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The longitudinal study of typical neurodevelopment is key for understanding deviations
due to specific factors, such as psychopathology. However, research utilizing repeated
measurements remains scarce. Resting-state functional magnetic resonance imaging
(MRI) studies have traditionally examined connectivity as ‘static’ during the measurement
period. In contrast, dynamic approaches offer a more comprehensive representation of
functional connectivity by allowing for different connectivity configurations (time varying
connectivity) throughout the scanning session. Our objective was to characterize the
longitudinal developmental changes in dynamic functional connectivity in a population-
based pediatric sample. Resting-state MRI data were acquired at the ages of 10 (range
8-to-12, n = 3,327) and 14 (range 13-to-15, n = 2,404) years old using a single, study-
dedicated 3 Tesla scanner. A fully-automated spatially constrained group-independent
component analysis (ICA) was applied to decompose multi-subject resting-state data
into functionally homogeneous regions. Dynamic functional network connectivity (FNC)
between all ICA time courses were computed using a tapered sliding window approach.
We used a k-means algorithm to cluster the resulting dynamic FNC windows from
each scan session into five dynamic states. We examined age and sex associations
using linear mixed-effects models. First, independent from the dynamic states, we
found a general increase in the temporal variability of the connections between intrinsic
connectivity networks with increasing age. Second, when examining the clusters of
dynamic FNC windows, we observed that the time spent in less modularized states,
with low intra- and inter-network connectivity, decreased with age. Third, the number
of transitions between states also decreased with age. Finally, compared to boys,
girls showed a more mature pattern of dynamic brain connectivity, indicated by more
time spent in a highly modularized state, less time spent in specific states that are
frequently observed at a younger age, and a lower number of transitions between
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states. This longitudinal population-based study demonstrates age-related maturation in
dynamic intrinsic neural activity from childhood into adolescence and offers a meaningful
baseline for comparison with deviations from typical development. Given that several
behavioral and cognitive processes also show marked changes through childhood and
adolescence, dynamic functional connectivity should also be explored as a potential
neurobiological determinant of such changes.

Keywords: brain development, fMRI, longitudinal, resting state – fMRI, linear mixed effect model

INTRODUCTION

Neurodevelopment from childhood into adolescence represents a
pivotal period, marked by several cognitive, social, and behavioral
milestones, and is also beset with the emergence of many forms of
psychopathology (Nelson et al., 2005; Paus et al., 2008; Luciana,
2013). Typical neurodevelopment provides a baseline framework
for understanding how deviations in brain development are
associated with mental and neurological illness, and it has been
characterized in vivo using structural and functional magnetic
resonance imaging (MRI) for over two decades (Giedd et al.,
1999; Rubia et al., 2000; Luna et al., 2001; Gogtay et al.,
2004; Lebel et al., 2008). More recently, resting-state functional
MRI (rs-fMRI) has been used to study brain development.
This brain imaging modality is used to measure intrinsic
functional brain connectivity, or the spontaneous, correlated
activations among brain networks (Biswal et al., 1995; Cole
et al., 2010). The connectivity patterns of these networks exhibit
high reproducibility between individuals, representing a reliable
indicator of brain development (Allen et al., 2011). Despite
widespread application, the vast majority of neurodevelopmental
studies using rs-fMRI have been cross-sectional in design, lacking
crucial insights from repeated measures (Kraemer et al., 2000).

Traditional rs-fMRI analysis approaches focus on the average
functional connectivity across the scanning session, effectively
assuming the connectivity is ‘static’. Studies of static brain
connectivity have observed intra- and inter-network connectivity
associations with age, and a number of networks show abnormal
connectivity patterns in the presence of psychiatric disorders (Di
Martino et al., 2014; Muetzel et al., 2016; Bos et al., 2017). Certain
resting-state networks, such as the precuneus and the lateral
frontal, increase their connectivity during brain development
while others, such as the right frontoparietal and sensory
networks, decrease with age (Muetzel et al., 2016). While static
brain connectivity studies provide information about topological
organization of functional brain networks during development,
changes in connectivity throughout the scanning session are
not captured by using this approach (Delamillieure et al., 2010;
Calhoun et al., 2014).

Dynamic brain connectivity is a novel functional MRI analysis
technique that allows connectivity between brain areas to vary
over time, relaxing the stationarity assumption (Allen et al.,
2014; Calhoun et al., 2014). Though several novel methods
exist to estimate dynamic connectivity, one popular framework
identifies different connectivity configurations, or states, across
the scanning session and offers summary metrics, such as the time

spent in each of these states. Although the general structure and
topology of functional connectivity states are stable across age,
there are age-related changes in the frequency of certain states
and the time spent in each of them (Hutchison and Morton,
2015; Marusak et al., 2017). In the Generation R Study (n = 774,
6–10 years old), Rashid et al. (2018) found that older children
spent more time in a state that showed a modular organization
of functional connectivity in distinguished networks (Rubinov
and Sporns, 2010), named ‘globally modularized dynamic state’.
In this state, the nodes comprising a network were positively
interconnected among them and those of different networks
were negatively correlated. Contrarily, younger children spent
more time in a globally disconnected state (Rashid et al.,
2018). In addition, girls spent more time in a default mode
modularized state compared to boys, which could indicate an
earlier maturation of functional connectivity (Rashid et al., 2018).
In the PING Study (n = 421, 3–21 years old), Faghiri et al. (2018)
showed that age was negatively correlated with the time spent
in states with strong connectivity between cognitive control and
default mode domains, while older participants stayed longer
in states showing positive intra-network connectivity within
the default mode domain. Although the number of transitions
between different states has not been associated with age in cross-
sectional studies, some of these studies observed that the overall
connectivity between intrinsic networks becomes more variable
(higher standard deviation, SD) across the scanning session
from childhood to adulthood (Hutchison and Morton, 2015; Qin
et al., 2015; Marusak et al., 2017). For instance, Marusak et al.
(2017) reported positive age associations with the variability of
functional connectivity between core neurocognitive networks,
which may afford greater cognitive and behavioral flexibility.

Currently, the literature examining associations between age
and dynamic brain connectivity indicators in children has
been comprised exclusively of cross-sectional studies. While
these studies have established the fundamental basis for our
understanding of age- and sex-related differences in functional
brain connectivity, cross-sectional neurodevelopmental research
provides limited information and it does not take into account
inter-individual variability (Kraemer et al., 2000). Therefore,
longitudinal studies are needed to explore individual growth
changes, which is of key importance to understand the deviations
in neurodevelopment after various exposures (e.g., early life
adversities) or in psychopathology (Kraemer et al., 2000;
Crone and Elzinga, 2015). Therefore, our objective was to
characterize the longitudinal developmental changes in dynamic
functional connectivity from childhood into adolescence in a
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large, population-based sample, as a follow-up of the cross-
sectional findings observed in the Generation R Study by Rashid
et al. (2018) at a younger age. We also aimed to understand
whether maturation of dynamic functional connectivity was
distinct in boys and girls, as sex differences have been observed
using rs-fMRI (Satterthwaite et al., 2015) as well as other MRI
modalities (Lenroot and Giedd, 2006; Perrin et al., 2009; López-
Vicente et al., 2020). Our main focus was on global summary
metrics of dynamic connectivity, specifically those related to
time spent in a given connectivity configuration and the number
of transitions between different connectivity configurations.
Since previous cross-sectional studies suggested that the overall
connectivity between intrinsic networks becomes more variable
during development, we additionally tested the longitudinal age
associations with the temporal variability (SD) of functional
connections across the scanning session. We hypothesized that,
over time, children would show more variable connections
and they would spend more time in modularized states. This
is in line with research indicating that brain development is
characterized by the increase of “integration” of functional
networks (Fair et al., 2007) and also with the existing dynamic
connectivity literature (Faghiri et al., 2018; Rashid et al., 2018).
Given differential developmental patterns previously reported
with various neuroimaging modalities, we hypothesized that girls
would show slightly faster development than boys, showing more
mature dynamic connectivity patterns.

MATERIALS AND METHODS

Participants
The current study is part of the Generation R Study, a population-
based birth cohort in Rotterdam, the Netherlands (Kooijman
et al., 2016). Data in this study includes rs-fMRI data acquired
at the age-10 visit (mean age 10 years, range 8-to-12, n = 3,327)
and the age-14 visit (mean age 14 years, range 13-to-15,
n = 2,404). Data collection was carried out between March
2013 and November 2015 for the age-10 visit (White et al.,
2018) and between October 2016 and January 2020 for the
age-14 visit. A flow-chart outlining data inclusion/exclusion
for the study can be found in Figure 1. Few data were
excluded due to the presence of prominent incidental findings
(nage10 = 19 and nage14 = 24). Due to excessive motion, 698
datasets (21%) were excluded from the age-10 visit and 168
datasets (7%) were excluded from the age-14 visit (see Section
“Image Quality Assurance” for details). Data were also excluded
due to poor registration (spatial normalization) (0.7% from
the age-10 visit and 0.3% from the age-14 visit). After this
filtering, the total number of datasets available for analysis in
this study was 2,586 at the age-10 visit and 2,204 at the age-
14 visit. 1,031 participants had data in both visits (Figure 1).
Supplementary Figure 1 shows the age at scan for all the
individuals with repeated measures. All parents provided written
informed consent and children provided assent (younger than
12 years) or consent (12 years or older). All study procedures were
approved by the local medical ethics committee of the Erasmus
MC University Medical Center.

Magnetic Resonance Imaging Data
Acquisition
Magnetic resonance images were acquired on a study-dedicated
3 Tesla GE Discovery MR750w MRI System (General Electric,
Milwaukee, WI, United States) scanner using an 8-channel head
coil. No hardware upgrades or major software upgrades have
taken place since the study began in 2012 in order to keep the
system stable for longitudinal research.

After a brief mock scanning session to acclimate the
participants to the MRI environment, structural T1-weighted
images were obtained using a 3D coronal inversion recovery
fast spoiled gradient recalled (IR-FSPGR, BRAVO) sequence
using ARC acceleration [TR = 8.77 ms, TE = 3.4 ms,
TI = 600 ms, flip angle = 10◦, matrix = 220 × 220, field of
view (FOV) = 220 mm × 220 mm, slice thickness = 1 mm]. 200
volumes of rs-fMRI data were acquired using an interleaved axial
echo planar imaging sequence with the following parameters:
TR = 1,760 ms, TE = 30 ms, flip angle = 85◦, matrix = 64 × 64,
FOV = 230 mm × 230 mm, slice thickness = 4 mm (White et al.,
2018). The total duration of the resting-state scan was 5 min 52 s.
Children were instructed to stay awake and keep their eyes closed.

Image Preprocessing
Data were first converted from DICOM to Nifti format using
dcm2niix (Li et al., 2016). Data were subsequently preprocessed
through the FMRIPrep package (version 20.1.1 singularity
container) (Esteban et al., 2019). Briefly, this included volume
realignment for translation and rotation motion, slice-timing
correction, and inter-subject registration.

Spatial normalization to the ICBM 152 Non-linear
Asymmetrical template version 2009c (Fonov et al., 2009)
was performed through non-linear registration with the
antsRegistration tool of ANTs v2.1.0 (Avants et al., 2008),
using brain-extracted versions of both T1w volume and
template. The resulting functional data were resampled to
3 mm × 3 mm × 3 mm isotropic voxels.

From the volume realignment, we obtained the time series
corresponding to the first temporal derivatives of the six base
motion parameters (3 translations and 3 rotations), together
with their quadratic terms, resulting in the total 24 head
motion parameters (6 base motion parameters + 6 temporal
derivatives + 12 quadratic terms) to be used as confound
regressors (see below) (Satterthwaite et al., 2013).

Group-Independent Component Analysis
and Dynamic Functional Network
Connectivity Analysis
Group-independent component analysis and dynamic functional
network connectivity analyses were performed using the
Group ICA Of fMRI Toolbox (GIFT) software1 (GroupICAT
v4.0b) (Calhoun et al., 2001; Calhoun and Adalí, 2012)
in MATLAB R2020a.

1https://trendscenter.org/software/gift
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FIGURE 1 | Flowcharts. MRI, magnetic resonance imaging; FD, framewise displacement.

Group-Independent Component Analysis
Prior to analysis, the first 4 volumes of each subject were
excluded to ensure magnetic stabilization. Resting-state data was
decomposed into functionally homogeneous regions applying
a spatially constrained group-independent component analysis
(scICA) via the multi-objective optimization ICA with reference
algorithm (Du and Fan, 2013). The scICA method is a fully
automated approach which uses aggregate component maps
from previous group ICA analysis as reference to estimate
subject specific independent components. This technique has
been previously used on adult studies (Salman et al., 2019; Du
et al., 2020). Here we used 51 reference components derived
from the Dev-CoG developmental imaging study, and grouped
them into seven networks: subcortical (SC), auditory (AUD),
sensorimotor (SM), visual (VIS), default-mode (DMN), cognitive
control (CC), and cerebellar (CB) (Supplementary Figure 2 and
Supplementary Table 1) (Agcaoglu et al., 2019).

The subject specific time courses corresponding to the
components were detrended, despiked, and the 24 motion
parameters were regressed out. As correlation among brain

networks is primarily driven by low frequency fluctuations
(Cordes et al., 2001), time courses were also filtered using a
fifth-order Butterworth low-pass filter with a high frequency
cut-off of 0.15 Hz.

Dynamic Functional Network Connectivity Analysis
Dynamic functional network connectivity (FNC) between all
independent components time courses was computed using
a tapered sliding window approach. This method provides
multiple correlation matrices (one per window per dataset) that
correspond to different temporal portions of data. We used a
window size of 25 TR (44 s) in steps of 1 TR and the alpha
parameter of the Gaussian sliding window was 3 TRs (Allen
et al., 2014; Qin et al., 2015), which yielded 171 FNC windows
per dataset. We estimated covariance from regularized inverse
covariance matrices (Smith et al., 2011) using a graphical LASSO
framework (Friedman et al., 2008) as estimation of covariance
matrices of short time series can be noisy. Also, we imposed an
additional L1 norm constraint on the inverse covariance matrix to
enforce sparsity. The regularization parameter was optimized for
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TABLE 1 | Sample characteristics.

Single measurement Repeated measurements

Age-10 visit Age-14 visit Age-10 and -14 visits

N 1,555 1,173 1,031

Age (years, mean ± SD) 10.13 ± 0.58 14.18 ± 0.67 10.15 ± 0.62; 13.85 ± 0.51

Sex (n, %)

Boys 787 (50.61) 546 (46.55) 466 (45.2)

Girls 768 (49.39) 627 (53.45) 565 (54.8)

Ethnicity (n, %)

Dutch 948 (60.96) 671 (57.2) 642 (62.27)

Other western 138 (8.87) 107 (9.12) 94 (9.12)

Non-western 440 (28.3) 363 (30.95) 274 (26.58)

Maternal education (n, %)

None or primary 38 (2.44) 30 (2.56) 24 (2.33)

Secondary 451 (29) 387 (32.99) 317 (30.75)

Higher 835 (53.7) 565 (48.17) 589 (57.13)

Household income (n, %)

Very low (<1,200€/month) 83 (5.34) 52 (4.43) 40 (3.88)

Low (1,200€–2,400€/month) 235 (15.11) 215 (18.33) 168 (16.29)

Modal and higher (>2,400€/month) 950 (61.09) 666 (56.78) 675 (65.47)

SD, standard deviation. The percentages of missing values in subjects with single measurement at age-10 visit were 2% for ethnicity, 15% for maternal education and
18% for household income. The percentages of missing values in subjects with single measurement at age-14 visit were 3% for ethnicity, 16% for maternal education and
20% for household income. The percentages of missing values in subjects with repeated measurements were 2% for ethnicity, 10% for maternal education and 14% for
household income.

each subject/visit by evaluating the log-likelihood of unseen data
in a cross-validation framework, that is, splitting time courses
into training and testing sets. Finally, to stabilize variance, the
dynamic FNC values were Fisher-Z transformed.

Clustering
Using data from both visits, we computed k-means clustering
on the resulting 171 dynamic FNC windows of 44 s from
each scan session in order to identify patterns of connectivity
that reoccur over time (within the scan session) and across
subjects and visits (between the scan sessions). The number
of clusters, or states, was set to five to match previous studies
(Faghiri et al., 2018; Agcaoglu et al., 2020). We used the
correlation distance function and the clustering algorithm was
repeated 500 times to increase the chances of escaping local
minima, with random initialization of centroid positions. We
determined the modularity of the dynamic states qualitatively.
First, a state was described as fully modularized when a clear
modular organization, thus positive intra-network connectivity
and negative inter-network connectivity, was observed. Next, if
a state was not fully modularized, but presented sub-modules
within networks with different connectivity configurations, we
defined it as being partially modularized. Lastly, if a state did not
possess any or very little characteristics of being modularized, we
labeled it as a non-modularized state.

Outcome Measures
For each individual and visit, we calculated three different
outcomes. First, the SD of the functional connections
between the 51 components as a measure of temporal
variability. Second, the mean dwell time (MDT) in each

dynamic state. This variable was obtained by first identifying
every change between states, calculating the number of
windows in each state and computing the average time a
participant remained in the specific states [for a more detailed
explanation, see Rashid et al. (2018)]. Third, the number of
transitions between states.

Image Quality Assurance
Scans with excessive motion defined as having a mean framewise
displacement (FD) higher than 0.25 mm or having more than
20% of the volumes with a FD higher than 0.2 mm, were
excluded (Parkes et al., 2018). Image co-registration was visually
inspected for accuracy by merging all co-registered images into
a single 4D Nifti image and scrolling through the images.
Scans were also screened for major artifacts (e.g., from dental
retainers, or other scanner-related artifacts) as well as whole-
brain coverage (e.g., missing from field of view). All the scans
flagged as being of poor quality for the above-mentioned
reasons were excluded.

Sample Characteristics
Descriptive characteristics of the participants are presented
with means and standard deviations or proportions. Child
sex and date of birth were determined from medical records
obtained at birth. Child ethnicity was defined based on
the country of birth of the parents and was coded into
three categories (Dutch, non-western, and other western).
Maternal education level and household income, proxies
of socioeconomic status, were assessed by questionnaire
during pregnancy.
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Statistical Analyses
Statistical analyses were conducted using the R Statistical
Software (version 3.6.0).

We compared the summary metrics (MDT in each state and
number of transitions between states) between age-10 and age-
14 visits and between boys and girls in each visit using Wilcoxon
tests. For the visit comparison we used Wilcoxon signed rank test,
while for the sex comparisons, we used Wilcoxon rank sum test.

Age was centered to the mean age of the sample at the age-
10 visit. The distributions of all the dependent variables were
visually inspected using histograms. Since MDT outcomes were
right-skewed, we applied a Box–Cox transformation (Box and
Cox, 1964) using the ‘bestNormalize’ package (version 1.6.1)
(Peterson and Cavanaugh, 2020) to obtain a more homogeneous
range of values.

The age associations with the temporal variability of
connectivity (SD) between components, and the summary
metrics (transformed MDT in each state and number of
transitions between states) were estimated using linear mixed-
effects models, implemented in the ‘nlme’ package (version 3.1-
139) (Pinheiro et al., 2019), including age and sex as fixed
effects and subject as random effect, allowing the intercept to
vary randomly across subjects. For the summary metrics, we
also tested the quadratic term of age in order to capture the
possible non-linearity in the growth changes, and we added an
interaction term of age-by-sex into the regression models to
detect potential differential age associations in boys and girls,
following a step-wise approach. We performed the likelihood
ratio (LR) test for model comparisons using ML estimation.
Stratified analyses by sex were performed when we observed
statistically significant interactions. Given the important role of
socioeconomic status in the brain development (Brito and Noble,
2014), we additionally included maternal education in the models
as a precision covariate. The models were performed separately
for each outcome. A false discovery rate (FDR) was applied to
control for Type-I error. Associations with pcorrected < 0.05 were
considered significant.

The associations between age and the summary metrics were
graphically represented in the original scale using the ‘ggplot2’
package (version 3.3.2) (Wickham, 2016). To estimate the
variation of the values in the population, we applied the bootstrap
technique (Efron, 1979), using 2,000 resamples with replacement.

RESULTS

Sample Characteristics
The sample characteristics are shown separately for participants
with a single measurement (age-10 or age-14 visit) and those with
repeated measurements in Table 1. The mean age and variation
at the age-10 visit were very similar between those with and
without repeated measurements, as well as at the age-14 visit.
The mean duration between visits was 4 years (range 1–6 years).
Although the proportion of boys and girls was balanced in the
participants with data only at the age-10 visit, there were more
girls than boys with single measurement at age-14 visit (53% girls
vs. 47% boys) and with data at both visits (55% girls vs. 45%

boys). Around 60% of the participants were of Dutch origin and
between 26 and 31% were of non-western national origin, with
small differences between single/repeated measurement groups.
The groups also differed slightly in terms of maternal education
and household income, although the relative proportions were
constant between them. The participants with data only at the
age-14 visit had the highest proportion of low (3%) or secondary
(33%) maternal education and lower household income (<2,400€
per month, 23%).

Temporal Variability in Functional
Connections Within Scan Session
Figure 2 shows the average variability (SD) in the correlations
between the time courses of the 51 components over the
measurement period across participants and visits. In general,
the SDs were between 0.20 and 0.25. The smallest variability
was observed within the VIS network, indicating more stable
connections over the scan session. The most variable connections
were observed between SM and VIS networks, CC and VIS
networks, and within the CC network.

Dynamic States
The k-means clustering method allowed us to identify five
dynamic states, or patterns of connectivity that reoccurred over
time (within the scan session) and across subjects and visits
(between the scan sessions). We obtained three modularized
states with components showing intra- and inter-network
connectivity (states 1, 2, and 3) and two non- or only partially
modularized states (states 4 and 5) (Figure 3). In state-1 (15%
of occurrences), the SC and CB networks showed positive intra-
network connectivity and negative inter-network connectivity,
mainly with the sensory networks (AUD, SM, and VIS). Thus,
the components that comprise the SC and CB networks were
positively correlated within themselves, and they were negatively
correlated with the components of the sensory networks. The
SM and the VIS networks also showed strong positive intra-
network connectivity. The frequency of occurrence of state-
1 increased with scan progression (i.e., occurred more as
the scan went on, particularly, around 7% more windows of
time were part of this state at the end of the session as
compared to the beginning) (Figure 4). In state-2 (22% of
occurrences), SM and DMN networks showed positive intra-
network connectivity and negative inter-network connectivity
between them. Other components, such as CC components,
showed opposite connectivity patterns with SM and DMN.
For instance, frontal CC components were positively correlated
with DMN and negatively correlated with SM components, and
posterior CC components showed the opposite pattern. The
frequency of state-2 decreased by 5% with scan progression
(Figure 4). State-3 (20% of occurrences) was characterized by
positive correlations within the DMN and negative correlations
between this network and the other networks, except some
CC components from the frontal lobe. The SM and the VIS
networks also showed strong positive intra-network connectivity
in this state. State-3 shared some traits with state-2. However, the
negative inter-network connectivity between DMN and the other
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FIGURE 2 | Temporal variability in pairwise functional connections between the 51 components within scan session. SC, subcortical network; AUD, auditory
network; SM, sensorimotor network; VIS, visual network; DMN, default-mode network; CC, cognitive control network; CB, cerebellar network.

networks was more “global,” although weaker, in state-3 than in
state-2, in which the inter-network connectivity was focused on
specific networks. The frequency of state-3 also decreased by 3%
of windows of time over the scan session (Figure 4).

State-4 (18% of occurrences) was non-modularized, thus
a clear modular organization of functional connectivity in
distinguished networks was absent in this state. The putamen
(SC, 1 and 2), the middle temporal gyrus (CC, 38), and
the cerebellum were negatively correlated with all the other
components. The opposite was observed in the postcentral gyrus
component (SM, 8), which was positively correlated to several
components. The frequency of state-4 increased by 4% with scan
progression (Figure 4).

Finally, state-5 (24% of occurrences) was partially
modularized, presenting sub-modules within networks with
different connectivity configurations. For instance, regarding
the SC network, the putamen (SC, 1 and 2) was negatively
correlated with visual components, while the thalamus
(SC, 3 and 4) showed positive correlations. The postcentral
gyrus component (SM, 8) was positively correlated with
visual components, and the rest of the SM components

were negatively correlated with those components. As in
state-3, the DMN was positively connected within network
and with frontal CC components. The frequency of state-
5 showed a general mild decreasing trend over the scan
session (Figure 4).

Longitudinal Changes in the Temporal
Variability
We observed increases in overall temporal variability in
functional connections between components across age
(Figure 5). The SD, which ranged between 0.20 and 0.25,
increased on average a 1% (coefficient = 0.0025) per year.
Some connections showed less variability at older ages, such
as the Insular Cortex component (CC, 44) connections with
components from other networks.

Longitudinal Changes in Dynamic States
The distributions of the summary metrics (MDT and number
of transitions) by visit and sex are depicted in the original
scale in Figure 6, and the individual observations are shown
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FIGURE 3 | Five dynamic states after clustering across all individuals and visits. Each state captures a particular connectivity ‘configuration’ a participant may display
over the course of the MRI scan. The total number and percentage of occurrences (windows of time) is listed above each state. SC, subcortical network; AUD,
auditory network; SM, sensorimotor network; VIS, visual network; DMN, default-mode network; CC, cognitive control network; CB, cerebellar network.

Frontiers in Systems Neuroscience | www.frontiersin.org 8 November 2021 | Volume 15 | Article 724805

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-15-724805 November 16, 2021 Time: 15:21 # 9

López-Vicente et al. Development of Dynamic Connectivity

FIGURE 4 | Frequency of occurrence of each state over the course of the MRI scan. Gray lines indicate the estimated occurrence profiles of each state for 100
bootstrap resamples with replacement.

in Supplementary Figure 3. We observed differences between
age-10 and age-14 visits in all the outcomes except state-2
MDT. Boys and girls also showed differences in the MDT of
states 1, 3, and 5 (age-10 visit), states 2 and 4 (both visits),
and the number of transitions between states (age-14 visit).
As outlined in the Section “Statistical Analyses”, the linear
mixed-effects models were performed using transformed MDT
outcomes (Box–Cox transform). Table 2 shows the age and
sex associations with the MDT of each state and the number
of transitions between states. Only the linear term of age
was included in the models because the LR test indicated
that the model fit was not significantly improved with the
quadratic term addition. Overall, the MDT in state-1 increased
with age, while the MDT in states 3, 4, and 5 decreased
with age. The number of transitions between states decreased
over time. Girls spent more time in state-2, less time in
states 3 and 4, and showed fewer transitions between states
compared to boys.

From baseline to follow-up, increases were observed for
the time spent (MDT) in state-1, which is characterized by
negative inter-network connectivity between subcortical and

sensorimotor networks. Thus, children spent more time in
state-1 as they grew older. Figure 7, depicts the predicted
number of windows spent in state-1 increased slightly more
in absolute terms at older ages than at younger ages. No
sex differences were observed in MDT for state-1, and
adding the age-by-sex interaction term did not improve the
model (LR test p = 0.491). Regarding state-2 (the default-
mode/sensorimotor modularized), we found differences by sex,
with girls spending around 1% more time (2 windows of time)
than boys in this state across the whole age range (Figure 7).
However, no significant interaction was observed (LR test
p = 0.051).

We observed decreases in MDT for state-3 (the default-
mode network modularized state), state-4 (the non-modularized
state), and state-5 (the partially modularized state) associated
with age. Children spent around 0.6% less time (1 window)
per year in state-3. In addition, girls spent around 0.6%
less time (1 window) in this state than boys across the
whole age period, with no age-by-sex interaction (LR test
p = 0.120) (Figure 7). Regarding state-4, we found an interaction
between age and sex (LR test p = 0.006) (Table 3 and
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FIGURE 5 | Strength of the associations between age and variability in pairwise functional connections between components. Linear mixed-effects models adjusted
for sex (random effect: subject). Only the results that survived the false discovery rate (FDR) multiple comparison correction threshold of pFDR = 0.05 are shown
here. SC, subcortical network; AUD, auditory network; SM, sensorimotor network; VIS, visual network; DMN, default-mode network; CC, cognitive control network;
CB, cerebellar network.

Figure 7). The stratified analyses showed that the negative
association between age and MDT in state-4 was stronger
in girls (Table 4). Girls spent 0.3% less time (half window)
per year in this state. In boys, the slope decreased more
slowly with age (Figure 7). The change in state-5 was
steeper, MDT decreased by 1% (2 windows) per year both
in boys and in girls, with no age-by-sex interaction (LR test
p = 0.361) (Figure 7).

The number of transitions between states decreased over time,
and this association was stronger in girls than in boys, with age-
by-sex interaction (LR test p = 0.016) (Tables 3, 4). The predicted
number of transitions changed from NT = 8.5 around age-9 to
NT = 7 at age-14 in girls (Figure 7).

Similar results were observed in the models that
were additionally adjusted for maternal education
(Supplementary Table 2).

DISCUSSION

This is the largest longitudinal population-based study describing
individual changes in dynamic brain connectivity from childhood
into adolescence. We highlight three findings that show
developmental patterns. First, we found a general increase in
the variability of the connections between intrinsic connectivity
networks with increasing age. Second, the time spent in a
modularized state increased with age, while the time spent in
less modularized states decreased with age. Third, the number
of transitions between states decreased with age. Girls showed
a more mature pattern of dynamic brain connectivity, spending
more time in a highly modularized state, less time in specific
states that were more frequently observed at a younger age,
transitioning less between states and showing a faster decrease of
time spent in a non-modularized state across age than boys.
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FIGURE 6 | Distributions of mean dwell time (MDT, number of time windows) in each state and number of transitions between states by visit and sex. Wilcoxon
signed rank test was used to compare the values between age-10 and age-14 visits and Wilcoxon rank sum test was used to compare the values between boys
and girls in each visit. *p-value < 0.05; n.s., non-significant.

TABLE 2 | Age- and sex-associations with transformed mean dwell time (MDT, number of time windows) in each state and number of transitions (NT) between states.

Age Sex (ref. boys) AIC BIC

95% CI 95% CI

Estimate Lower Upper P-value Estimate Lower Upper P-value

State-1 MDT 0.208 0.196 0.221 < 0.001* −0.052 −0.104 −0.001 0.046 12678.65 12711.02

State-2 MDT 0.001 −0.013 0.015 0.872 0.152 0.096 0.209 < 0.001* 13594.54 13626.9

State-3 MDT −0.082 −0.096 −0.068 < 0.001* −0.074 −0.130 −0.018 0.009* 13480.18 13512.55

State-4 MDT −0.036 −0.049 −0.022 < 0.001* −0.244 −0.302 −0.186 < 0.001* 13476.86 13509.23

State-5 MDT −0.171 −0.185 −0.158 < 0.001* 0.040 −0.014 0.093 0.145 13003.42 13035.78

NT −0.178 −0.221 −0.134 < 0.001* −0.292 −0.468 −0.115 0.001* 24485.35 24517.71

Linear mixed-effects models (random effect: subject). The MDT outcomes were transformed using Box–Cox. Age was centered to the mean age of the sample at age-10
visit. *P-value corrected for multiple comparisons (FDR) < 0.05. AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion.

The higher variability in the connections between networks
observed with increasing age is consistent with previous cross-
sectional studies (Hutchison and Morton, 2015; Marusak et al.,
2017). This broader repertoire of functional connections between
brain regions could be a neural substrate of a higher cognitive
complexity. Some of our findings regarding the associations
between age and the time spent in specific dynamic states are
consistent with previous research. Using cross-sectional data of

the Generation R Study, but a younger age visit than this study
(6–10 years old), Rashid et al. (2018) also found that older
children showed longer MDT in a globally modularized state,
characterized by intra- and inter-network connectivity. We found
negative age associations with MDT in state-3, in which the DMN
was negatively correlated with the other networks. We expected
this type of connectivity pattern to be positively associated with
age, given the modularity of the state and the fact that the
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FIGURE 7 | Age-associations with mean dwell time (MDT, number of time windows) in each state and number of transitions between states by sex. Linear
mixed-effects models (random effect: subject). The MDT values were transformed back to the original scale for the graphical representation of the associations.
A bootstrap technique was applied using 2,000 resamples with replacement to estimate the variation of the values in the population.

efficiency of the DMN increases as children grow older. It is
possible that state-3 is a precursor of state-2, and older children
tend to spend less time in state-3 because they transition to the
other modularized states (1 and 2).

We reported negative associations between age and time
spent in less modularized states, such as states 4 and 5. These
results are supported by previous research showing that the
developing brain is characterized by an increase of “integration”
of functional networks (Fair et al., 2007). The components of a
network in those states do not show consistent intra-network
connectivity, nor inter-network connectivity. This suggests that
the integration, or the increased connectivity within the brain
regions that comprise a network, is low. This is expected given
adolescence is a period of transition to more efficient brain
connectivity, in which widely distributed areas are integrated
into complex brain systems. This type of developmental
process, in which connections change during adolescence, has
recently been identified as “disruptive mode,” in contrast to
“conservative mode,” in which connections already established
become more strong (Váša et al., 2020). Myelination and synaptic

pruning processes that take place during brain development
likely contribute to these changes in functional connections
by supporting more efficient neuronal communication. The
establishment of these complex functional systems has an impact
on higher-order cognition (Giedd et al., 1999; Luna and Sweeney,
2004; Bunge and Wright, 2007; Fair et al., 2007).

We found negative associations between age and the number
of transitions between dynamic states. Previous studies did
not find such association during rest (Hutchison and Morton,
2015; Marusak et al., 2017). Our findings were statistically
significant, however, the change we observed was relatively small.
Given the large size of the current sample, the discrepancy in
findings could be explained by the higher power of our study.
Overall, our findings suggest that older participants show more
complex connectivity patterns and they remain longer in specific
connectivity configurations.

In terms of the composition of the different dynamic states,
or configurations, some of the connections between components
were stable between states, such as intra-network connectivity
within the SC and the VIS networks. Consistent with previous
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TABLE 4 | Sex stratified age-associations with transformed mean dwell time
(MDT, number of time windows) in state-4 and number of transitions
(NT) between states.

95% CI

Estimate Lower Upper P-value

State-4 MDT

Boys −0.016 −0.035 0.004 0.111

Girls −0.053 −0.071 −0.034 < 0.001

NT

Boys −0.120 −0.184 −0.056 < 0.001

Girls −0.227 −0.286 −0.168 < 0.001

Linear mixed-effects models (random effect: subject). The MDT outcome was
transformed using Box–Cox. Age was centered to the mean age of the sample
at age-10 visit.

work, this finding suggests that network organization in humans
is a combination of both static and dynamic connections
(Calhoun et al., 2014; Faghiri et al., 2018). The age-related
changes in the dynamic connectivity metrics reported in this
study indicate that the organization of human connectivity
patterns develop progressively across the age spectrum (Faghiri
et al., 2018). The largest change in MDT associated with age was
observed in state-1. This connectivity configuration resembles
one that has previously been identified as a “drowsiness pattern”
(Allen et al., 2014; Damaraju et al., 2014, 2020). Interestingly,
the frequency of this state increased with the scan progression,
which could indicate an increase in the fatigue or a decrease
in the anxiety of the participants along the session. At the
same time, other states that are likely related to a higher
awareness, such as state-2, showed the opposite pattern, its
frequency decreased with scan progression. The detection of this
drowsiness-related state could be beneficial for other rs-fMRI
studies, since it allows to remove the effect of potential drowsiness
from the data. Additionally, it could also prove interesting from a
clinical perspective, where a particular disorder shows differential
associations within this connectivity configuration.

Overall, girls showed a faster development of dynamic
connectivity than boys. This is consistent with previous literature
(Satterthwaite et al., 2015; Rashid et al., 2018) and may be due
to an earlier onset of puberty in girls. We observed that girls
spent more time than boys in the default-mode/sensorimotor
modularized state (state-2) state across the whole age range. In
this state, the DMN and the SM showed opposite activation
patterns and they were negatively correlated between them; when
one of those networks is activated, the other is deactivated. The
DMN has been linked to internally focused thought, episodic
memory, and planning the future (Buckner et al., 2008), while
the SM is related to the processing of external stimuli and
motor information. Hence, girls were more prone than boys
to show a connectivity configuration in which the DMN and
SM networks were negatively correlated, which could indicate a
higher efficiency in the synchronized activation and deactivation
of those networks. Similar patterns of modular organization
between sensory systems and DMN have been observed in
young adults (Allen et al., 2014). Faghiri et al. (2018) using
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cross-sectional data from a broader age range (3–21 years old),
observed that older participants spent more time in states
showing intra-network connectivity within the DMN, and inter-
network connectivity between the SM and CC networks. These
connectivity traits were similar to the ones of the default-
mode/sensorimotor modularized state (state-2) that we obtained.
However, in our study we did not find associations between age
and the time spent in this state. Girls showed 1 year of advantage
in state-3 MDT decrease in relation to boys and they showed a
faster MDT decrease across age in the non-modularized state-4,
more commonly observed in younger children. In addition, girls
transitioned less between states than boys, which also suggests
more mature connectivity.

One of the most important limitations of developmental
fMRI studies is motion (Power et al., 2012). In order to reduce
the impact of motion, we implemented various strategies at
several levels of the analysis. First, we excluded datasets with
excessive motion applying a strict threshold (Parkes et al., 2018).
Second, we used a spatially constrained group-independent
component analysis approach, only including components that
were identified as not being noise. Third, we added a standard set
of motion regressors to the dynamic FNC analysis (Satterthwaite
et al., 2013). Indeed, there was no relationship between age and
motion in our sample after excluding the datasets with excessive
motion. The drawback of these actions is that participants who
move more are underrepresented in the analyses, potentially
leading to selection bias. In fact, we observed some differences
between the participants with data only at the age-10 visit,
those with data only at age-14 visit, and those with repeated
measurements. The proportion of girls was higher in the second
visit, the socioeconomic status was lower in the participants
with data only at the second visit, while a higher socioeconomic
level was more common among those with data at the two
time points. Despite these small differences in the socioeconomic
status between the groups, the inclusion of maternal education
in the models as a precision variable did not change the results.
Future work should explore the role of socioeconomic status
on the development of dynamic connectivity. For example,
socioeconomic status has proven an important factor in
structural neurodevelopment (Brito and Noble, 2014). In this
study, we used a group ICA template generated from a model
order of 150, however, analyzing dynamic FNC with higher
and lower group ICA model-based templates would also be
interesting. Indeed, a full multi-spatial scale FNC analysis appears
to provide additional information (Iraji et al., 2021). In terms
of the tapered sliding-window approach used in this study, one
limitation is related to the selection of the window size. However,
it has been demonstrated that 44 s provides reliable connectivity
estimations and it is also sensitive to abrupt brain activity (Allen
et al., 2014; Qin et al., 2015). In addition, the observations were
weighted according the their position within the window to
avoid the effect of influential points (Allen et al., 2014). Another
relevant limitation of this study was the distribution of the MDT
outcomes with a relatively skewed distributions. Despite the
Box–Cox transformation, the residuals from the linear mixed
model for state-1 were not fully normally distributed. However,
different transformations as well as not transforming the data at

all, yielded highly similar results, and the large sample size of this
study ensures the robustness of the estimates obtained even in
non-ideal conditions (Knief and Forstmeier, 2021).

The longitudinal design, the large and multiethnic sample,
which was based on the general population, and the use of a single
MRI scanner are the main strengths of this study. Longitudinal
studies are key to study the development of the brain, since they
allow to control for interindividual variability (Kraemer et al.,
2000). The advantages of studying the brain at the population
level as opposed to using small samples include the higher
statistical power, the lower bias and the higher generalizability of
the results (Paus, 2010; White et al., 2013; LeWinn et al., 2017).
The use of a single scanner is important as it reduces vendor-
and hardware-dependent differences, and it avoids the possible
influence of the system updates on the longitudinal estimates.

To summarize, we observed longitudinal changes in
dynamic connectivity from ages 8–15 years. Particularly, as
children mature, they show: (1) a higher variability in the
connections between networks; (2) less time in less modularized
states; and (3) less transitions between states. Girls showed a
more mature pattern of dynamic connectivity. Resting-state
functional connectivity is a reliable tool for studying functional
neurodevelopment as it does not require an explicit task-
based framework and the connectivity of intrinsic networks
exhibits high reproducibility between individuals. Dynamic
brain connectivity approaches offer a more comprehensive
view of functional connectivity than static connectivity
alone and they provide summary metrics, which are likely
more reproducible than many thousands of individual edge
comparisons. In conclusion, the changes of dynamic connectivity
over the course of development presented in this work provide
a meaningful baseline for comparison in deviations from
typical development.
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