
human pancreatic beta cells by modulating the CREB and GSK3
pathways, by binding RANKL and thus, interfering with the
RANKL/RANK antiproliferative interaction. Furthermore, it has
been shown by plasma insulin assay and a glucose tolerance test
that the glycemic balance is significantly improved in diabetic
mice treated with 1.0 mg/g of mOPG-Fc (107). In addition, we
recently demonstrated in a study carried out on primary cultures
of human myotubes, that OPG is a specific myokine of the
triceps and that it significantly decreases the apoptosis of
pancreatic b-cells. Finally, we found that OPG counteracts
both the negative effects of cytomix and TNFa on primary
pancreatic b-cell proliferation and insulin secretion (108).

In conclusion, far from being an inert tissue in terms of inter-
organ communication, skeletal muscle secretes myokines, which
can affect the function of distant organs/tissues either favorably
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or unfavorably. Here, we have summarized the potential impact
of myokines in the communication between skeletal muscle and
endocrine pancreas. This is a new route of communication that
we believe is further altered by the degree of insulin resistance in
skeletal muscle. Finally, the identification of the skeletal muscle
secretome may have important implications for understanding
the decrease in the functional mass of b cells in diabetes and for
developing an innovative therapy.
CROSSTALK BETWEEN B-CELL AND
ADIPOSE TISSUE

For decades, white adipose tissue has long been considered a
mere storage tissue. In 1990s, it has been highlighted that adipose
tissue is an endocrine tissue able to secrete heterogeneous
bioactive factors including proteins (i.e. adipokines), lipids (i.e.
lipokines) and extracellular vesicles (e.g. exosomes). Since the
1990s, the number of adipose tissue’s secretions has continuously
increased and new factors are regularly identified. All of these
secretions establish communications with a variety of organs and
cells including the pancreas and particularly b-cells. A lot of
original papers and reviews have already been published
concerning the impact of the “classic” factors (e.g. leptin,
adiponectin) (13). For these reasons, this review focuses on
recently described adipose tissue’s secretions that crosstalk
with b-cells.

Adipokines
Asprosin
Asprosin, identified as a novel adipokine in 2016, is a C-terminal
product generated by the cleavage of a proprotein by activated
protease furin, which generates mature fibrillin-1 and 140
amino-acid asprosin (109). Plasma asprosin level increases
during starvation to stimulate hepatic gluconeogenesis and
prevent hypoglycaemia. An increase is also observed in
patients with obesity and T2D (110, 111). Interestingly,
asprosin is negatively correlated with homeostasis model
assessment for b-cells function (HOMA-b) (112) that indicates
that asprosin may be involved in b-cells dysfunction during T1D.
Indeed, it has been recently shown that treatment of MIN6 cells
by asprosin increases caspase 3 activity as a marker of apoptosis
and decreases cell viability (113). This is associated with an
impairment of GSIS. Surprisingly, it has been shown that
asprosin secretion is enhanced by irisin, an exercise-induced
myokine (114) which raises the question of its beneficial or
deleterious effect. So, it will be necessary to elucidate more
precisely asprosin’s mechanisms. Then, this observation
highlights the idea of a complex and indirect crosstalk between
organs that can influence b-cells function. All of these results
suggest asprosin as a potential therapeutic target for preserving
pancreatic b-cells.

Adipsin
Furthermore, Adipsin or complement factor D was the
first described adipokine and plays a central role in
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metabolism (115). This adipokine is also synthesized by the liver
but adipose tissue remains the major source of its secretion.
Adipsin stimulates the production of C3a, a component
complement able to enhance insulin secretion by increasing the
concentration of cytosolic Ca2+ in b-cells (116). Interestingly,
adipsin expression in adipose tissue is decreased in T2D patients
with b-cell failure compared to T2D patients (116). Recently,
Gomez-Banoy et al. found that treatment of transplanted
pancreatic islets with an adeno-associated virus (AAV)
expressing adipsin preserves b-cell mass by inhibiting death in a
model of T2D mice (117). Moreover, adipsin maintains b-cell
transcription identity and so inhibits dedifferentiation observed
during diabetes. Despite these attractive results, to date no study
has investigated the role of adipsin in the context of T1D. This
adipokine could be an attractive pharmacological candidate and
this path deserves to be explored in the future.

Secreted Frizzled-Related Protein 5
Finally, Secreted frizzled-related protein 5 (Sfrp5) is an
endogenous inhibitor of Wnt signaling pathway identified as a
novel anti-inflammatory adipokine in 2010 (118). Typically, its
adipose tissue mRNA expression is reduced in rodent models of
obesity (118). Moreover, KOmice fed with a high fat diet develop
systemic metabolic dysfunction, such as glucose intolerance or
adipose tissue inflammation. In 2019, Carstensen-Kirberg et al.
showed that treatment of INS-1E cells with Sfrp5 during 24h
dose dependently increased GSIS (119). This is associated with a
decrease in the phosphorylation levels of c-jun N terminal kinase
(JNK), a deleterious pathway for b-cell function (120). In light of
these first observations, Sfrp5 appeared to represent a potential
target for diabetes mellitus and it seems necessary to deal with it
in depth.

Lipokines
In addition to adipokines, adipose tissue is also able to secrete
bioactive lipids called lipokines. By their nature, there factors are
difficult to isolate and still few of them have been characterized.
Among them, some have shown interesting impact on b-cells
and more will certainly be identified in the years to come.

Palmitoleate
Palmitoleate was the first lipid identified as being released from
adipose tissue and having metabolic effects on distant organs. It
is mostly derived from de novo lipogenesis and acts as an insulin
sensitizer in liver and skeletal muscle tissues (121). Concerning
its impact in pancreatic b-cells, it seems to stimulate insulin
secretion for high glucose levels (122) but mechanisms of action
have not yet been elucidated. Now, further studies are needed to
understand the link between palmitoleate and diabetes and to
consider this factor as a biomarker or a possible treatment.

Fatty Acid Esters of Hydroxy Fatty Acids
Then, Fatty acid esters of hydroxy fatty acids (FAHFA) are a
novel class of lipids, which showed beneficial metabolic and anti-
inflammatory effects (123). The most well characterized FAHFA
species are palmitic acid esters of hydroxyl stearic acid (PAHSA)
whose serum and adipose tissue levels are decreased in insulin-
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resistant subjects (124). In 2019, Syed I et al. showed beneficial
impacts of PAHSA on b-cells. Indeed, chronic treatment of NOD
mice delays the onset and reduces the incidence of diabetes (125),
associated with an enhancement of GSIS. In accordance with
that, PAHSA increases proliferation and attenuates cytokine-
induced MIN6 cells death. Interestingly, these effects are
mediated in part by GLP-1R, widely described as activator of
insulin secretion (126). Taken together, these results highlight a
new class of potential candidates for treatment of diabetes.

Besides white adipose tissue, brown adipose tissue (BAT) is
also able to secrete proteins called batokines. By its ability to
increase energy expenditure, targeting BAT to treat diabetes is a
particularly attractive strategy. However, the secretome of this
tissue remains poorly characterized and nowadays there is no
evidence of a direct dialogue between BAT and pancreas during
diabetes. The identification and characterization of batokines
could open new areas of research and potentially future
treatment options.
Extracellular Vesicles
EV are lipid bilayer particles naturally secreted by cells into the
extracellular space. They envelop and release intracellular
molecules including proteins, microRNA and bioactive lipids
to mediate cell-to-cell communication. Several studies have
shown that EV proteins and microRNAs content were altered
during diabetes (127, 128). In this way, Gesmundo I et al. showed
that EV from human lean adipose tissue promote survival and
insulin secretion of b-cells while EV from human obese adipose
tissue alters these same settings (129). The authors have not
investigated the cargo of the EV but it could be interesting to
identify modulated factors in this context. Future studies of
adipose tissue-pancreas crosstalk will take into account this
important mode of communication.
CROSSTALK BETWEEN B-CELL
AND LIVER

The liver is composed of many different cell types: parenchymal
cells representing 80% of the liver, including hepatocytes and bile
duct cells, and non-parenchymal cells including Kupffer cells
(liver macrophages), hepatic stellate cells and sinusoidal
endothelial cells (14). For a long period, the secretory role of
liver was mainly known for its regulation of coagulation and
hemostasis, however the different cells composing the liver give a
wide range of secreted proteins, thus its endocrine role in
metabolic diseases has started to be described recently (14).
Furthermore, its structure composed of sinusoids enable to
deliver the liver secretome to the peripheral organs through the
central veins and the inferior vena cava (14), making liver one of
the largest metabolic organ (130). Indeed, the liver has also an
impact on b-cells, principally by regulating the compensatory
effect on islets induced in insulin-resistant state. Here, we focus
on different liver secretory products that have an impact on b-
cells and which represent a real therapeutic interest.
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Hepatokines
FGF21
FGF21 was first identified in 2000 principally in the liver (131) but
was first described as a metabolic regulator in 2005 (132), involved
in lipid metabolism, by decreasing adipose tissue lipolysis,
increasing fatty acid oxidation and reducing hepatic lipids.
Secondly, it is involved in glucose metabolism by decreasing
plasma glucose, which mainly explain its higher circulating
expression in patients with obesity and/or hepatic steatosis as a
compensatory effect (14, 133). In addition to itsmetabolic regulator
role, FGF21 has been reported as a potential anti-diabetic therapy
thanks to its ability to improve b-cell function andmass (132). This
anti-diabetic role is explained by different mechanisms: decrease in
plasma glucose and triglyceride levels which reduces b-cells’
glucolipotoxicity and activate AKT signaling pathway which
improves insulin sensitivity (14, 134, 135).

SerpinB1
SerpinB1 is a protease inhibitor mainly expressed in hepatocytes
(136). SerpinB1 inhibits particularly the neutrophil elastase that
interferes with b-cell proliferation by inhibiting the
phosphorylation of proteins involved in insulin or IGF-1
signaling pathways, such as MAPK3 or GSK. Thus, SerpinB1
increases b-cells proliferation particularly in insulin-resistant
state (137).

Hepatocyte Growth Factor
HGF is expressed in liver in response to ERK signaling and
induce its signal through its tyrosine-kinase receptor Met (138).
The treatment of b-cells by HGF increases the phosphorylation
of IRS2, AKT and ERK (138). This increase is the response of
MET activation by HGF, which induce the formation of a MET-
Insulin receptor complex responsible of an increase in insulin
signal (136, 138, 139).

Selenoprotein P
SelenoproteinP is a secretoryproteinpredominantlyexpressedby the
liver (14, 140),whichplays an important role in seleniummetabolism
(141). Selenoprotein P expression induces insulin resistance and
impairs glucosemetabolism in hepatocytes through the inhibition of
AMPK activity (140, 141). Selenoprotein P high level is also involved
in the reduction ofb-cells anda-cellmass and in the re-arrangement
of thepositionofb-cells anda-cells in thepancreas thatmight explain
thepancreatic insulin level decreaseobservedwhen selenoproteinP is
overexpressed (141).

miRNA
miRNAs are small RNA sequences (around 20 nucleotides) that
regulate gene expression by binding on mRNAs to suppress
translation or induce their lysosomal degradation (14, 142). Thus,
intracellular accumulation of miRNAs could specifically regulate
metabolic functions such as insulin secretion of b-cells (14, 143).

For example, miR-7218-5p is expressed in hepatocellular EV
and its expression is decreased in high fat diet rats EV (130). miR-
7218-5p regulates b-cells’ (MIN6) proliferation as a compensatory
effect in an insulin resistance state (130). This impact on b-cells’
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proliferation is induced by miR-7218-5p’s regulation of Cd74 gene
expression. Cd74 is a transmembrane protein involved in
immunological processes but also in cell proliferation regulating
ERK1/2 and AKT signaling pathway (130).

Finally, other miRNA secreted by the liver are known to impair
insulin secretion in b-cells as miR-375, miR-9, miR-143 (14).

Liver-Brain-Pancreas Network System
Previously, it has been shown that the liver exerts effects on b-
cells through its secretory proteins or extracellular vesicles.
However, liver can also have an impact on b-cells indirectly.
Indeed, ERK pathway is over-expressed in liver of obese mice
and increases b-cell proliferation (136). Imai J. et al. have
highlighted that ERK over-expression in hepatocytes regulates
b-cell proliferation through splanchnic nerves that deliver a
signal to the brain which transfers this signal to the b-cells
through vagal nerves (136, 144). The vagal nerves release different
neural factors, as acetylcholine, adenylate cyclase activating
polypeptide (PACAP), vasoactive intestinal polypeptide (VIP),
that are going to activate b-cell proliferation through FoxM1
pathway upregulation, which is a critical factor for b-cell mass
expansion (136).

Thus, liver also have indirect effect on b-cells through this
liver-b-cells inter organ neuronal network involved in b-cell
proliferation in insulin-resistant and obese state (136).

Hepatic/a-Cells Axis
On another hand, liver is also involved in the regulation of
glucagon, through a hepatic/a-cells axis (145). a-cells produce
glucagon, which, by binding onto the hepatic glucagon receptor,
induces hepatic glucose’s production through gluconeogenesis.
However, in case of interrupted glucose signalling, a decrease of
amino acid (AA) catabolism in the liver is observed increasing
amino acid in the blood circulation (145, 146). AA’s increase is
involved in a-cell proliferation particularly through glutamine,
which is transported in a-cells through Slc38a5 (AA transporter)
and, which increases mTOR expression involved in a-cell
proliferation (145, 146). This glutamine-dependent a-cell
proliferation re-establishes the production of glucagon and, so
hepatic glucose’s production (147). Thus, this axis presents
several target for diabetes’ therapies (146).
CROSSTALK BETWEEN B-CELL AND
GUT MICROBIOTA

The gastrointestinal tract houses a complex population of
microorganisms called gut microbiota. In physiological
conditions, it offers many benefits to the host including
nutrient and drug metabolism, immunomodulation or
maintenance of the structure of gut integrity (148). Dysbiosis
of the gut microbiome has been implicated in various diseases
including diabetes. Recently, gene sequencing of fecal samples
from healthy and diabetic people showed an increase in pro-
inflammatory bacteria and a decrease in anti-inflammatory
bacteria with diabetes (149). It is also interesting to point out a
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decline in bacteria that produce short chain fatty acid (SCFA),
some of which have shown beneficial effects on the pancreas.
Indeed, Pingitore et al. showed that long-term colonic
propionate delivery improves b-cell function by potentiating
insulin secretion in response to glucose and by protecting cells
from cytokine- and palmitate-induced apoptosis (150). In
accordance with that, it has been shown that acetate, another
SCFA, is able to diminish the frequency of autoimmune T cells in
the pancreas and so protect against T1D (151). Finally, intestinal
lysozyme can also release Nod1 ligands from commensal bacteria
and promote insulin granule transport in b-cell thanks to the
recruitment of the protein Rab1a (152). In conclusion, all of these
data highlight the importance of taking into account the gut
microbiota in the regulation of b-cell function.
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CONCLUSION

In this review, we sought to provide recent knowledge on how b-
cell function is regulated. First of all, it is important to highlight
that this regulation is more complex as some had thought.
Indeed, it is largely demonstrated that b-cell insulin secretion
is regulated also by a direct and indirect inter-organ/inter-
cellular communication involving various factors, illustrating
the idea of “the hidden face of the iceberg” (Figure 1). Then,
this very close and complex relationship between all these cell
types and organs is fundamental for setting the regulation of
insulin secretion and thus for glucose homeostasis. Moreover,
this review provides a better understanding of the
microenvironment and the context in which b-cells exist. All
FIGURE 1 | The iceberg of b-cell’s communication network. The physiological b-cellular function is finely regulated by a dense and complex communication network
including direct and indirect interactions with various cell types and organs. This communication takes place thanks to various factors secreted from many organs
such as the liver, adipose tissue, skeletal muscle, intestine or even the brain which constitute a strong union to allow a physiological b-cell function. However, this
description is not exhaustive, this network is more complex and should also involve other organs (Dotted black arrows). Any disturbance in this communication
network can lead to dysfunction of b-cell function and to metabolic diseases such as diabetes onset. Therefore, for new anti-diabetic treatments’ development, it is
necessary to consider the entire network of cells and organs involved in the regulation of b-cellular function and no longer just the tip of the iceberg.
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of these recent studies showed how this communication can
influence b-cell survival, function and that any disruption on this
physiological communication can participate on diabetes onset.
Therefore, for the development of new treatments for diabetic
patients, it is necessary to consider the entire network of cells and
organs involved in the regulation of b-cellular function and no
longer than b-cell or pancreatic islet alone. Finally, many
metabolites and signaling pathways, which improve insulin
secretion, could be targeted to treat diabetes but further
investigations are required to propose the best therapy.
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GLOSSARY

PP Pancreatic Polypeptide
T2D Type 2 Diabetes
T1D Type 1 Diabetes
GLUT2 Glucose transporter 2
Cx36 Connexin 36
ATP Adenosine TriphosPhate
GLP-1 Glucagon Like Peptide-1
PC1/3 Proprotein convertase 1/3
GLP-1R Glucagon Like Peptide-1 Receptor
GCGR Glucagon Receptor
Ucn3 Urocortin3
IGF-1 Insulin-like Growth Factor-1
VEGF-A Vascular Endothelial Growth Factor-A
Ptf1a Pancreas transcription factor 1 subunit alpha
Il-6 Interleukin-6
GSIS Glucose-Stimulated Insulin Secretion
TPI Triosephosphate Isomerase
SUR1 SulfonylUrea receptor 1
Il-1b Interleukin-1b
TNFa Tumor Necrosis Factor a
IP-10 interferon-gamma-inducible protein 10
CXCL10 C-X-C motif chemokine ligand 10
CX3CL1 chemokine [C-X3-C motif] ligand 1
CX3CR1 CX3C chemokine receptor 1
AS160 AKT substrate of 160 kDa
IRS2 Insulin receptor substrate 2
OPG Osteoprotegerin
CREB C-AMP Response Element-binding protein
GSK3 Glycogen Synthase Kinase-3
RANKL Receptor Activator of Nuclear Factor Kappa-B Ligand
RANK receptor activator of nuclear factor kappa-B
HOMA-b Homeostasis model assessment-b
C3a complement component 3a
AAV Adeno-Associated Virus
Sfrp5 Secreted frizzled-related protein5
JNK c-Jun N-terminal kinase
FAHFA Fatty Acid esters of Hydroxy Fatty Acids
PAHSA Palmitic Acid esters of Hydroxyl Stearic Acid
EV Extracellular Vesicles
BAT Brown Adipose Tissue
FGF21 Fibroblast Growth Factor 21
MAPK3 Mitogen-activated protein kinase 3
GSK Glycogen Synthase Kinase
HGF Hepatocyte Growth Factor
ERK Extracellular signal-Regulated Kinase
AMPK 5’ Adenosine Monophosphate-Activated Protein Kinase
EC Endothelial Cell
Selen P Selenoprotein P
PACAP adenylate cyclase activating polypeptide
VIP Vasoactive Intestinal Polypeptide
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