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Abstract

The epigenome is established and maintained by the site-specific recruitment of chromatin-

modifying enzymes and their co-factors. Identifying the cis-elements that regulate epigenomic 

modification is critical to understand the regulatory mechanisms that control gene expression 

patterns. We present Epigram, an analysis pipeline that predicts histone modification and DNA 

methylation patterns from DNA motifs. The identified cis-elements represent interactions with the 

site-specific DNA-binding factors that establish and maintain epigenomic modifications. We 

catalog the cis-elements in embryonic stem cells and four derived lineages and found numerous 

motifs that have location preference, such as at the center of H3K27ac or at the edges of 

H3K4me3 and H3K9me3, which provides mechanistic insight about the shaping of the 

epigenome. The Epigram pipeline and predictive motifs are at http://wanglab.ucsd.edu/star/

epigram.

Introduction

Epigenomic modifications, including histone modifications and DNA methylation, play 

critical roles in development and other key biological processes. The establishment and 

maintenance of specific epigenomic patterns are regulated by many factors; including: 

nucleosome positioning1, modifying enzymes2, transcription factors (TFs)3, non-coding 

RNAs4, signaling molecules5 and three-dimensional genomic organization6, 7. How exactly 

these mechanisms collectively regulate the epigenome remains unclear. In particular, the 

importance of cis-regulatory motifs, which are bound by site-specific DNA-binding factors, 

in regulating epigenomic modification remains unclear.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence to: Wei Wang, wei-wang@ucsd.edu.
3Current address: Research & Development IT, Janssen Pharmaceutical of Johnson & Johnson, San Diego, California, United States 
of America

Contributions
JWW and WW conceived and designed the project, JWW performed all the analyses, ZC contributed to data analysis, WW analyzed 
the data, JWW and WW wrote the manuscript.

Competing financial interests
The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2015 September 01.

Published in final edited form as:
Nat Methods. 2015 March ; 12(3): 265–272. doi:10.1038/nmeth.3065.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://wanglab.ucsd.edu/star/epigram
http://wanglab.ucsd.edu/star/epigram
http://www.nature.com/authors/editorial_policies/license.html#terms


The genome sequence is unchanged between an individual's different cell-types; however, 

the execution of the cis-regulatory program shaping the epigenome is dynamic, as the 

expression and activity of chromatin-modifying enzymes and their co-factors vary between 

cell-types and cellular conditions (Fig. 1a). Epigenomic regulatory mechanisms use 

combinations of enzymes and co-factors to read a cis-regulatory code that defines locus-

specific modification patterns. Therefore, given a particular epigenomic state, it is possible 

to identify the cis-elements that interplay with epigenomic modifications and are responsible 

for their establishment and/or maintenance (Fig 1b). A global picture of the cis-regulatory 

code that regulates the epigenome may emerge from surveying a diversity of cell-types and 

conditions. Indeed, evidence supporting the importance of cis-regulatory code in shaping the 

epigenome is rapidly accumulating8. For example, GC-rich sequences are strongly 

correlated with two histone modifications, H3K27me39 and H3K4me310; GC-rich motifs 

establish H3K27me3 by recruiting the polycomb repressive complex 2 (PRC2) through 

interaction with lncRNAs11, 12; the CpG-binding protein, CFP1, recruits the H3K4 

methyltransferase SETD1 to GC-rich motifs10; another H3K4me3 methyltransferase, 

PRDM9, has a sequence-specific binding motif that directs it to meiotic recombination 

hotspots13. Additional examples include, TFs belonging to the PAX family that help 

establish H3K9me3 at pericentric heterochromatin14; and the TF NANOG that physically 

interacts with the methylcytosine hydroxylase, TET1, to facilitate DNA demethylation at 

specific loci, resulting in priming of key pluripotency genes during cellular 

reprogramming15. Moreover, DNA variants can cause inter-individual differences in histone 

modification levels by altering the binding motifs of TFs16–18.

Despite these suggestive observations, methods to systematically catalog the epigenomes 

cis-regulatory program are lacking. Studies of nucleosome positioning1 have identified a 

~10bp periodicity of A/T dinucleotides that oscillates out of phase with the dinucleotide 

GC19–21 and poly(dA:dT) tracks that inhibit nucleosome formation22–25; however, the 

involvement of DNA sequence in nucleosome positioning remains controversial26–28. 

Nevertheless, these studies did not intend to predict histone modifications from DNA 

sequence. Enrichment of TF binding and sequence features in various chromatin states have 

been examined29, but DNA motifs were not used to predict epigenomic modification. 

Recently, DNA 6-mers were used to predict the presence of H3K4me3 with reasonable 

accuracy but failed to find sequence features associated with other histone modifications30; 

notably this study did not focus on DNA motifs, which are recognized by DNA binding 

factors. These previous studies illustrate the possibility of deciphering the epigenomic cis-

regulatory program; however, a predictive model that quantitatively links DNA motifs to 

epigenomic state has not been established, which is the major goal of this study.

Herein, we present the first comprehensive investigation of the cis-regulatory program that 

regulates the epigenome (Fig. 1b). We build models that use DNA motifs to predict 

epigenomic modifications in a cell-type-specific manner. Thus, we capture the cis-elements 

that interplay with the dynamic regulatory program to shape the epigenome. By surveying 

various cell-types we reveal mark-specific motifs, which may be universally recognized by 

chromatin-modifying enzymes, and motifs with cell-type-specific interplay, which may be 

recognized by cell-type-specific co-factors. We have successfully applied this approach to 
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predicting the placement of six core histone modifications and DNA methylation valleys 

(DMV) in H1 human embryonic stem cells (hESC) and four H1-derived cell-types31 (Fig. 

1c). We developed a novel analysis pipeline, Epigram, to systematically identify DNA 

motifs that are predictive of epigenomic modifications (Fig. 1d). To tease out the cis-

elements that direct binding of epigenomic regulatory factors, such as chromatin-modifying 

enzymes, TFs and non-coding RNAs, we systematically removed the possible bias 

introduced by simple sequence patterns, such as GC-content. We observed that motifs have 

different location preferences within modified regions, such as the center of H3K27ac or the 

edge of H3K4me3 or H3K9me3. Furthermore, we demonstrate the importance of Epigram 

motifs in the regulation of histone modification through the significant correlation between 

their disruption and inter-individual H3K27ac variation. Importantly, our study provided a 

catalogue of cis-elements that play important roles in shaping the epigenomic modifications, 

which is useful for designing new epigenome editing tools.

Results

Predicting the epigenome from DNA motifs

We first examined if DNA motifs could distinguish genomic regions that possess modified 

histones from regions that do not possess any modified histones. For the sake of discussion, 

we refer to this as the ‘single mark analysis’. We started by correcting a potential bias in the 

ChIP-seq data that can be caused by the preferential sequencing of GC-rich genomic 

fragments32, 33 (Fig. 1d). To identify regions that are enriched with a histone modification 

from ChIP-seq, we called two types of peaks: tight for H3K27ac and H3K4me1/3; broad for 

H3K27me3, H3K36me3 and H3K9me3. The genome sequence of peaks from a specific 

modification, such as H3K27ac, formed the foreground for de novo motif finding. The 

background sequences consisted of genomic regions not covered by any histone 

modification peak (Fig. 2a). Identifying motifs that are enriched within the peaks is 

challenging, as methodology must be able to efficiently analyze tens of thousands of 

variable length regions. Thus, we employed two de novo motif-finding methods, Homer34 

and Epigram’s own algorithm, as we found that the combination of both was more effective 

at predicting modification than either alone. In particular, Epigram is able to identify 

predictive motifs in very large sets of sequences. For example, Epigram could identify 

predictive motifs in 980,465 sequences with a mean length of 1,640 bps while Homer could 

not. For the purpose of feature selection, we next exploited a LASSO35 logistic regression to 

classify the foreground and background using the found motifs. Only the motifs with non-

zero coefficients were kept to create the full set of motifs, which were then input to a 

Random Forest classifier. To improve interpretability, we further reduce the number of 

motifs by clustering the motifs by matrix similarity and from each cluster retaining a single 

motif, the one with the best area under the ROC curve (AUC). The reduced model motif set, 

was the lowest number of motifs that could achieve an AUC >95% of the full model's AUC 

during Random Forest prediction. We assessed our method’s performance through 5-fold 

cross-validation and to avoid a biased inflation of predictability we performed de novo motif 

discovery and feature selection using only the training data36, 37.
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The selected motifs could successfully discriminate modified and unmodified regions: the 

average full model accuracy across all the peaks in the genome is 79%. This performance is 

excellent in light of the prediction challenges: (i) the large number of sequences in each set; 

(ii) variable region sizes; (iii) the sequence sets were greatly unbalanced for GC-content and 

region size; (iv) prediction requires the identification and combined predictive power of 

motif combinations. The excellent performance was also reflected by the average AUC in 

H1 of 0.85 for the full model (270 motifs) and 0.82 for the reduced (38 motifs; Fig. 2b–c). 

When all the five cell-types are averaged, the full model has an AUC of 0.84 (227 motifs) 

and reduced 0.80 (43 motifs), which shows that the total motifs can be reduced greatly while 

maintaining the majority of the prediction performance. Among the six marks, H3K4me3 is 

the most predictable in all cell-types (average AUC=0.96 for reduced models). To 

investigate the possible factors limiting the prediction performance, we compared the level 

of reads in the background for each of the modifications (Supplementary Fig. 1). The least 

predicable modification, H3K4me1, had the highest level of reads in its background, which 

reduces the distinction between foreground and background. The prediction performance for 

each mark is consistent across cell-types, which suggests the robustness of our model in 

handling possible noise in different experiments and cell-types.

It is noteworthy that the discrimination of modified regions and background is not a result of 

differences in GC-content or region length (Fig. 1e), which was corrected in our analysis to 

avoid biasing the Random Forest predictions. We refer to this step as sequence set balancing 

(SSB; see Methods). To demonstrate the importance of SSB, the models were tested with 

randomized sequences that have had their base pairs shuffled (Supplementary Fig. 2). When 

the shuffled sequences were used to test the dataset that had been subject to SSB, the 

prediction performance was destroyed as expected (Supplementary Fig. 3). However, in the 

dataset where the SSB step was omitted, the prediction performance remains high for all 

modifications except H3K27ac. This analysis clearly illustrated that SSB is critical to 

remove the trivial correlation between simple sequence features, such as GC-content and 

region size, and epigenomic modifications. Note that no similar analysis was done in the 

previously published work30 and the observed prediction power there may be a trivial result 

of GC-content.

Contributing factors in predicting histone modification—As multiple factors 

regulate the epigenome, we conducted additional control analyses to demonstrate that DNA 

motifs are predictive of histone modification. Firstly, we investigated if prediction power 

was affected by nucleosome-positioning related sequence features. To this end, we 

conducted a ‘mark-specific analysis’ by comparing regions enriched with one modification 

to regions with any other modification. Thus, motifs generally involved in nucleosome 

placement, but not histone modification per se, are present in both foreground and 

background, and therefore, do not contribute to discrimination. The average H1 full model 

accuracy was 77% with full and reduced models AUCs of 0.85 and 0.83, respectively 

(Supplementary Fig. 4a and 4d). The H1 full model had an average of 259 motifs while the 

reduced model had an average of 40. Similar results were achieved in other cell-types where 

the full models had an average AUC of 0.84 and 253 motifs while the reduced models with 

an average AUC of 0.82 and 39 motifs. Importantly, the model performance is comparable 
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to the ‘single mark analysis’, which illustrates that mark-specific motifs, and not just 

sequence features involved in nucleosome positioning, can be captured by our method and 

are predictive of specific histone modifications.

Secondly, specific histone modifications often occur in particular genomic regions, such as 

H3K4me3 at promoters, and these possess characteristic sequence features, such as CpG 

islands. Therefore, we conducted the ‘typical background analysis’ to ensure discrimination 

is not coming from genomic features that are associated with regions where a modification 

commonly occurs. To this end, the modified regions were compared to regions that typically 

possess the modification but are unmodified in our comparison. For example, all H3K4me3 

enriched regions were compared to annotated promoters without any H3K4me3 signal. The 

average accuracy for H1 was 75% with an AUC of 0.82 for the full model (237 motifs) and 

0.79 (35 motifs) for the reduced (Supplementary Fig. 4b and 4d). Similar results were 

achieved overall where the full models had average AUC of 0.83 with 243 motifs and the 

reduced models average AUC of 0.80 (32 motifs). The AUC comparable to the ‘single mark 

analysis’, suggests that sequence features that are generally associated with regions, which 

histone modifications typically occupy, are generally removed from our analysis. As 

discussed above, 6mers have achieved comparable prediction accuracy on only 

(H3K4me3)30. However, while the GC-bias was recognized as being important for 

H3K4me3 prediction, it was not corrected during their analysis. Thus, their predictions were 

not based upon DNA motifs, which are recognized by DNA-binding factors; furthermore, no 

sequence feature was found to be predictive for other modifications. In contrast, we 

corrected the GC-bias in our analysis, as we are only interested in the predictive power of 

DNA motifs. We still identified sophisticated GC-rich motifs (see below), which suggests 

that specific regulatory factors have evolved to recognize these motifs in the GC-rich 

context of promoters.

Thirdly, we examined the impact of cell-type-specificity on the epigenomic modifications 

by investigating whether cell-type-specifically modified regions can be discriminated by 

motifs. Since four of the cell-types are derived from H1, we compared each histone 

modification in a H1-derived cell-type to the same modification in H1. A drop in model 

performance was observed; the average full model accuracy over the four cell-types was 

61% (AUC=0.67). Even though we removed the small datasets (<2000 regions), the average 

full AUC was still only 0.69 (Supplementary Fig. 4c–d). As the similarity between the four 

H1-derived cell-types and H1 likely makes it difficult for this cell-type-specific analysis, we 

further compared H1 to eight more distant cell-types: A549, CD14+, GM12878, HeLa, 

HepG2, HUVEC, IMR90 and K562 (Supplementary Fig. 5). The prediction accuracy for the 

full model was improved to 68% (AUC=0.74) but still lower than the ‘single mark analysis’ 

(accuracy=79%; AUC=0.84). As the same histone modification was compared in different 

cell-types, the significantly decreased AUC further confirmed the existence of mark-specific 

motifs that direct chromatin-modifying enzymes to form specific histone modifications. The 

remaining discrimination may come from the binding of cell-type-specific factors, which are 

regulated by cell-type-specific patterns of gene expression and open chromatin29, 38.

These control analyses illustrate that our method can detect DNA motifs that are recognized 

by mark-specific chromatin-modifying enzymes and regulatory co-factors. These motifs are 
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read by the genetic network to execute the cis-regulatory program that specifies the 

placement of the histone modifications39.

Motifs are predictive of DNA methylation—To further demonstrate the ability of 

DNA motifs to predict epigenomic modification, we applied the Epigram pipeline to DMVs, 

which are defined as large genomic domains (>5kb) that are devoid of DNA methylation31. 

DMVs have been shown to be enriched for early developmental regulatory genes and gain 

methylation in cancer cells, suggesting their biological importance. DMVs are relatively few 

in number (639–1004 per cell-type in: H1, ME, MSC, TBL and NPC) and show substantial 

overlap between cell-types (461 are common to all of these cell-types). Therefore, we 

conducted ‘single mark analysis’ on DMVs and not the additional control analyses. The 

average AUC for the DMVs was 0.96 for the full model (95 motifs; accuracy=0.91) and 

0.95 for the reduced (Fig. 2d). The prediction performance remained high in all cell-types 

and the models all reduced down to 20 motifs, which is the lowest number of motifs 

assessed.

Furthermore, we report prediction of methylation status (hypo or hyper) at tissue-specific 

DMRs (TSDMRs) from 18 human tissues in a separate study (see details in40): the average 

AUC was 0.79 while an AUC of 0.85 was achieved when only 20 motifs were used to 

predict adrenal gland TSDMR status. Critically, the overlap between predictive motifs and 

SNPs that “break” motifs was compared between genotypes with DNA methylation 

concordance and discordance. This analysis identified a 2.6-fold enrichment of motif 

“breaking” SNPs, which strongly supports the association between our predictive motifs and 

epigenomic modifications.

Taken together, we have shown that the patterns of histone modifications and DNA 

methylation can be successfully predicted from DNA motifs. Considering the difficulty of 

such prediction, the overall full model achieved an excellent average accuracy (including 

DMV) of 79% for the ‘single mark analysis’ with an AUC=0.85 (Fig. 2e) and the reduced 

model an accuracy of 76% with an AUC=0.81.

Comparison of DNA motif specificities

The landscape of interplay between cis-elements and epigenomic modifications is complex 

(Supplementary Fig. 6). To pinpoint the cis-elements that are recognized by specific factors, 

we conducted comparative analyses to identify mark/cell-type-specific and independent 

DNA motifs. The five cell-types have similar proportions of cell-type-specific (unique) 

motifs (Fig. 2f). The degree of motif overlap between the cell-types is consistent with the 

known similarity between the five cell-types; for example, H1 is most related to TBL but 

most distinct from NPC (Fig. 2g). The number of motifs per modification varies 

considerably (Fig. 2h). The active enhancer mark H3K27ac41 has the most motifs, which is 

not unexpected as chromatin marks at enhancers have been shown to be dynamic across 

cell-types42. As H3K27ac is a mark of enhancer activity and the placement of H3K27ac is 

expected to be more cell-type-specific, it would require more cell-type-specific interactions 

to guide its placement. DMVs had the fewest motifs, which may reflect the stability of these 

large domains. The transcriptional activity mark H3K36me3, has the highest proportion of 
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unique motifs, which suggests that their motif-based regulation is the most distinct. 

H3K4me3 and H3K27ac, both enriched at active promoters, share the most motifs (Fig. 2i). 

They form a larger cluster with H3K27me3 and DMV because H3K4me3, H3K27me3 and 

DMV share GC-rich motif regulation (Fig. 4 and Discussion), which is consistent with the 

lowest proportion of unique motifs that DMV and H3K27me3 have. Although the two active 

enhancer marks, H3K27ac and H3K4me1, do not cluster adjacently, their proportion of 

overlap is similar to that of H3K27ac and H3K4me3 (Fig. 2i).

To identify cell-type or mark-specific motifs, we separately clustered the motifs by cell-type 

and modification specificity (Fig. 3a). The clusters contain motifs whose gene expression 

patterns match their interplay with H3K27ac (Fig. 3b) and that have known associations 

with particular epigenomic modifications and cell-types. For example, the SOX2 monomer 

motif is found associated with H3K27ac in H1 and NPC while the OCT4:SOX2 heterodimer 

motif is found only in H1. This observation is consistent with the functional roles of OCT4 

in H1 and SOX2 in both H1 and NPC43. Another example is the motif recognized by the 

four TEAD family members, which is associated with enhancer marks H3K27ac (all cell-

types) and H3K4me1 (TBL only). Remarkably, our finding is consistent with a previous 

study showing that deletion of a TEAD binding site from upstream of TCRJα locus resulted 

in a loss of H3 histone acetylation44. Furthermore, TEAD family members are known to 

promote cell proliferation by interacting with the Hippo signaling pathway45, which is 

critical for self-renewal and expansion of ESC into lineage-specific progenitors46. In mice 

TEAD family members establish enhancers during the initial development that occurs after 

the formation of the zygote47, 48. In human TEAD4 is crucial in determining the 

trophectoderm transcriptional program, which directs segregation from the inner cell mass49. 

Taken together, experimental evidence shows that TEAD family members play critical roles 

in directing histone acetylation to embryonic enhancers, which is consistent with our 

findings.

To systematically identify motifs that may be involved in the placement of specific 

epigenomic modifications, we identified those that were selected in more than one analysis 

but associated with only one modification. We found 56 of these motifs (Fig. 3c) that may 

represent the binding preferences of modification-specific chromatin-modifying enzymes or 

their cofactors. These motifs include matches to three known TF motifs that interplay with 

H3K27ac (groups 457, 125 and 127 respectively match RUNX, GATA and HNRNPH3) and 

two that interplay with H3K36me3 (groups 142 and 240 respectively match 

ELSPBP1;MYOD1;MYOG and PSMD9). Two motifs match to families of known TFs 

(RUNX50 and GATA51) that are known to be involved in embryonic development.

Predictive motifs have location preferences

The identified cis-elements may play various roles in shaping the epigenome, such as setting 

the boundary of a histone modification domain or opening chromatin to allow remodeling 

enzymes to bind DNA. These roles may restrain the relative location (edge or center) of a 

motif within the modified regions (Fig. 4a). While the majority of the motifs fall into the 

neutral category, numerous motifs showed biased location distributions (Fig. 4b). The 

heterochromatin mark H3K9me3 is associated with edge and neutral motifs but not with any 
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central motifs. This observation is consistent with the large domain of H3K9me3 and the 

edge motifs may help set the boundary. Consistently, concentrated marks of H3K4me1/3 

and H3K27ac are associated with central motifs, which may guide the recruitment of the 

chromatin-modifying enzymes to initiate or other factors to maintain the modifications38, 52. 

Interestingly, while the enhancer marks H3K4me1 and H3K27ac have no edge motifs, the 

promoter marker H3K4me3 is associated with several edge motifs, which may help define 

the promoter boundary. Contradictory to H3K9me3, the widespread histone mark 

H3K27me3 and the DMV are largely associated with central motifs, which suggests 

different regulatory mechanisms. The transcriptional activity mark, H3K36me3, almost 

exclusively associates with neutral motifs.

The majority (81%) of the H3K9me3 edge motifs were found in H1 and these match the 

known motifs of YY1, KLF12 and the ‘Rel homology domain’ (RHD), (Fig. 4c). Multiple 

lines of evidence support these associations. KLF12 mediates transcriptional repression 

through interaction with phosphoprotein CtBP53, which forms a complex with histone 

methyltransferase and DNA-binding proteins to target H3K9 for methylation54. NFKB1, a 

member of RHD TFs, is known to function with deacetylase SIRT6 to repress gene 

expression via H3K9 deacetylation55, which clears the site for methylation. YY1 is a 

transcriptional regulator that directs localization of histone acetyltransferases, deacetylases 

and members of the PRC2 complex56, which directs the placement of H3K9me3 and 

H3K37me357. Furthermore, YY1 knockdown during mouse spermatogenesis resulted in 

global decrease of H3K9me358. Given the available genome-wide binding data of YY1, we 

found that the motif and ChIP-seq binding profiles of YY1 are highly correlated (R2=0.86) 

in H3K9me3 domains that overlap with YY1 ChIP-seq peaks.

Interestingly, YY1 also marks the center of H3K4me3 peaks. In total there are 35,393 YY1 

binding peaks in H1 (union of two replicates) of which 874 are within 200bps of H3K9me3 

peak start/end boundaries (Fig. 4d) whereas 14,587 are within 200bps of an H3K4me3 peak. 

This suggests that the primary role of YY1 in H1 is binding at promoters with a secondary 

role binding at edges of H3K9me3 peaks. The dual activating and repressing classes of YY1 

binding sites have previously been observed59. To identify co-factors that differentiate YY1 

sites that exclusively overlap with H3K9me3 edges and those with H3K4me3 peaks, we 

examined the differential overlap of these regions with ChIP-seq data in H1 for 60 different 

factors (Supplementary Data 1). H3K9me3 edges were found to have modestly higher levels 

of overlap with OCT4, SUZ12, NANOG and BCL11A while the H3K9me3 demethylase, 

KDM4A (also known as JMJD2A), was found to have the lowest relative degree of overlap 

with H3K9me3 compared to H3K4me3. Interestingly, we found that the YY1 known motif 

scored higher at YY1 sites that overlap with H3K9me3 edges than YY1 sites that overlap 

with H3K4me3 peaks (Supplementary Fig. 7), suggesting that YY1 ChIP-seq sites at the 

edge of H3K9me3 are more likely to be stronger binding sites or that YY1 binds the 

H3K4me3 sites with a different motif. Next, we compared the YY1 sites located at 

H3K9me3 edges and H3K4me3 peaks in H1 to YY1 ChIP-seq peaks from other cell-types 

(A549, GM12878, HepG2 and K562) and found that the H3K9me3 sites were less 

conserved (H3K9me3 11–32%; H3K4me3 62–81%). Furthermore, the majority of YY1/

H3K9me3 edge sites in H1 were H1-specific as only 9–37% were within 200bps of a peak 

and 8–29% were within 200bps of a peak start/end in any of the four H1-derived cells. 
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Finally, the expression levels of the nearest gene (with 20kb) to the H1 YY1/H3K9me3 edge 

sites were significantly lower than the four H1-derived cells (P-value < 0.05; paired 

Students t-test). Taken together, these suggest that the H1 H3K9me3 edge motifs may 

represent a regulatory system present in hESCs for establishing regions of heterochromatin 

and repressing gene expression. In light of recent findings that show H3K9me3 as a primary 

epigenomic determinant during iPS60 cell reprogramming, we speculate that these 

interactions may be important in establishing and maintaining the pluripotent state.

We also observed that many of the H3K4me3, H3K27me3 and DMV central motifs have 

high GC content. We defined GC-rich motifs as those containing >80% of positions where: 

(i) high probability positions (>0.5) must be G or C; (ii) if A and T, or G and C, at a single 

position, are >0.75, they must be G and C. In total, we identified 150 such motifs (Fig. 4a), 

which were found in all cell-types and are enriched in all modifications. The association of 

TF binding and GC-rich regions may explain the general abundance of GC-rich motifs61. 

However, the GC-rich motifs never negatively interplay (depleted from the modification 

peaks) with H3K4me3, H3K27me3 and DMV suggesting a more specific association. In 

mESCs, an artificial, promoterless and CpG-rich sequence bound by CFP1 results in 

H3K4me3 establishment10. Promoters with high GC-content tend to be repressed by 

H3K27me3 whereas other promoters tend to be repressed by DNA methylation31. Our 

results are consistent with these previous reports and systematically pinpoint the DNA 

motifs in these GC-rich sequences that are responsible for forming the specific 

modifications. If the same criteria were reversed to identify AT-rich motifs (Fig. 4a), only 

22 motifs were found and no overall trend is observed.

When examining the GC-AT-hybrid motifs (motifs made up of a continuous stretch of G/C 

followed by a continuous stretch of A/T, or vice versa), we found no overall trend of their 

interplay with the epigenomic modifications. However, GC-AT-hybrid motifs whose GC 

portion occupies three or less positions are found to prefer the edge of H3K4me3 and DMV 

(Fig. 4a). One of the GC-AT-hybrid motifs matches the motif of the nuclear receptor 

NR4A2 (Fig. 4e). The NR4A family contains two members (NR4A1 and NR4A3) that have 

highly similar DNA-binding domains and are constitutively active62. Moreover, NR4A2 has 

been shown to mediate gene expression by inducing H3K4me3 and histone acetylation at the 

promoter of FOXP363. The pattern of GC-AT-hybrid motif enrichment and H3K4me3 at 

transcription start sites (TSS) (Fig. 4f) shows two roles: (i) TTTAAAGG enriched ~1kb 

either side of the TSS, (ii) ATAATCCG is enriched ~0.5kb either side of the TSS. 

Consecutive 3–5 pyrimidines are believed to narrow the minor groove of DNA64 and have 

been shown to flank the binding sties of TFs65. Furthermore, poly(dA:dT) control 

nucleosome positioning by forming nucleosome-depleted regions (because of their structural 

stiffness) around which nucleosomes are positioned22, 23, 25. Moreover, poly(dA:dT) tracks 

capped with a single G residue on the same strand as the poly(dA) have been shown to flank 

well positioned nucleosomes at promoters in yeast24. The adjacency of the G and A 

nucleotides is consistent with our findings in human. Taken together, GC-AT-hybrid motifs 

may define the boundary of H3K4me3 and DMV modified regions through a combination of 

several possible mechanisms: (i) by creating a nucleosome-free region around the TSS, (ii) 

by providing a stretch of G/C-free sequence that cannot be bound by the factors preferring 
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GC-regions, (iii) by being bound by TFs, such as NR4A2, that in turn recruit chromatin-

modifying enzymes.

Motif disruption is correlated with H3K27ac variation

A recent study of 19 individuals correlated sequence variation at known TF motif sites with 

variation in H3K27ac levels at overlapping peaks16. Kasowski et al. found that H3K27ac 

variation in 32,886 peaks correlated with disruption of 662 known motifs by SNPs among 

the 19 individuals and significant association was found in 32% of regions (significance 

determined using Spearman’s rank and label permutation16). To demonstrate the power of 

the Epigram pipeline, we repeated the analyses done by Kosowski et al. by first running 

Epigram on the H3K27ac peaks, resulting in a full model featuring 133 motifs that are 

predictive of H3K27ac. Epigrams motifs were significantly correlated in 62% of regions 

using a motif set that is ~20% the size of those used by Kasowski et al. (662 known motifs). 

Thus, Epigram discovers motifs that are significantly correlated with H3K27ac variation in 

30% more regions and represent the novel binding patterns for regulators of H3K27ac. 

Furthermore, Kasowski et al.16 showed 20 TFs that are significantly correlated within 

~4,500 variable regions; whereas the motifs from Epigram’s 20 motif model are 

significantly correlated within 7,006 variable regions (Fig. 5). One of the Epigram’s 20 

motifs matches the known IKZF1 motif, which has been shown to target chromatin 

remodeling and deacetylation complexes during lymphocyte differentiation66. In addition, 

we also found that three of these 20 motifs match motif groups identified to be associated 

with H3K27ac in H1, NPC, MSC and TBL. Taken together, Epigram is able to explain 

significantly more variants while using fewer motifs than the Kasowski et al. analysis.

Discussion

Herein we present the Epigram pipeline, which is the first quantitative model to predict 

epigenomic modifications from combinations of sophisticated DNA motifs. This in turn 

reveals the cis-regulatory program that is read by the dynamic genetic network to shape the 

epigenome (Fig. 1a). We demonstrated the success of Epigram in hESCs and four derived 

lineages. Furthermore, we generated the first systematic cataloguing of mark-specific cis-

elements that are predictive of epigenomic modifications. Prediction power was 

demonstrated by distinguishing epigenomically modified regions from non-modified regions 

with an accuracy of 79% across all peaks in the genome. We further demonstrated that 

prediction power is not the consequence of trivial correlations between epigenomic 

modifications and simple sequence features, such as GC-content. Indeed, our method 

removed many sequence features that are associated with classes of genomic regions but not 

epigenomic modifications. Moreover, we observed significantly reduced performance in 

predicting same histone modifications in different cell-types, which indicates that histone 

modifications are significantly decided by mark-specific cis-elements and our model can 

successfully detect them.

In particular, we removed biases introduced by simple sequence features, such as GC-

content, and focused on identifying the cis-regulatory program that directs locus-specific 

epigenomic modification This was further enhanced by the comparative analyses to tease 
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out the motifs that are directly associated with epigenomic modifications. Furthermore, 

regulatory connections between Epigram motifs and epigenomic modification are confirmed 

using inter-individual correlation between DNA motifs and: (i) H3K27ac, (ii) tissue DNA 

methylation40. In particular, Epigram’s motifs are significantly correlated with almost 

double the number of H3K27ac regions when compared to five times the number of known 

TF motifs. Thus, the Epigram pipeline discovers previously unknown binding motifs that are 

involved in regulating the placement of epigenomic modification. Recent studies have 

illustrated the power of editing epigenomes by changing the DNA sequences67, 68. Equipped 

with new genome editing technologies, such as TALEN69 and CRISPR70, our study 

provides the first comprehensive catalogue of DNA motifs to guide locus-specific 

epigenome editing through alteration of regulatory cis-elements.

Especially interesting, we found motifs that have location preference within the modified 

regions, which suggests possible functions in setting the boundary of modified regions or 

opening chromatin to establish modification. Several of these motifs match with the cis-

elements recognized by TFs; such as TEAD family TFs that tend to bind at the center of 

H3K27ac; YY1, whose ChIP-seq peaks consistently overlap with H3K4me3 peaks and the 

edge of H3K9me3 regions. We also observed that H3K4me3 is consistently the most 

predictable with GC-rich motifs at the center of its peaks and GC-AT-hybrid motifs at the 

boundaries of the peaks (Supplementary Fig. 11). The role of the GC-AT-hybrid motifs is 

unclear but they likely play roles in nucleosome positioning or recruiting specific TFs, such 

as NR4A2. Although the mechanisms by which the identified motifs orchestrate the 

epigenome are largely unknown, these mechanisms are ultimately mediated by DNA-

specific factor binding to establish locus-specific modifications and our study represents the 

first step towards unveiling the enigmatic cis-regulation of the human epigenome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identifying motifs that are predicative of epigenomic modifications
(a) Site-specific DNA-binding factors regulate the epigenome. The blue section shows three 

regulatory levels of the cell-type-specific state: (i) gene regulatory network, (ii) sites-

specific DNA-binding factors, and (iii) epigenomic regulation of gene expression. The green 

square lists non-cell-type-specific DNA sequence regulatory influences over the epigenome. 

The purple square lists stimuli that influence the cell-type-specific state. (b) An overview of 

the cis-element cataloging process. (c) A schematic showing H1 hESC and the four cell-

types that were derived through in vitro differentiation. The table lists the analyzed 

epigenomic modifications and their roles. (d) A flow chart of the key stages in our analysis 

pipeline. (e) The effect of SSB on sequences sets. The bar plot shows the number of regions 

in a set before and after SSB. Violin plots show the distribution of region GC-content and 

length before and after SSB.
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Figure 2. Predicting epigenomic modification from DNA motifs
(a) The two sets of regions that are being distinguished. (b) A receiver-operating 

characteristic (ROC) curve shows the prediction performance in H1. Solid and dotted lines 

show the full and reduced models, respectively. The inlayed bar chart shows the number of 

motifs used in the full and reduced models. The same color scheme is used to represent the 

marks in the bar chart, the ROC curve and the scatter plot in part (c), which summarizes the 

performance across all cell-types. (d) ROC curves showing the DMV predictions 

performance. (e) The averaged results across five cell-types for the ‘single mark analysis’ 
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(full model). (f) The number of motifs from each cell-type that are predictive of 

modification in only that cell-type (unique) or are also predictive of modification in other 

cell-types (multiple). Calculated using 589 motif groups. Motifs from the cell-type-specific 

comparison are excluded as H1 is featured in multiple comparisons and so are motifs 

enriched in the background, as they are not specifically predictive of modifications. (g) A 

heat map showing the proportion of shared motifs between each pair of cell-types. The 

Jaccard index was used to measure overlap and clustering was performed using the complete 

linkage method. (h;i) the same as (f) and (g) but showing modification specificity.
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Figure 3. The specificities of interplay between DNA motifs and the epigenome
(a) The left hand heat map shows 589 motif groups hierarchically clustered by their 

interplay with epigenomic modification. Each row represents a different motif and the 

positions are colored if the motif interplays with the modification. The first six columns 

show positive interplay (when a motif is enriched within a modification peaks) and the last 

six columns show negative interplay (when a motif is depleted in the modification peaks). 

The inner most bars indicate groups of motifs that are specific to certain modifications or 

combinations thereof. These bars follow the same color scheme as the heat map. 
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Additionally purple represent H3K4me1 and H3K27ac, which corresponds to active 

enhancers. The right hand heat map shows the groups clustered by cell-type-specificity. 

Here additional colors represent the following combinations of cell-types: black, positive 

interplay with both H1 and NPC; orange, positive interplay with both MSC and TBL; 

magenta, positive interplay with all cell-types. In the center of the figure example motifs are 

shown: top, the known motif; lower, the identified de novo motif. (b) Positive interplay 

between H3K27ac and TFs is shown on the left. The normalized expression values of the 

genes are shown on the right. Gene expression values were taken from31 and normalized for 

each gene separately. The low expression levels of FOS in TBL can be explained by JUN 

can bind the AP-1 binding site as a homodimer71. (c) A table of modification specific 

motifs. The motif group numbers and consensus sequences are given. Motifs in bold match 

known motifs (see text).
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Figure 4. Predictive motifs have location preferences
(a) Hierarchical clustering of 812 motifs showing positive interplay in the "single-mark" 

analysis. The motifs were scanned against their corresponding modification peaks. The 

scores were then summed in five bins that represent different regions of the peaks (see 

Supplementary Fig. 10). The bin scores for each motif were then hierarchically clustered 

using Ward’s method72. Motifs with edge or central preferences were classified by 

comparing edge and center bin scores and by using a Chi-square test P-value cut-off of 

<1.0e-10 (see methods for full details). (b) A summary of the location preference of motifs 
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by mark specificity. (c) The motifs that interplay with H3K9me3 edges in H1. NFKB1 is 

given as an example of ‘Rel homology domain’. (d) Four screen shots showing YY1 ChIP-

seq reads at the edge of a region of H3K9me3. Going clock-wise from the top left the four 

YY1 sites start at: chr2:17515620, chr6:16069456, chr12:14424514 and chr2:626745 

(genome assembly version: hg18). (e) A de novo GC-AT-hybrid motif aligned to the 

NR4A2 monomer and dimeric motifs. (f) The average profile of two GC-AT-hybrid motifs 

and H3K4me3 at 13,962 TSS’s (see methods for full details).
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Figure 5. De novo motif disruption and H3K27ac levels are correlated
The disruption of de novo motifs was correlated with variation in H3K27ac levels.16. Motifs 

are sorted by their number of significantly correlated peaks; peaks are sorted by their 

associated motifs. Matches with known TFs and motif groups (from the analysis of H1 and 

the fo ur derived cell-types) are shown on the left. Motif groups start with - ‘G:’.
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