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From unicellular to multicellular organisms, cell-cycle pro-
gression is tightly coupled to biosynthetic and bioenergetic
demands. Accumulating evidence has demonstrated the G1/S-
phase transition as a key checkpoint where cells respond to their
metabolic status and commit to replicating the genome. How-
ever, the mechanism underlying the coordination of metabo-
lism and the G2/M-phase transition in mammalian cells remains
unclear. Here, we show that the activation of AMP-activated
protein kinase (AMPK), a highly conserved cellular energy sen-
sor, significantly delays mitosis entry. The cell-cycle G2/M-
phase transition is controlled by mitotic cyclin-dependent
kinase complex (CDC2-cyclin B), which is inactivated by WEE1
family protein kinases and activated by the opposing phospha-
tase CDC25C. AMPK directly phosphorylates CDC25C on ser-
ine 216, a well-conserved inhibitory phosphorylation event,
which has been shown to mediate DNA damage–induced
G2-phase arrest. The acute induction of CDC25C or suppression
of WEE1 partially restores mitosis entry in the context of AMPK
activation. These findings suggest that AMPK-dependent phos-
phorylation of CDC25C orchestrates a metabolic checkpoint for
the cell-cycle G2/M-phase transition.

Somatic cell-cycle progression involves a doubling and then
equal distribution of cellular components and macromolecules
into the two daughter cells. As such, interphase (G1, S, and G2
phases) represents a long period of cellular growth (accumula-
tion of mass due to anabolic processes), whereas mitosis is the
period of division, which is short and accompanied by meta-
bolic suppression (1). Consequently, a fundamental problem in
mammalian cells is coordination of the metabolic status with
cell-cycle progression (2–6). The progression through the G1

phase in the mammalian cell cycle is regulated by growth
factor/mitogen–mediated signals and metabolic status. The
latter remotely resembles a mechanism in yeast known as
START and represents a nutrient-sensing metabolic check-
point (7–11). The signaling network behind the G1-phase met-
abolic checkpoint coordinates the cell-cycle machinery and
metabolic activities, thus ensuring the availability of energy and
nucleotide precursors for genome replication and a timely tran-
sition from G1 to S phase (12–15). Also, it has been suggested
that a sufficient storage of energy and biosynthetic materials
may enable the execution of mitosis in a robust and all-or-none
fashion (16 –19). It is conceivable that a cell size–sensing mech-
anism may play a role in coordinating metabolic status (growth)
and the G2/M-phase transition. This mechanism would allow
cells to keep biosynthetic activity in check, ensuring suffi-
cient biomass accumulation to produce daughter cells with
the proper size (20 –24). These studies implicate the exist-
ence of metabolic checkpoints during the G1/S- and G2/M-
phase transition.

The AMP-activated protein kinase (AMPK)2 complex is a
central signaling node that keeps the cellular metabolic status
in check by sensing changes in cellular AMP and other cellular
metabolites, indicative of energy and nutrient status. Upon its
activation, AMPK acts to maintain ATP homeostasis by rewir-
ing metabolic programs to produce more energy and mean-
while suppressing many energy-consuming cellular processes,
including cell-cycle progression (25, 26). It has been known that
AMPK activation inhibits cell proliferation by increasing p21
and p27, two inhibitors of cyclin-dependent kinase (CDK) com-
plex. Under conditions of insufficient nutrients, such as low
glucose in cell culture medium, AMPK phosphorylates tran-
scription factor p53, and this phosphorylation event mediates
the suppression of G1-phase progression under glucose restric-
tion (27–30). The mammalian target of rapamycin (mTOR), an
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evolutionarily conserved protein kinase, integrates environ-
mental cues to coordinately regulate many fundamental cellu-
lar processes, including cell-cycle progression through the G1

phase. AMPK has been reported to directly phosphorylate key
components of mTORC1 and consequently suppress mTORC1
signaling and the G1/S-phase transition (31–36). These find-
ings clearly implicate AMPK as a key player in coupling the
cellular metabolic status to the regulation of the G1/S-phase
transition. However, the robustness of AMPK-dependent reg-
ulation on a myriad of fundamental cellular processes in
response to metabolic stress suggests the presence of additional
regulatory steps coupling AMPK and cell-cycle progression,
and the molecular mechanisms behind these unrevealed regu-
latory steps remain to be explored.

The G2/M-phase transition is driven by a series of tightly
regulated and coordinated signaling events that eventually lead
to the activation of CDC2-cyclin B (37–40). Among these
events, the rate-limiting step in directing mitosis entry is the
activation of dual-specificity protein phosphatase CDC25C.
The activation of CDC25C generally involves two steps, initia-
tion and amplification (41, 42). The latter requires an array of
protein kinases that can extensively phosphorylate CDC25C
and change its conformation (43–50). Likewise, the initiation
step of CDC25C activation requires multiple coordinated
events, including dephosphorylation of serine 216, a conserved
inhibitory phosphorylation, dissociation from the inhibitor
14-3-3, and change in the subcellular location (51–55). The
amplification step of CDC25C activation is part of a positive-
feedback loop that enables a rapid, robust, and irreversible
mitosis entry, whereas the initiation step represents a surveil-
lance mechanism that ensures the order and integrity of the
cell-cycle machinery (56). Supporting this idea, the DNA
damage–induced G2-phase checkpoint is largely mediated
through inhibition of CDC25C, thus suppressing CDC2-cyclin
B. Importantly, this is a p53-independent mechanism that is
critical for the DNA damage response in most cancer cells
because p53 loss of function is common in cancer cells (57–60).
Because metabolic stress also causes cell-cycle arrest, it is con-
ceivable that CDC25C may also represent a critical target of the
metabolic checkpoint on cell-cycle progression.

In this study, we report a crucial role of AMPK in regulating
the G2/M-phase transition. Unlike AMPK-dependent regula-
tion on the G1/S transition, AMPK activation delays mitosis
entry independently from its regulation on p21, p27, and
mTORC1. Instead, AMPK directly phosphorylates CDC25C on
serine 216, an inhibitory phosphorylation event that has been
previously shown to retain CDC25C in the cytosol and keep it
inactive (51, 53, 54, 61, 62). Either acute overexpression of
CDC25C-S216A mutant or inhibition of WEE1 can reverse
cell-cycle G2-phase arrest imposed by AMPK activation. More-
over, pharmacologic abrogation of AMPK-mediated cell-cycle
arrest by WEE1 inhibitor induces cell death. These findings
reveal a novel AMPK-dependent metabolic checkpoint on cell-
cycle G2/M transition, and pharmacological abrogation of this
checkpoint may represent a new therapeutic approach to treat
cancers.

Results and discussion

Activation of AMPK at G2 phase delays mitosis entry

Previous studies have demonstrated an AMPK-dependent
cell-cycle checkpoint at the G1/S-phase boundary, which may
ensure the coordination of DNA synthesis in S phase with the
availability of nutrients for nucleotide biosynthesis in G1 phase
(27, 33). However, it is still unclear whether the G2/M-phase
transition is regulated by AMPK and represents a checkpoint
for the coordination of cell metabolism and cell-cycle progres-
sion. For this, we treated HeLa cells overnight with two mech-
anistically distinct pharmacologic activators of AMPK, 5-
aminoimidazole-4-carboxamide 1-�-D-ribofuranoside (AICAR)
or A 769662 (A7) (63). AICAR is considered as an AMP-mi-
metic compound that directly binds to a nucleotide-binding
pocket in the AMPK� subunit and promotes AMPK kinase
activities; A7 binds to a cleft between the AMPK� and � sub-
units and causes allosteric activation of the AMPK kinase com-
plex (63–66). We found that both AICAR and A7 increased the
percentage of cells in the G1 and G2 phases, as indicated by PI
staining in combination with BrdU incorporation (Fig. 1A). By
contrast, the percentage of cells in mitosis indicated by phos-
phorylation of histone H3 (pH3) is reduced following AICAR
and A7 treatment (Fig. 1A). Notably, the disappearance of BrdU
incorporation in AICAR group is probably due to the substrate
competition between BrdU and AICAR, both of which are nucle-
otide analogs. Next, we repeated the experiment in the presence of
nocodazole, a reversible inhibitor of microtubule polymerization,
which blocks mitosis exit and therefore highlights the changes of
mitotic entry following treatments. Both AICAR and A7 reduced
the percentage of cells in mitosis compared with the control group
(Fig. 1B).

We next applied radiochemical-based approaches to deter-
mine the activity of major catabolic pathways that could fuel the
biosynthetic programs in cells released into G1 phase or G2
phase. We also included cells starved by serum removal as a
control to indicate the baseline metabolic activity. Compared
with cells at G1 phase or serum-starved cells, cells at G2 phase
significantly up-regulated glycolysis, indicated by the detritia-
tion of [5-3H]glucose; glucose consumption via the pentose
phosphate pathway (PPP), indicated by 14CO2 release from
[1-14C]glucose; and glutamine consumption through oxidative
catabolism (glutaminolysis), indicated by 14CO2 release from
[U-14C]glutamine (Fig. 2A). In contrast, both mitochondria-de-
pendent pyruvate oxidation through the tricarboxylic acid
(TCA) cycle, indicated by 14CO2 release from [2-14C]pyruvate,
and fatty acid �-oxidation, indicated by the detritiation of [9,10-
3H]palmitic acid, were comparable among all three groups (Fig.
2B). These data suggest that cells at G2 phase actively engage
glucose and glutamine catabolic programs to meet their bioen-
ergetic and biosynthetic demands.

Next, we sought to determine whether the acute activation of
AMPK at G2 phase would cause a delay of mitosis entry. This
would determine whether the delay of mitosis entry is a second-
ary effect from the G1/S-phase transition in the presence of
AMPK activators. For this, we first synchronized cells at the
G1/S boundary by double thymidine blockage and then released
the cells into S phase and treated them with AMPK activators
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and nocodazole once they reached G2 phase (Fig. 3A). In addi-
tion to AICAR and A7, we also included metformin and phen-
formin, two respiration chain complex I inhibitors, to indirectly
activate AMPK by suppressing ATP production (67). Our
results clearly showed that these AMPK activators reduced the
percentage of cells in mitosis in a dose-dependent manner (Fig.
3, B and C). Moreover, none of the acute treatment with these
compounds caused significant apoptosis, as measured by PI
uptake and cell-surface annexin V staining (Fig. S1). Collec-
tively, our results suggest that activation of AMPK in cells at G2
phase delays mitosis entry.

DNA damage pathway and mTOR pathway are not involved in
mediating AMPK-dependent regulation on G2/M-phase
transition

It has been well-established that cells in G2 phase with dam-
aged DNA are prevented from entering into mitosis, and the

control mechanisms behind this are known as the G2 check-
point (60, 68 –71). To determine whether activation of AMPK
cross-talks with the DNA damage pathway and causes G2
arrest, we treated cells with AICAR at G2 phase and examined
molecules involved in the DNA damage response pathways in
cells collected at various time points. Doxorubicin, a reagent
that causes DNA adducts and activates the DNA damage
response, readily induced phosphorylation of checkpoint
kinase 1 (Chk1) and histone H2AX (H2AX), two characteristic
biomarkers of the DNA damage response (72). However, treat-
ment with AICAR failed to induced any visible phosphorylation
of Chk1 and H2AX (Fig. 4A). Previous studies have demon-
strated that AMPK phosphorylates p53 and causes the accumu-
lation of p21, a transcriptional target of p53 that mediates p53-
dependent regulation on cell cycle (28, 73–75). In a different
cellular context, AMPK was reported to regulate p27 and
induce autophagy (29). Both p21 and p27 are CDK inhibitors

Figure 1. Pharmacologic activation of AMPK increases the percentage of cells in G1 and G2 phase. A, HeLa cells were treated with 300 �M A7 or 2 mM AICAR
for 14 h before harvesting the samples. The percentage of cells in G1, S and G2 phase is indicated by PI staining in combination with BrdU incorporation (top).
The percentage of cells in mitosis (M) is indicated by phosphorylation of histone H3 (pH3, bottom). The scatter plot indicates the percentage of M-phase cells
treated with AMPK activator, and the percentage of M-phase cells in vehicle-treated cells was set to 100. Error bars, S.D. of triplicate samples. B, HeLa cells were
treated with 300 �M A7 or 2 mM AICAR in combination with 100 ng/ml nocodazole for 14 h. The percentage of cells in G1, S, and G2 phase is indicated by PI
staining and BrdU incorporation (top). The percentage of M-phase cells is indicated by phosphorylation of histone H3 (pH3, bottom). The scatter plot indicates
the percentage of M-phase cells treated with AMPK activator, and the percentage of M-phase cells in vehicle-treated cells was set to 100. Error bars, S.D. of
triplicate samples. *, p � 0.05; **, p � 0.01.
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and play critical roles in cell-cycle regulation (76, 77). However,
we have found that the treatment with AICAR failed to induce
the expression of p21 or p27 (Fig. S2). Our findings are also
consistent with earlier reports showing no detectable p53 pro-
tein in HeLa cells (78, 79).

It has also been reported that AMPK regulates cell-cycle pro-
gression through directly inhibiting mTORC1 complex, which
is the central player in sensing nutrients and coordinately reg-
ulating cell-cycle progression (31, 33–36). To determine
whether mTORC1 is involved in mediating AMPK-dependent
regulation on G2/M transition, we treated cells with either
AMPK activators or mTORC1 inhibitors at G2 phase and
examined the phosphorylation of mTORC1 effector molecules,
P70 kinase and ribosomal protein S6, in cells collected at the
time when control cells start entering into mitosis. Whereas A7
treatment and the mTORC1 inhibitor treatments led to the
suppression of mTORC1, as indicated by the loss of phosphor-
ylation of P70 kinase and S6, AICAR treatment failed to sup-
press mTORC1 activities (Fig. 4B). Importantly, neither rapa-
mycin nor torin treatment delayed mitosis entry (Fig. 4C).
Collectively, these findings suggested that mTORC1 is not
involved in mediating AMPK-dependent regulation of the G2/M
transition.

AMPK phosphorylates CDC25C at serine 216 in vitro and
in cells

The activity of CDKs oscillates throughout the cell cycle and
determines the transition between different cell-cycle phases
(76, 77). Mitosis entry is driven by CDC2-cyclin B, which is
coordinately regulated by CDC25, WEE1, and MYT1. WEE1
and MYT1 phosphorylate and keep CDC2-cyclin B inactive in
G2 phase. CDC25 activates CDC2-cyclin B and drives cells into
mitosis by dephosphorylating the inhibitory phosphorylation
sites on CDC2-cyclin B (Fig. 5A). Given that the mitotic regu-
lators mentioned above are all regulated by phosphorylation
and AMPK is a signaling protein kinase, we asked whether
AMPK is capable of directly phosphorylating and modulating
any of the above mitotic regulators. Previous studies have
revealed the optimal consensus phosphorylation motif for
AMPK (33, 80). We therefore applied a bioinformatics tool
(Scansite3 (81)) to search for putative AMPK-mediated phos-
phorylation motifs in CDC25C, WEE1, MYT1, CDC2, and
cyclin B1. The inspection of these protein sequences revealed
one putative AMPK phosphorylation site, serine 216, in
CDC25C (Fig. 5B). The phosphorylation of serine 216 plays a
key role in the temporal and spatial regulation of CDC25C and

Figure 2. Cells display heightened glucose and glutamine catabolism in G2 phase. A, HeLa cells were released into G1 phase after mitotic shake-off or were
release into G2 phase after double-thymidine arrest. Unsynchronized HeLa cells incubated in medium without serum for 6 h before the assay were used as
control for the baseline metabolic activity. The indicated metabolic activities were determined by measuring the generation of 3H2O from [5-3H]glucose
(glycolysis; left) or the generation of 14CO2 from [1-14C]glucose (PPP; middle) or from [U-14C]glutamine (glutaminolysis; right). Metabolic rate was normalized to
serum-starved cells. Error bars, S.D. of triplicate samples. B, indicated metabolic activities were determined by measuring the generation of 14CO2 from
[2-14C]pyruvate (TCA; left) and measuring the generation of 3H2O from [9,10-3H]palmitic acid (fatty acid �-oxidation; right). Metabolic rates were normalized to
control. Error bars, S.D. of triplicate samples. **, p � 0.01.
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the G2/M transition in response to DNA damage and during
normal cell-cycle progression (51, 53, 54, 61, 62). To validate
serine 216 as an AMPK phosphorylation site in CDC25C, we
took an integrated stepwise approach. We first transfected cells
with constructs expressing either WT or mutant CDC25C (ser-
ine to alanine/S216A) fused to the Myc epitope tag (Myc-
CDC25C), immunoprecipitated CDC25C with anti-Myc
epitope tag antibodies, and then immunoblotted the protein
samples using a phosphorylation-specific antibody that recog-
nizes the phosphorylated AMPK consensus motif (33, 80).
Whereas the phospho-AMPK substrate motif antibody recog-
nized WT CDC25C, the S216A mutation abolished such rec-
ognition, suggesting that Ser-216 is within the AMPK substrate
motif in CDC25C (Fig. S3A). Second, we generated recom-
binant CDC25C fused to glutathione S-transferase (GST-
CDC25C) and a non-related GST-tagged protein and phospho-
rylated these proteins with recombinant AMPK or extracellular
signal-regulated kinase 1 (ERK1) or PBS control. ERK readily
phosphorylated CDC25C at threonine 48, as we reported pre-
viously (49). However, only the AMPK-mediated phosphoryla-
tion site in CDC25C was recognized by the phospho-AMPK
substrate motif antibody or the pSer-216 antibody (Fig. 5C).

Third, we treated cells with AICAR or transfected cells with
either a control construct or a construct expressing a constitu-
tively active mutant of the AMPK catalytic subunit (AMPK-
CA) (82) and then immunoblotted with the pSer-216 antibody.
Both pharmacologic and genetic activation of AMPK readily
enhanced the phosphorylation of Ser-216 in CDC25C (Fig. 5D
and Fig. S3B). Finally, we applied a chemical genetic approach
to validate Ser-216 in CDC25C as a genuine AMPK-mediated
phosphorylation site in cells (83–85). This approach is based on
the concept that protein kinase can only use ATP as a phos-
phate donor; however, the point mutation of a conserved gate-
keeper residue in the ATP-binding pocket of a protein kinase
would allow mutant protein kinase (analog-specific (AS)) to
utilize ATP analog (ATP�S) as a phosphate donor. The specific
labeling of kinase substrate with thiophosphate (thioP), fol-
lowed by protein immunoprecipitation and alkylation, would
enable the recognition of AS mutant– dependent phosphoryla-
tion with a thioP-specific antibody. This approach has been
applied to identify direct substrates of various protein kinases,
including AMPK (83, 86). Thus, we co-transfected cells with a
construct expressing Myc-tagged CDC25C as well as a con-
struct expressing either FLAG-tagged WT or AS-AMPK and

Figure 3. Acute activation of AMPK at G2 phase delays mitosis entry. A, schematic view of cell synchronization and the indicated treatments. Representative
flow cytometric dot plots (B) and the scatter plot (C) indicate the percentage of M-phase cells treated with indicated compounds at G2 phase (A7�, 150 �M;
A7��, 300 �M; AICAR�, 2 mM; AICAR��, 4 mM; metformin�, 2 mM; metformin��, 4 mM; phenformin�, 20 �M; phenformin��, 100 �M). The percentage of
M-phase cells in vehicle-treated cells was set to 100. Error bars, S.D. of triplicate samples. **, p � 0.01.
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showed that Myc-tagged CDC25C could be labeled with thioP
only in the presence of AS-AMPK (Fig. 5E). Then we followed
up the above experiment by co-transfecting cells with a con-
struct expressing AS-AMPK as well as a construct expressing
either Myc-tagged WT or S216A CDC25C. The recognition by
thioP-specific antibody was significantly compromised by
S216A mutation (Fig. 5F), suggesting that Ser-216 is a direct
phosphorylation site and very likely the only phosphorylation
site of AMPK on CDC25C.

Acute modulation of CDC25C or WEE1 partially relieves AMPK-
dependent inhibition of the G2/M-phase transition

Our data on AMPK-dependent phosphorylation of Ser-216
on CDC25C suggested that AMPK suppresses the G2/M-phase
transition through the phosphorylation and inhibition of
CDC25C. CDC25C activates CDC2-cyclin B and promotes the
G2/M-phase transition by antagonizing WEE1 (i.e. by dephos-
phorylating WEE1-dependent phosphorylation sites on CDC2-
cyclin B) (42, 87, 88). We therefore reasoned that the abrogation
of WEE1 or the abrogation of Ser-216 on CDC25C would

relieve AMPK-dependent inhibition of the G2/M-phase transi-
tion (Fig. 6A). To test this, we first took a pharmacological
approach, using MK1775, to block WEE1 activity in the pres-
ence of AMPK activators. MK1775 is a potent WEE1 inhibitor
and allows us to acutely block WEE1 activity in cells synchro-
nized at G2 phase without interfering with the cell-cycle syn-
chronization process (89). Because a pharmacological inhibitor
readily suppresses its target upon addition, we treated cells with
MK1775 at the same time as we added AMPK inhibitors, ensur-
ing a minimal perturbation by the compound on G2-phase pro-
gression (Fig. 6B). Supporting the idea that the inhibition of
WEE1 may antagonize AMPK-mediated suppression on
CDC25C, neither A7 nor AICAR treatment delayed mitosis
entry in the presence of MK1775; however, A7 and AICAR
treatment consistently reduced the percentage of cells in mito-
sis in the absence of MK1775 (Fig. S4, A and B). Next, we
applied a genetic approach to knock down WEE1 by transfect-
ing a WEE1-specific siRNA. To avoid perturbing the normal
cell-cycle progression following a long-term WEE1 knock-

Figure 4. Pharmacological activation of AMPK on cells in G2 phase does not activate the DNA damage pathway or suppress the mTOR pathway. A,
HeLa cells were treated with or without 2 mM AICAR at G2 phase alone with nocodazole. Cells were collected at different time points (T0, 7 h after the second
thymidine release when AMPK activators and nocodazole were added; T1, 2 h after T0; T2, 4 h after T0; T3, 6 h after T0). The level of the indicated proteins in HeLa
cells was determined by immunoblotting. Doxorubicin (1 �g/ml), as a DNA damage-inducing agent, was included as a positive control. B, HeLa cells were
treated with 300 �M A7, 2 mM AICAR, 200 nM rapamycin, or 2 �M torin at G2 phase alone with nocodazole. Cells were collected 12 h after the second thymidine
release. The level of the indicated proteins in HeLa cells was determined by immunoblot. C, the percentage of M-phase cells with the indicated treatments was
determined by pH3 staining. The representative flow cytometric dot plots (left) and scatter plot (right) indicate the percentage of M-phase cells in different
groups. The percentage of M-phase cells in vehicle-treated cells was set to 100. Error bars, S.D. of triplicate samples.
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down, we transfected cells with WEE1 siRNA when synchro-
nized cells were released into S phase and collected samples
12 h later to examine the protein level of WEE1 and cell-cycle
status (Fig. 6B). The protein level of mammalian WEE1 oscil-
lates during the cell cycle and thus indicates a short half-life of
WEE1 protein. This allows us to deplete WEE1 in a short time
frame by siRNA (Fig. 6C) (90 –92). Consistent with our data on
MK1775, siRNA-mediated acute knockdown of WEE1 also
partially relieved AMPK-mediated suppression of the G2/M
transition (Fig. 6C and Fig. S4C). Last, we sought to genetically
modulate the phosphorylation of Ser-216 on CDC25C and
examine its effect on G2/M-phase transition in the context of
AMPK activation. To minimize the perturbation of constitutive
overexpression of CDC25C on normal cell-cycle progression,
we established a cell line stably expressing a doxycycline-induc-
ible CDC25C (S216A) mutant, which enables the acute induc-
tion of CDC25C (S216A) following doxycycline treatment
when synchronized cells were released into S phase (Fig. 6B).
We confirmed the acute induction of CDC25C (S216A) by
immunoblotting and showed that such treatment partially

relieved AMPK-mediated suppression of the G2/M-phase tran-
sition (Fig. 6D and Fig. S4D). Of note, neither the WEE1 siRNA
nor the induction of CDC25C (S216A) in the context of AMPK
activation caused additional stresses and induced cell death
during the time frame of experiments (Fig. S5). Taken together,
our results suggest that AMPK-mediated phosphorylation of
Ser-216 on CDC25C represents a mechanism of cell-cycle
checkpoint.

WEE1 inhibitor synergizes with AMPK activators to induce
cell death

AMPK is a central sensor of cellular energy status and there-
fore plays a key role in maintaining metabolic and bioenergetic
homeostasis (26, 93). We envisioned that AMPK-mediated
suppression on G2/M-phase transition may represent a meta-
bolic checkpoint that ensures the coordination of sequential
cell-cycle transitions with metabolic status. As such, abrogation
of the checkpoint may reduce the ability of cells to survive. To
test this idea, we treated cells with AMPK activator, WEE1
inhibitor, or a combination of these two and monitored the cell

Figure 5. AMPK phosphorylates CDC25C at serine 216 in vitro and in cells. A, model showing that G2/M-phase transition is regulated by CDC25C and WEE1.
B, potential AMPK phosphorylation motif of CDC25C was predicted by Scansite3. The AMPK consensus phosphorylation motif and the predicted motif are
shown in single-letter amino acid code. Positions marked as red showed the similarity between the two motifs, and the predicted phosphorylation site of
CDC25C is marked as blue. C, bacterially expressed GST-CDC25C or GST was incubated with recombinant AMPK or ERK in an in vitro phosphorylation assay.
Proteins were resolved by SDS-PAGE and immunoblotting for the indicated antibodies. D, HeLa cells were transfected with a construct expressing a constitu-
tively active mutant of the AMPK catalytic subunit (AMPK-CA) or a blank control plasmid for 2 days, and the expression of the indicated proteins in transfected
cells was determined by immunoblot. E, analog-sensitive kinase assay in cells. HeLa cells were transfected with Myc-CDC25C together with either WT-AMPK�2
or AS-AMPK�2 and treated with ATP�S analog as a phosphodonor. CDC25C was immunoprecipitated (IP) with Myc tag antibody and blotted (WB) with the
indicated antibodies. F, analog-sensitive kinase assay in cells. HeLa cells were transfected with AS-AMPK�2 together with either WT or S216A mutant Myc-
CDC25C and treated with ATP�S analog as a phosphodonor. CDC25C was immunoprecipitated with Myc tag antibody and blotted with the indicated
antibodies.
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growth curve. Whereas single-agent treatment demonstrated a
moderate ability to suppress cell growth, either A7 or AICAR in
combination with MK1175 led to a synergistic effect on sup-
pressing cell growth (Fig. 7A). Moreover, the growth suppres-
sion correlated with cell death induction, as measured by cell
surface staining of annexin V and cellular uptake of PI, follow-
ing the treatment with these reagents (Fig. 7B). Our studies
suggest that abrogation of AMPK-dependent G2 checkpoint
response induces cell death and may represent an attractive
cancer therapeutic strategy.

Metabolic stress suppresses the G2/M transition partially
through AMPK

We next sought to assess the impact of metabolic stress on
AMPK and cell-cycle G2/M transition. We first applied glu-
cose-free conditional medium and hexokinase inhibitor, 2-de-
oxyglucose (2DG), to induce an acute metabolic stress and

assess the activation of AMPK. Given that the average duration
of G2 phase is between 2 and 5 h, we reasoned that the acute
condition (1 h) is more relevant to assess the impact of meta-
bolic stress on cell-cycle G2/M transition. Under this condition,
we found that U2OS cells but not HeLa cells respond to acute
metabolic stress by enhancing AMPK activity, as indicated by
the increase of AMPK autophosphorylation and phosphoryla-
tion of ACC (Fig. 8A). Previous studies have shown that HeLa
cells are deficient in liver kinase B1 (LKB1), an AMPK-activat-
ing kinase (94), and we have also confirmed LKB1 deficiency in
HeLa cells by Western blotting (Fig. 8B). LKB1 deficiency prob-
ably renders HeLa cells resistant to metabolic stress-induced
activation of AMPK because AMP/ADP promotes the confor-
mational change of AMPK that will facilitate the phosphoryla-
tion by LKB1 and consequentially enhance AMPK activity (95,
96). As such, we chose U2OS cells to further assess the impact
of metabolic stress on AMPK and on the G2/M transition. For

Figure 6. Acute induction of CDC25C or suppression of WEE1 partially reverses the effect of AMPK activation on the G2/M-phase transition. A, model
showing that the G2/M-phase transition is regulated by CDC25C and WEE1. B, schematic view of cell synchronization and the indicated treatments. Synchro-
nized HeLa cells that stably express reverse tetracycline-controlled transactivator and doxycycline-inducible CDC25C were treated with doxycycline when cells
were released from the second thymidine block (G1/S boundary). Synchronized HeLa cells were transfected with WEE1 siRNA at the G1/S boundary or treated
with WEE1 inhibitor at G2 phase (7 h after cells were released from the second thymidine block), respectively. AMPK activators and nocodazole were added
when cells are in G2 phase. C, the percentage of M-phase cells in HeLa cells transfected with scramble siRNA or WEE1 siRNA was determined by phosphorylation
of histone H3 (pH3) staining. The percentage of M-phase cells in vehicle-treated cells was set to 100, and the value of AMPK activator–treated cells was
normalized to that of vehicle-treated cells. Error bars, S.D. of triplicate samples (left). Cell lysates were blotted with the indicated antibodies (right). D, the
percentage of M-phase cells in HeLa cells that stably express reverse tetracycline transcriptional activator (Ctrl) or CDC25C-S216A following doxycycline
treatment was determined by phosphorylation of histone H3 (pH3) staining. The percentage of M-phase cells in vehicle-treated cells were set to 100, and the
value of AMPK activator–treated cells was normalized to that of vehicle-treated cells. Error bars, S.D. of triplicate samples (left). Cell lysates were blotted with
the indicated antibodies (right). *, p � 0.05; **, p � 0.01.
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this, we applied siRNA to transiently knock down AMPK�1 in
U2OS cells (Fig. 8C). Both the procedure of transient transfec-
tion and the time frame (48 h) required to achieve an efficient
knockdown of AMPK�1 interfered with the standard protocol
for double thymidine synchronization. We therefore chose to
treat cells with the indicated siRNA for 48 h and then applied
nocodazole, to hold cells in mitosis, with or without metabolic
stress. As Fig. 8D shows, metabolic stress imposed by either
glucose starvation or glycolysis inhibitor 2DG significantly sup-
pressed the percentage of cells entering into mitosis following
nocodazole treatment. Importantly, AMPK�1 knockdown par-
tially relieved metabolic stress-mediated suppression on the
G2/M-phase transition (Fig. 8D). Collectively, our results sug-
gested that acute metabolic stress (nutrient starvation or met-
abolic inhibitor) activates AMPK and suppresses the G2/M-
phase transition.

Cell-cycle checkpoints are critical surveillance mechanisms
that monitor the integrity and fidelity of genome replication
and separation and thus ensure the order and timely execution
of cell-cycle transitions (97–99). In addition, mammalian cells
have evolved to rapidly respond to changes of internal meta-

bolic status and external nutrient levels by engaging a mecha-
nism of adaptation, which requires robust molecular machin-
eries that sense metabolic signals. The consequences of such
adaptation include not only metabolic rewiring but also com-
mitments on cell-cycle progression, cell death, and many other
basic or specialized cellular functions (100 –102). Previous
studies have shown that AMPK is crucial for the survival of cells
by acting on an array of signaling and biochemical pathways to
rapidly restore the energy status upon a variety of metabolic
stresses (25, 26). Our studies implicate AMPK as a critical sig-
naling node that interconnects with cell-cycle machinery
through a direct phosphorylation and suppression of CDC25C.
This allows cells to constantly inspect the metabolic status, halt
the cell-cycle progression upon perturbations, and therefore
ensure the cellular metabolic fitness and homeostasis of the
progenies. Our studies further suggest that phosphorylation of
Ser-216 in CDC25C is not only an evolutionarily conserved
mechanism in normal cell-cycle regulation, but also a shared
G2-phase checkpoint mechanism in mammalian cells in
response to both DNA damage and metabolic stress (51, 53, 54,
61, 62). These findings together support the idea that some key

Figure 7. Pharmacological ablation of G2 checkpoint synergizes with AMPK activators to induce cell death. A, HeLa cells were treated with AMPK
activators, MK1775, or a combination of the two, and the growth curve was determined by live cell imagine analysis (IncuCyte ZOOMTM). Error bars, S.D. of
quadruplicate samples. B, HeLa cells were treated with AMPK activators, MK1775, or a combination for 48 h, and cell death was determined by staining with
FITC-conjugated annexin V and PI followed by FACS analysis. The percentage of apoptotic and dead cells was determined from three experiments. Bars,
mean � S.D. **, p � 0.01.
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elements of the cellular stress response pathways are shared
among different stresses and are conserved across many species
(103, 104). In multicellular eukaryotes, programmed cell death
(apoptosis) occurs when the dose of stress exceeds tolerance
limits or when adaptive pro-survival checkpoint mechanisms
are eliminated (105–107). MK1775 has displayed anti-tumor
activities in various preclinical models and has been evaluated
in clinical trials as monotherapy and adjuvant therapy (108,
109). Our studies therefore suggest that abrogation of the met-
abolic checkpoint on G2/M-phase transition by WEE1 inhibitor
may lead to premature mitosis entry and consequent cell death
and therefore holds promise for therapeutically targeting can-
cer (110 –112).

Experimental procedures

Cell culture and reagents

HeLa (human cervical cancer cells, ATCC) and U2OS
(human osteosarcoma cells, ATCC) were grown at 37 ºC/5%
CO2 in Dulbecco’s modified Eagle’s medium (DMEM; Corning
Cellgro, Thermo Fisher Scientific, Grand Island, NY) supple-
mented with 10% fetal bovine serum (Gibco-Invitrogen, Carls-

bad, CA) and 1% penicillin-streptomycin (Corning). Cell line
identity was authenticated by short tandem repeat analysis.
Glucose-free DMEM was supplemented with 10% (v/v) heat-
inactivated dialyzed fetal bovine serum, which was made dia-
lyzing against 100 volumes of distilled water (five changes in 3
days) using Slide-ALyzerTM G2 dialysis cassettes with cut-
through MW size 2K (Thermo Fisher Scientific) at 4 °C.
AICAR, A769662, rapamycin, torin, metformin, phenformin,
2-deoxy-D-glucose, and nocodazole were purchased from Cay-
men Chemical (Ann Arbor, MI). MK1775 was purchased from
MedKoo Biosciences (Morrisville, NC).

siRNA transfection

The siRNA oligonucleotides corresponding to human WEE1
and AMPK�1 were purchased from Fisher. siRNA oligonucle-
otides (20 nM) were transfected into cells using Lipofectamine
RNAiMAX reagent (Invitrogen). After 12 h of transfection
(transfection when cells were released from the second thymi-
dine block) or after 48 h of transfection (transfection in non-
synchronized cells), immunoblots were carried out to examine
the knockdown of targeted proteins.

Figure 8. Metabolic stress suppresses G2/M transition partially through AMPK. A, U2OS and HeLa cells were cultured in glucose-free medium or treated
with 10 mM 2DG for 1 h. The level of the indicated proteins in cells was determined by immunoblotting. B, U2OS and HeLa cells were collected, and the level of
the indicated proteins was determined by immunoblot. C, U2OS cells were transfected with scrambled siRNA or AMPK�1 siRNA for 48 h. The level of the
indicated proteins in cells was determined by immunoblot. D, U2OS cells were transfected with scrambled siRNA or AMPK�1 siRNA for 48 h and then incubated
in control or glucose-free medium (GF, top) or treated with a different concentration of 2DG (bottom) along with 100 ng/ml nocodazole for 14 h. The percentage
of M-phase cells was determined by the phosphorylation of histone H3 (pH3) staining. The percentage of M-phase cells in control medium was set to 100, and
the value of cells in GF medium or 2DG-treated cells was normalized to their control. Error bars, S.D. of triplicate samples.
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RNA isolation, reverse transcription, and quantitative PCR

Total RNA was isolated using an RNA extraction kit (Zymo
Research, Irvine, CA) and was reverse-transcribed using ran-
dom hexamer and Moloney murine leukemia virus reverse
transcriptase (Invitrogen). SYBR Green-based quantitative RT-
PCR for specific genes was performed using the Applied Bio-
systems real-time PCR system. Samples for each experimental
condition were run in triplicate and were normalized to �2-micro-
globulin to determine relative expression levels. Primer sequences
(Table S2) were obtained from the Primer Bank (113).

Protein extraction and Western blot analysis

Cells were harvested, lysed, and sonicated at 4 °C in a lysis
buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.5% SDS, 5 mM

sodium pyrophosphate, protease, and phosphatase inhibitor tab-
let). Cell lysates were centrifuged at 13,000 � g for 15 min, and the
supernatant was recovered. The protein concentrations were
determined using the PierceTM BCA protein assay kit (Thermo
Fisher Scientific). After 5 min boiling in 4� NuPAGE� LDS sam-
ple buffer with 10� reducing solution (Thermo Fisher Scientific),
the proteins were separated by NuPAGE 4–12% protein gels
(Thermo Fisher Scientific), transferred to polyvinylidene difluo-
ride membranes by using the iBlot gel transfer device (Thermo
Fisher Scientific), and probed with the appropriate primary anti-
bodies (Table S1). Membrane-bound primary antibodies were
detected using secondary antibodies conjugated with horseradish
peroxidase. Immunoblots were developed on films using the
enhanced chemiluminescence technique. Density of each band
was analyzed by ImageJ software, and all values were normalized
with actin. All image data are representative of at least two inde-
pendent experiments.

Synchronization and cell-cycle analysis

HeLa cells were synchronized to the G1/S border by double
thymidine blockage and released into fresh medium for 7 h
until they reached G2 phase. In some experiments, HeLa cells
were synchronized in mitosis by a shake-off after 14 h of incu-
bation in 100 ng/ml nocodazole, washed, and allowed to tran-
sition to G1 phase. U2OS cells were synchronized to M phase by
14 h of incubation in 100 ng/ml nocodazole.

BrdU incorporation was used to evaluate the amount of
S-phase cells. In short, after labeling of cells with BrdU (Sigma-
Aldrich), cells were fixed in ice-cold ethanol, treated with HCl to
denature the DNA, and stained with PI and anti-BrdU antibody.
Mitotic cells were examined by intracellular staining of phospho-
histone H3 using a hypotonic buffer protocol described previously
(114). Cell-cycle analysis was done with a flow cytometer (Novo-
Cyte, ACEA Biosciences, San Diego, CA), and FlowJo version 10
was used to analyze the flow cytometry data.

In vitro phosphorylation

The bacterial expression vectors for GST-tagged CDC25
fragments were generated by PCR amplification of the encod-
ing human CDC25C cDNA, followed by subcloning of the
cDNA into pGEX-4T3 vector. Activated recombinant ERK
(p42 MAPK) was prepared by incubating MBP-MAPK with
constitutively activated MBP-MKK1 (115). GST- and MBP-

tagged recombinant proteins were expressed in bacteria and
purified as described previously (49, 115, 116). AMP kinase was
purchased from Millipore (Burlington, MA). The kinase reac-
tions were performed in 10 �l of reaction mixture (1 �l of 10�
kinase buffer and 0.25 mM ATP), AMPK (1 unit), and 1 �g of the
indicated substrates for 30 min at 30 °C. The reaction mixtures
were boiled in SDS sample buffer and subjected to SDS-PAGE
analysis and a Western blot assay.

Metabolic activity analysis

The radioactive tracers are described in Table S3. The activ-
ity of various metabolic pathways was determined by the rate
of detritiation or 14CO2 released from radioactive tracers, as
described previously (117, 118). Specifically, glycolysis and fatty
acid �-oxidation were determined by measuring the detritiation
of [5-3H]glucose (119, 120) or by measuring the detritiation of
[9,10-3H]palmitic acid (121), respectively. In brief, 1 million cells
were suspended in 0.5 ml of fresh medium. The experiment was
initiated by adding 1 �Ci of radioactive tracer, and 2 h later,
medium was transferred to a 1.5-ml microcentrifuge tube contain-
ing 50 �l of 5 N HCl. The microcentrifuge tubes were then placed
in 20-ml scintillation vials containing 0.5 ml of water with the vials
capped and sealed. 3H2O was separated from other radiolabeled
metabolites by evaporation diffusion for 24 h at room temperature.
A cell-free sample containing 1 �Ci of radioactive tracer was
included as a background control.

Glutaminolysis, TCA cycle (oxidation of pyruvate), and glu-
cose oxidation flux through the PPP were determined by the
rate of 14CO2 released from [U-14C]glutamine (122), the rate of
14CO2 released from [2-14C]pyruvate (123), and the rate of
14CO2 released from [1-14C]glucose with some modifications
(123). Whereas the difference in the rate of 14CO2 released from
[1-14C]glucose and [6-14C]glucose was used to determine the
PPP activity, we consistently found that the 14CO2 production
from [6-14C]glucose was close to the background in cells. PPP
activity was therefore determined as the rate of 14CO2 released
from [1-14C]glucose. In brief, 3 million cells were suspended in
0.5 ml of fresh medium. To facilitate the collection of 14CO2,
cells were dispensed into 7-ml glass vials (TS-13028, Thermo
Fisher Scientific) with a PCR tube containing 50 �l of 0.2 M

KOH glued on the sidewall. After adding 0.5 �Ci of radioactive
tracer, the vials were capped using a screw cap with a rubber
septum (TS-12713, Thermo Fisher Scientific). The assay was
stopped 2 h later by injection of 100 �l of 5 N HCl, and the vials
were kept at room temperature overnight to trap the 14CO2.
The 50 �l of KOH in the PCR tube was then transferred to
scintillation vials containing 10 ml of scintillation solution for
counting. A cell-free sample containing 0.5 �Ci of radioactive
tracer was included as a background control.

Phosphorylation of CDC25C in cells

HeLa cells were seeded at 4 � 105 cells/35-mm dish and were
transfected with 1.25 �g
of WT- or AS-AMPK�2 and 1.25 �g of WT- or S216A-Myc-
CDC25C using the Lipofectamine (Thermo Fisher Scientific).
Forty-eight hours after transfection, cells were washed twice
with serum-free DMEM and incubated for 2 h before stimula-
tion with 300 �M A769662 for 20 min. Following stimulation,
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200 �l of phosphorylation buffer (20 mM HEPES (pH 7.3), 100
mM KOAc, 5 mM NaOAc, 2 mM MgOAc2, 1 mM EGTA, 10 mM

MgCl2, 0.5 mM DTT, 5 mM creatine phosphate, 57 �g/ml crea-
tine kinase, 30 �g/ml digitonin, 5 mM GTP (Abcam), 0.1 mM

ATP, 0.1 mM N6-(phenethyl) ATP�S (Abcam), 0.45 mM AMP
(Abcam), 1� phosphatase inhibitor mixture I and II (Sigma),
and 1� complete protease inhibitors (Sigma)) was added. After
a 20-min incubation at room temperature, 200 �l of 2� radio-
immune precipitation assay buffer (100 mM Tris, pH 8, 300 mM

NaCl, 2% Nonidet P-40, 0.2% SDS, and 20 mM EDTA) with 2.5
mM p-nitrobenzyl mesylate (Abcam) and 5% DMSO was added,
and cells were incubated for an additional 1 h at room temper-
ature. The cell lysates were then subjected to immunoprecipi-
tation using agarose beads coupled to Myc tag antibody.

Constructs and generation of CDC25C-inducible stable
cell lines

Plasmid pECE-AMPK�2 WT, M93G, and pEBG-AMPK�1
(1–312) were obtained from Addgene (Cambridge, MA) (82,
86). The pRetro-TRE3G vector (Clontech, Mountain View, CA)
that expresses doxycycline-inducible CDC25C-S216A was gener-
ated by a recombination-based cloning method (In-Fusion Clon-
ing Kits, Clontech) followed by site-directed mutagenesis (New
England Biolabs, Ipswich, MA). Myc-tagged CDC25C-S216A
expression plasmid was generated by subcloning pRetro-TRE3G-
CDC25C-S216A into pCS2�MT plasmid.

The Amphopack 293 cells were transfected with the pRetro-
TRE3G vector using Lipofectamine (Thermo Fisher Scientific)
to produce retrovirus. HeLa cells that stably expressed reverse
tetracycline-controlled transactivator (rtTA, Clontech) were
infected with the retrovirus and treated with 2 �g/ml puromy-
cin (Sigma) and maintained in puromycin-containing medium.

Cell growth and cell death

Cell proliferations were measured by the IncuCyte cell pro-
liferation assay. Cells were harvested by trypsinization, counted
on a Countess automated cell counter (Invitrogen), and plated
at 4000 cells/well on 96-well tissue culture plates in four re-
plicates. Photomicrographs were taken every 3 h using an
IncuCyte live cell imager (Essen Biosciences, Ann Arbor, MI),
and confluence of the cultures was measured using IncuCyte
software (Essen Biosciences) over 48 h in culture. For the cell
death assay, cells were stained with annexin V–APC and PI and
evaluated for apoptosis by flow cytometry according to the
manufacturer’s protocol (BD PharMingen, San Diego, CA).

Statistical analysis

p values were calculated with Student’s t test. p values
� 0.05 were considered significant, with p values � 0.05 and
p values � 0.01 indicated as with single and double asterisks,
respectively.

Author contributions—Y. S. data curation; Y. S. formal analysis; Y. S.
validation; Y. S. and J. W. S. investigation; Y. S., J. W. S., and X. C.
methodology; Y. S. and R. W. writing-original draft; Y. S., J. W. S.,
X. C., and R. W. writing-review and editing; R. W. conceptualization;
R. W. supervision.
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