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High-throughput single-cell epigenomic profiling by
targeted insertion of promoters (TIP-seq)
Daniel A. Bartlett1,5, Vishnu Dileep1, Tetsuya Handa2, Yasuyuki Ohkawa3, Hiroshi Kimura2, Steven Henikoff4, and David M. Gilbert1,5

Chromatin profiling in single cells has been extremely challenging and almost exclusively limited to histone proteins. In cases
where single-cell methods have shown promise, many require highly specialized equipment or cell type–specific protocols and
are relatively low throughput. Here, we combine the advantages of tagmentation, linear amplification, and combinatorial
indexing to produce a high-throughput single-cell DNA binding site mapping method that is simple, inexpensive, and capable
of multiplexing several independent samples per experiment. Targeted insertion of promoters sequencing (TIP-seq) uses Tn5
fused to proteinA to insert a T7 RNA polymerase promoter adjacent to a chromatin protein of interest. Linear amplification of
flanking DNA with T7 polymerase before sequencing library preparation provides∼10-fold higher unique reads per single cell
compared with other methods. We applied TIP-seq to map histone modifications, RNA polymerase II (RNAPII), and transcription
factor CTCF binding sites in single human and mouse cells.

Introduction
The surge in single-cell epigenomics and transcriptomics
has been instrumental to our growing understanding of cell
fate changes and the nature of cell heterogeneity during
development and disease. Unfortunately, tracing the role of
chromatin–protein binding in the single-cell context remains
uncharted territory due to the lack of efficient and robust
methods to map the binding sites of chromatin proteins in
single cells. The mounting demand for a highly efficient, robust,
and scalable method to map protein binding sites genome-wide
in low and single cells is evident in the massive proliferation
of low-input chromatin immunoprecipitation (ChIP) methods
(Brind’Amour et al., 2015; Cao et al., 2015; van Galen et al., 2016;
Grosselin et al., 2019; Zhang et al., 2016), but ChIP methods all
suffer from the inherent inefficiency of IP (Baranello et al., 2016;
Marinov, 2018). DamID identifies binding sites via transgenic
expression of DNAmethyltransferase fused to the target protein of
interest that methylates nearby adenines. Methylated genomic
DNA can be subsequently cut at DpnII restriction enzyme sites and
the cleaved products sequenced. DamID bypasses the inefficiency
of IP but requires cloning, transfection, and in situ expression of
the transgenic Dam fusion protein; its resolution is limited by the
distribution of DpnII cutting sites; and it requires enzymatic end-
preparation and adapter ligation steps before library amplification,

leading to sample loss. Methods such as CUT&RUN (Hainer et al.,
2019; Skene et al., 2018) and single-cell chromatin immunocleavage
sequencing (scChIC-seq; Ku et al., 2019, 2021) tether micrococcal
nuclease proteins to the target protein of interest to cleave and
solubilize the surrounding chromatin. These approaches also avoid
IP but still require library preparation steps that result in sample
loss. Tagmentation via Tn5 transposase simultaneously cleaves
DNA and attaches Illumina sequencing adapters in a one-step cut-
and-paste mechanism. Methods such as CUT&Tag (Kaya-Okur
et al., 2019), CoBATCH (Wang et al., 2019), ACT-seq (Carter et al.,
2020), and Paired-Tag (Zhu et al., 2021) recruit a proteinA–Tn5
fusion protein (pA-Tn5) to the antibody-bound target protein of
interest to produce libraries of fragments that can be subjected to
PCR amplification. However, pA-Tn5 inserts forward and reverse
adapters in random orientations and at highly variable distances
while PCR requires nearby insertions with inverted orientation to
amplify efficiently and to prevent PCR biases.

T7 linear amplification has been used for decades to dra-
matically increase starting material in many contexts where
starting material is limited (Eberwine et al., 1992; Van Gelder
et al., 1990). A recent chromatin accessibility profiling method
demonstrated that modifying the Tn5 transposon to deliver a T7
promoter in place of standard Illumina PCR adapters enabled
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>1,000-fold linear amplification of adjacent genomic DNA
(gDNA) by T7 RNA polymerase (RNAP) before reverse tran-
scription and cDNA library preparation (Sos et al., 2016). Linear
amplification before PCR library amplification reduced input
requirements for profiling DNase I hypersensitive sites from
50,000 down to single cells (Lake et al., 2018). Linear amplifi-
cation also provides unbiased genomic coverage since only a
single ligation/insertion event is required to amplify any given
segment (Chen et al., 2017; Rooijers et al., 2019), whereas PCR
requires two ligation/insertion events to occur within an optimal
distance and in the correct orientation to enable PCR amplifica-
tion. Linear amplification has been integrated with other methods
and shown to significantly increase library DNA yield and detec-
tion sensitivity when substituted for conventional amplification
(Chen et al., 2017; van Galen et al., 2016; Harada et al., 2019;
Hashimshony et al., 2012; Lake et al., 2018; Rooijers et al., 2019).
For example, chromatin integration labeling (ChIL) uses a sec-
ondary antibody tethered to an oligonucleotide containing a T7
promoter upstream of the Tn5 mosaic binding sequence, and
in situ tagmentation inserts the T7 promoter into adjacent DNA.
ChIL provides impressive sensitivity and has mapped protein
binding sites of select histone modifications in single mouse cells
and transcription factor (TF) CTCF in 100 cells (Harada et al.,
2019). Unfortunately, ChIL is only compatible with strongly ad-
herent cell culture samples, is not amenable to robotic automation,
and requires in-house construction of antibody–oligo conjugates.

We wished to develop a single-cell chromatin profiling method
that could be applied to any sample type and scaled to high
throughput. CUT&Tag is compatible with any sample type; is
readily automatable, fixation independent, inexpensive, and simple
to perform; and has shown some promise with single-cell profiling
(Kaya-Okur et al., 2019; Carter et al., 2020; Bartosovic et al., 2021;
Zhu et al., 2021). Our method, targeted insertion of promoters se-
quencing (TIP-seq), inserts T7 promoters adjacent to all antibody-
bound genomic sites to permit subsequent linear amplification of
adjacent gDNA. The use of in vitro transcription (IVT) in TIP-seq
leads to substantially increased sensitivity over standard PCR li-
brary preparation employed in CUT&Tag. For single-cell mapping,
the primary obstacle with all state-of-the-art methods has been
sparse genome coverage (Minkina and Shendure, 2019). TIP-seq
overcomes this obstacle with a remarkable (10-fold) improvement
in library complexity per single cell, achieving high signal-to-noise
single-cell data. To increase the throughput of TIP-seq and avoid the
expense and equipment dependency of single-cell platforms, we
further adapted the method to single-cell combinatorial indexing
(sciTIP-seq), which allows high throughput (theoretically up to
153,600 cells per NovaSeq 6000 S4 sequencing run) and the ability
to simultaneously profile numerous samples and antibody targets.
In summary, sciTIP-seq provides a high-throughput, low-cost, low-
background method for single-cell protein mapping with substan-
tial gains in terms of per-cell read coverage.

Results
TIP-seq design
The excellent sensitivity of CUT&Tag is owed to its use of Tn5
to streamline library preparation by directly inserting PCR

sequencing adapters in situ, but paradoxically, its sensitivity is
inherently limited by PCR. Since Tn5 inserts adapters (mosaic
end [ME]-A/B) in random orientations, roughly half the targets
do not have adapters in the correct orientation to amplify.
Furthermore, PCR library preparation is extremely sensitive to
size variations of amplicons: When two adjacent transposition
events occur too far apart, they will not amplify efficiently
during PCR or sequencing cluster generation, but if too close,
they will exponentially bias library coverage due to increased
PCR amplification and clustering efficiency of short fragments.
Target regions that are small in length (i.e., TF binding sites) also
contend with having a decreased likelihood of receivingmultiple
transposition events to overcome the 50% efficiency due to
adapter orientation. Linear amplification has long been used to
circumvent amplification and sequence composition bias re-
sulting from PCR amplification and is particularly beneficial
when limited starting DNA is available (van Bakel et al., 2008;
Eberwine et al., 1992; Hoeijmakers et al., 2011). In fact, numerous
chromatin mapping methods have transitioned to linear ampli-
fication for increased sensitivity in single cells, including single-
cell RNA sequencing (scRNA-seq [a.k.a. CEL-seq]; Hashimshony
et al., 2012), ChIL-seq (Harada et al., 2019), MINT-ChIP (van
Galen et al., 2016), DamID (Rooijers et al., 2019), ATAC-seq
(a.k.a. THS-seq; Lake et al., 2018), and whole-genome sequenc-
ing (a.k.a. LIANTI; Chen et al., 2017). Therefore, we hypothe-
sized that adapting CUT&Tag to use linear amplification would
greatly improve the sensitivity in single cells. By merging
CUT&Tag with existing Tn5 transposition-based linear ampli-
fication protocols, we created a custom-designed pA-Tn5 that
carries with it a transposon containing a T7 promoter (ME-T7;
Fig. 1 B; see Table S1 for custom oligos used in this study adapted
from Harada et al., 2019, and Lake et al., 2018), which is re-
cruited to antibody-bound chromatin sites where the Tn5
transposome simultaneously cuts and inserts (tagmentation) the
T7 promoter into adjacent gDNA to permit linear amplification
(Fig. 1). IVT by T7 RNAP creates roughly 1,000-fold RNA copies
of insertion sites, and after reverse transcription, second-strand
synthesis, and cDNA fragmentation, TIP-seq amplicons are
prepared for sequencing via limited cycle number PCR indexing.
With TIP-seq, the distance between two transposition sites is
irrelevant since only one T7 promoter insertion is required to
amplify the site. We also adapted the pA-Tn5 transposon to
deliver only T7 promoter–containing adapters (rather than for-
ward and reverse PCR adapters), thus completely mitigating the
efficiency loss of mismatched PCR adapter orientations and
distance between insertions. Additionally, linear amplifica-
tion produces higher fidelity and uniformity since mistakes
made during amplification do not themselves become tem-
plates to exponentially propagate the mistakes, which translates
to higher mappability of single-cell sequencing reads (Chen
et al., 2017). Furthermore, TIP-seq is a single-tube protocol
to reduce potential sample loss.

Linear amplification substantially increases sensitivity and
library coverage over conventional PCR library preparation
To assess the extent to which linear amplification could improve
sensitivity over CUT&Tag, we performed TIP-seq on serially
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decreasing numbers (10,000, 1,000, 100, 50) of human HCT116
colorectal cancer cells, targeting the histone modification
H3K27me3, and compared it with CUT&Tag using 10,000
HCT116 cells (Fig. 2 A). Remarkably, all cell numbers tested
exhibited a higher Pearson correlation to ENCODE ChIP-seq (10
million cells) compared with CUT&Tag from 10,000 cells (Fig.
S1 A). We also compared peak numbers and their degree of
overlap with ENCODE ChIP-seq peaks and found that all sam-
ples overlapped to a similar degree (Fig. S1 B).

To further assess the sensitivity of linear amplification, we
performed TIP-seq and CUT&Tag in parallel on serially de-
creasing numbers of cells targeting the TF CTCF in HCT116. Li-
brary preparation and sequencing of CTCF TIP-seq samples
produced excellent results for all cell numbers attempted,
whereas CUT&Tag libraries failed to yield sufficient library DNA

for sequencing with <5,000 cells. Enhanced efficiency was al-
ready evident by an ∼183-fold increased yield of CTCF library
DNA for 5,000-cell TIP-seq vs. 5,000-cell CUT&Tag. Visual in-
spection of TIP-seq profiles of CTCF showed markedly better
agreement with ENCODE ChIP-seq compared with CUT&Tag
libraries (Fig. 2 B), with enrichment at a number of foci present
in ChIP-seq and TIP-seq being underrepresented or missing
entirely from the CUT&Tag sample. This improved performance
is explained both by the increased library DNA yield permitting
deeper sequencing and, more notably, by the substantially in-
creased library complexity enabled through T7 IVT over PCR
amplification. Sequencing reads from CTCF TIP-seq using 5,000
cells yielded ∼23.2-fold more unique reads (after filtering for
reads originating from duplicated T7 transcripts; i.e., unique
Tn5 transposition events) compared with their CUT&Tag

Figure 1. Overview of TIP-seq, a robust low-cell mapping method that combines CUT&Tag with RNA-mediated linear amplification. (A) See text for
details. (B) CustomME-T7p transposon used in TIP-seq to insert T7 promoters near antibody-bound targets. Standard CUT&Tag ME-A shown for comparison.
*Upstream AT-rich stabilizer sequence increases affinity of T7 RNAP for promoter and the efficiency of promoter clearance (Tang et al., 2005). Ab., antibody;
pol., polymerase; tspn, transposon.
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counterparts (Fig. 2 D), and TIP-seq of CTCF using only 100 and
50 cells received more unique reads than CUT&Tag using 5,000
cells. We then compared the enrichment of reads for the CTCF
samples surrounding all CTCF peaks (±2 kb) from bulk ChIP-
seq (ENCODE). Compared with the 5,000-cell CUT&Tag, the
enrichment of reads at ENCODE CTCF peaks was higher in
5,000-cell and 1,000-cell TIP-seq (∼1.8-fold and ∼1.3-fold, re-
spectively), and a higher proportion of those ChIP-seq peaks

displayed read occupancy (Fig. 2 E). Remarkably, read enrich-
ment surrounding ChIP-seq peaks for 100- and 50-cell TIP-seq
resembled that of 5,000-cell CUT&Tag.

All TIP-seq samples profiling CTCF using serially decreasing
cell numbers exhibited higher Pearson correlations to ENCODE
ChIP-seq (r = 0.65–0.54) compared with CUT&Tag (r = 0.47;
Fig. S1 C). We called peaks using SEACR (Meers et al., 2019)
and plotted peak numbers and overlap between TIP-seq and

Figure 2. Bulk TIP-seq substantially increases library complexity and sensitivity over PCR-based library preparation. (A) Histone modifications. IGV
track view across a 3-Mb segment of the human genome for H3K27me3 TIP-seq on 10,000, 1,000, 100, and 50 HCT116 cells. Tracks show CUT&Tag data in
10,000 cells for comparison. TIP-seq for normal IgG in 1,000 cells shown as negative (neg.) control. (B) TFs. IGV track view across a 3-Mb segment of the
human genome showing TIP-seq targeting CTCF in 5,000, 1,000, 100, and 50 HCT116 cells and two replicates of CUT&Tag data in 5,000 cells performed in
parallel with TIP-seq. Top track shows ENCODE ChIP-seq for comparison. CUT&Tag samples from 1,000, 100, and 50 cells failed to yield sufficient library DNA
and/or sequencing reads. (C) Single cells. IGV track view showing TIP-seq data collected from HCT116 single cells. Cells were processed and tagmented in bulk
until cells were FACS sorted into individual PCR tubes for DNA purification and subsequent IVT and library preparation. (D) Library complexity of CTCF TIP-seq
vs. CUT&Tag as a fraction of unique reads (red) or T7-duplicate reads (gray) over total reads. Samples were processed in parallel, with CUT&Tag (pA-Tn5
loaded with ME-A/B adapters), or TIP-seq (pA-Tn5 loaded with ME-T7 transposons), and after tagmentation and DNA purification, CUT&Tag DNA was PCR
amplified using 15 cycles, while TIP-seq DNA was processed as described in Fig. 1 and indexed with nine PCR cycles. Libraries were pooled to equimolar ratios
and paired-end sequenced. (E) Peak enrichment heatmaps of CTCF TIP-seq vs. CUT&Tag surrounding ±2 kb ENCODE CTCF peaks. Samples were normalized to
the sum of per-base read coverage and scaled to 1× genome coverage before plotting heatmaps with deepTools. (F) Pearson correlations among bulk TIP-seq,
single-cell TIP-seq, and ENCODE ChIP-seq using 50-kb bins.
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CUT&Tag showing the large majority of peaks overlapping
among all samples (Fig. S1 D) but with CUT&Tag having a much
lower number of called peaks, as illustrated with browser track
profiles in relation to ChIP-seq (Fig. 2 B). We performed a motif
search using MEME Suite (Bailey et al., 2009), confirming that
the most prevalent motifs from each CTCF library indeed
yielded the canonical CTCF binding footprint passing statistical
significance (Fig. S1 E).

All efficiency losses and bias accumulation caused by PCR are
exacerbated when limited input material is used. Therefore, we
next tested how well TIP-seq worked with a single-cell input
targeting H3K27me3. We performed TIP-seq in bulk (omitting
the use of concanavalin A [conA] magnetic beads) up until ter-
mination of the tagmentation reaction to enable FACS sorting of
individual tagmented cells into PCR tube strips. Four of five
single cells yielded ample DNA to be pooled for sequencing.
Again, those four cells delivered profiles remarkably resembling
bulk samples (Fig. 2 C) and exhibited Pearson correlations to
500-cell TIP-seq of r = 0.78–0.50 (Fig. 2 F), demonstrating the
remarkable power of linear amplification for chromatin profil-
ing single cells.

High-throughput, low-cost sciTIP-seq
A limitation of conventional single-cell preparatory methods is
that single cells must be physically separated and compart-
mentalized before being biochemically processed in separate
reaction volumes, causing cost and labor intensity to prohibi-
tively scale linearly with the number of single cells processed.
Furthermore, working with single cells, small volumes, and low
DNA inputs leads to sample loss. These problems are somewhat
mitigated by using specialized microfluidic handlers, but avail-
ability and access to expensive and specialized equipment limits
the adoption of such techniques. By contrast, sci is a highly
scalable method that has been widely adopted to acquire profiles
of transcriptomes, genomes, chromatin accessibility, methyl-
omes, and chromosome conformation in tens to hundreds of
thousands of single cells without the need for compartmentali-
zation of individual cells (Cao et al., 2017; Cusanovich et al., 2015;
Lareau et al., 2019; Mulqueen et al., 2018; Ramani et al., 2017;
Vitak et al., 2017;Wang et al., 2019;Weiner et al., 2016; Zhu et al.,
2021). Throughput is high, and the cost per cell decreases ex-
ponentially with the number of cells processed. sci workflows
thus permit affordable and highly scalable throughput and re-
quire no specialized equipment that is not widely available, and
sci workflows inherently enable sample multiplexing.

We adapted TIP-seq for combinatorial indexing based on
existing tagmentation-based sci protocols (Fig. 3; Cusanovich
et al., 2015; Lake et al., 2018; Lareau et al., 2019). Briefly, cells
were incubated with primary and secondary antibodies in bulk
before being split into a 96-well plate (∼2,000 cells/well) for the
first round of indexing. To add the first index (Index 1), we
created 384 uniquely barcoded ME-T7DS transposons (adapted
from Lake et al., 2018; T7 promoter optimized based on Tang
et al., 2005) such that cells in each well of a 96-well plate re-
ceived a unique barcode downstream of the T7 promoter. pA-Tn5
tagmentation incorporated the barcoded ME-T7 transposons,
then cells were pooled and redistributed randomly via FACS into

96-well plates (15–100 cells/well; up to four 96-well plates can be
processed in parallel for index 1 using all 384 ME-T7). DNA was
purified and subjected to IVT and cDNA preparation as described
for bulk TIP-seq. Index 2 was incorporated via PCR, resulting in
library fragments containing both an r5 barcode (Index 1; added
via pA-Tn5) and an i5 and i7 barcode (Index 2; added via PCR;
Fig. 3 B). The resulting libraries were pooled to equimolar ratios,
and sequenced with 29 cycles for index i5 (eight-cycle index run
by default) to capture all single-cell index sequences that permit
retroactive demultiplexing of reads back to their individual cells
of origin.

Multiplexing multiple antigens and single-cell experimental
conditions
Since combinatorial indexing begins with the addition of index
1 to cells with a known identity in a 96-well plate, multiple
sample types (cells/antibody) can easily be multiplexed at this
step and demultiplexed in silico according to which index 1 was
added to the corresponding samples in each well. Moreover, by
mixing cells from different species, one can accurately assess the
cross-contamination (collision) rate at which multiple cells re-
ceive the same combination of barcodes. As proof of principle for
our multiplexing scheme, we treated five separate pools of
mouse F121-9 embryonic stem cells (mESCs) with antibodies
against the histone posttranslational modifications H3K27me3,
H3K27ac, and H3K9me3; the architectural TF CTCF; and serine
2 phosphorylated RNAPII and a separate pool of human HCT116
cells treated with antibodies against H3K27me3. We also in-
cluded data from an earlier experiment that included separate
pools of HCT116 cells treated with antibodies against H3K27me3,
H3K9me3, and H3K27ac using a separate cohort of index com-
binations that enabled us to pool all these samples together for
deep sequencing.

After demultiplexing single-cell FASTQ files based on unique
index 1 and index 2 combinations (88% reads assigned to single
cells), we obtained data for 5,590 single cells that were aligned to
their respective reference genomes using Bowtie 2 (Langmead
and Salzberg, 2012), receiving average alignment rates >92%.
After filtering reads with low-quality mapping scores and PCR/
optical duplicates, all single cells had a mean of 79,606 mapped
reads/cell (Fig. S2 A). For an accurate comparison with CUT&-
Tag datasets, we also filtered out reads originating from dupli-
cated T7 transcripts from the same Tn5 insertion event, since
these reads do not provide additional information (albeit, they
help to prevent the loss of informative Tn5 insertions that oth-
erwise are lost during CUT&Tag PCR library preparation). Av-
erage PCR and T7 duplication rates among all cells were 9.8% and
18.5%, respectively, for an overall 25.3% duplication rate among
all cells (Fig. S2, B–G). We then filtered out cells with <1,000
reads (retaining 64% of cells) to obtain 3,557 cells with an overall
mean of 38,054 reads/cell (Fig. 4 A). Histone marks, TF CTCF,
and RNAPII, respectively, received 50,931, 2,871, and 4,717 mean
reads/cell that were used for further analysis (Fig. 4 B). Average
PCR and T7 duplication rates after filtering low-read cells were
14.3% and 27.7%, respectively (37.3% overall duplication rate; Fig.
S2, C–G), with most cells passing the filter being sequenced near
saturation (Fig. S2 F). The high-alignment ratios, high-mapping
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quality, and excellent library complexity reflect vastly improved
read coverage obtained for single-cell protein mapping data.

We ascertained cross-contamination rates (i.e., collisions) by
performing a barnyard analysis on our mixed-species experiment.
Collision rates were predicted based on the fraction of reads from
individual cells that cross map to either the mouse or the human
reference genome. We classified any cell with >10% of its reads
aligning to both mouse and human reference genomes as being a
collision event.We found a 5.6% collision rate after filtering out cells
with <200 reads, indicating low cross-contamination (Fig. S2 H).

Next, we visually inspected how the single-cell data agreed
with bulk profiles by first aggregating the reads from all the
individual cells, creating a “pseudo-bulk” sample. The pseudo-
bulk samples displayed similar profiling to those generated from

bulk TIP-seq/ChIP/CUT&Tag data, with the reads from indi-
vidual cells overwhelmingly falling within enriched regions of
bulk samples (Fig. 4 D). We then assessed signal-to-noise ratios
of individual cells by calling peaks on the aggregate sample using
MACS2 (Zhang et al., 2008) and measured the fraction of unique
reads per cell that fell within called peaks (FRiP). Median FRiP
scores ranged from 46% to 82%, depending on the sample (60.1%
overall; Fig. 4 C), indicative of high signal-to-noise ratios. Al-
thoughwe observed a bimodal distribution of reads per cell in all
samples (Fig. S2 A), a few samples retained their cohort of low-
read cells after filtering out cells with <1,000 reads (Fig. 2 B).
Still, cells in the low-read-count cohort retained high FRiP scores
(Fig. S2 I), indicating that they are still of high quality but with
reduced coverage more akin to CUT&Tag.

Figure 3. Overview of sciTIP-seq. (A) Cells are harvested, permeabilized, and treated with primary and secondary antibodies in bulk. Cells are counted and
distributed to a 96-well plate (∼2,000 cells/well) where they are incubated with custom, uniquely indexed pA-Tn5. Cells are washed to remove unbound pA-
Tn5 before activating tagmentation. Tagmentation is terminated by addition of EDTA, and cells are pooled together and redistributed at random to a new 96-
well plate (∼15–100 cells/well, depending on number of barcode combinations used during index 1). DNA undergoes a gap-fill reaction via Taq polymerase and
IVT via T7 RNAP. RNA is purified and reverse transcribed using a random hexamer primer, then primed for second-strand synthesis using primer comple-
mentary to the ME-T7 transposon. ME-B–only Tn5 was used to simultaneously fragment and adapter-tag 39 end of cDNA to prepare for PCR indexing.
(B) Resulting library fragments contain an r5 index added during targeted pA-Tn5 tagmentation and an i5 and i7 index added during PCR to enable retroactive
demultiplexing of single cell reads. Ab., antibody; exp., experimental; pol., polymerase; tspn, transposon.
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To further validate the specificity of sciTIP-seq targeting TF
CTCF, we performed a de novo motif search within called peaks
using MEME Suite (Bailey et al., 2009) in the pseudo-bulk CTCF
sample and a number of single-cell CTCF datasets chosen at
random. In both cases, the canonical CTCF binding footprint was
identified as the most prevalent motif exceeding statistical sig-
nificance (Fig. S1 E), demonstrating both specificity and ability
to detect motifs in single cells.

We assessed how RNAPII mapping compared with sciTIP-seq
and the degree to which it detects heterogeneity in the popula-
tion. RNAPII is a direct map of transcription, but RNA-seq is a
heavily processed, edited, and reverse-transcribed product of tran-
scription, so naturally, there will be differences that have nothing to
do with transcriptional heterogeneity. Consistently, uniform mani-
fold approximation and projections (UMAPs) on RNAPII sciTIP-seq
showed less heterogeneity than scRNA-seq done inmESCs (Fig. S3 E).

Single-chromosomemapping enabled by high-coverage sciTIP-
seq data
In the majority of cases, single-cell data are the average of two
chromosomes. The only way to overcome this obstacle is to ei-
ther use haploid cells, for which there are very few cell lines, or
to parse the single nucleotide polymorphisms (SNPs) that exist
between maternal and paternal genomes in cases where they

have been haplotype phased. Single-chromosome mapping of
diploid cells requires much greater read depth to overcome the
loss of reads that do not overlap SNPs. The extremely high read
coverage of TIP-seq suggested that we might be able to map
protein binding sites on single chromosomes. As proof of prin-
ciple, we parsed the data from F121-9 (which harbors SNPs at a
density of one per ∼150 bp on average) that represent the
polymorphisms between subspeciesMus musculus (129) andMus
castaneus (Cas). To parse alleles in RNAPII sciTIP data from
hybrid F121-9 mESCs, we filtered for reads containing SNPs
using the SNPsplit algorithm (Krueger and Andrews, 2016). Reads
were aligned to their respective phased genomes and subse-
quently processed as described in nonparsed sciTIP-seq. Indeed,
sites with substantial differences in occupancy between the Cas
and 129 alleles were easily identified by visual inspection and
confirmed by comparing to parsed bulk CUT&Tag data (Fig. 5).

Comparisons of sciTIP-seq with other state-of-the-art
methods
Platforms that automate single-cell partitioning and bar-
coding have become popular in recent years; however,
these require access to specialized equipment and expen-
sive commercial kits unavailable to most researchers. None-
theless, a recent study (Wu et al., 2021) adapted single-cell

Figure 4. Multiplexed sciTIP-seq in F121-9 mESCs. (A) Distribution of unique reads of 3,557 single cells in F121-9 mESCs and human HCT116 cells after
removal of PCR/T7 duplicates and filtering out cells with <1,000 reads. Red line indicates the mean (38,054) unique reads per cell. (B) Violin plots showing the
number of unique reads per cell for each sample after filtering. (C) Violin plots showing the FRiP for each respective sample. (D) IGV track view across an 11-Mb
segment of the mouse genome for sciTIP-seq. Tracks show 100 single cells together with both pseudo-bulk (aggregate) and bulk TIP-seq/CUT&Tag (CnT)/ChIP
data (when available) at the representative loci for each sample (RNAPII, CTCF, H3K9me3 H3K27me3, H3K27ac). Bulk ChIP data are from ENCODE and the 4D
Nucleome consortium.
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CUT&Tag to use the droplet-based 10x Genomics single-cell
ATAC-seq platform. The researchers obtained single-cell
CUT&Tag data for H3K27me3 in 9,917 mixed peripheral blood
mononuclear cells with 1,110 unique reads/cell, whereas sciTIP-
seq yielded 10-fold higher coverage at 11,144 unique reads/cell
for H3K27me3. A second study (Bartosovic et al., 2021) adapted
scCUT&Tag for the 10x Genomics platform targeting various
histone modifications (H3K4me3, H3K27ac, H3K36me3, H3K27me3)
with <450 unique reads/cell, 58-fold lower than TIP-seq,
with a median of 26,136 unique reads/cell for TIP-seq on
histone modifications. These researchers also targeted TFs
Olig2 and cohesion complex component Rad21, obtaining 48
and 240 unique reads/cell, respectively, compared with TIP-

seq targeting TF CTCF and RNAPII and yielding 2,871 and
4,717 unique reads/cell, respectively.

CUT&Tag has also been adapted for combinatorial indexing
in three recent studies (ACT-seq, Carter et al., 2020; CoBATCH,
Wang et al., 2019; Paired-Tag, Zhu et al., 2021). Unlike sciTIP-
seq, these methods use PCR rather than IVT amplification and
yield lower library coverage. Carter et al., 2020 reported 2,500
unique reads/cell (85% duplication rate) for 1,246 cells, whereas
sciTIP-seq yields 25-fold more unique reads/cell. Wang et al.
(2019) reported between 7,500 and 12,000 unique reads/cell
(48% duplication rate) for 2,161 cells (albeit this is an overesti-
mation since cells with <3,000 reads were removed from this
statistic).

Figure 5. Single-chromosome mapping of RNAPII to parsed alleles in hybrid F121-9 mESCs. (A) IGV track view across a 9-Mb segment of the mouse
chromosome 13 comparing parsed vs. unparsed bulk CUT&Tag, sciTIP pseudo-bulk, and single cells. Tracks show unparsed bulk ChIP (4D nucleome con-
sortium), unparsed bulk CUT&Tag, parsed bulk CUT&Tag, parsed sciTIP pseudo-bulk (aggregate), and 100 parsed single cells. Red asterisk marks loci with
differential RNAPII binding. (B) IGV track view across a 7-Mb segment of the mouse chromosome 2 with all else the same as in A. agg., aggregate; CnT,
CUT&Tag.
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Paired-Tag reported the highest complexity single-cell CUT&
Tag data published to date (Zhu et al., 2021), so we downloaded
Paired-Tag datasets frommouse brain tissue samples to perform a
comparison with sciTIP-seq on shared epitopes. We filtered cells
from both libraries based on what the Paired-Tag study used and
calculated FRiP with identical parameters between library types.
TIP-seq yielded ∼10-fold more unique reads per cell (64% dupli-
cation rate for Paired-Tag; Fig. S3, A and C) and FRiP scores on par
or exceeding Paired-Tag (Fig. S3, B and D). One caveat is that
Paired-Tag was performed on brain tissue samples compared with
TIP-seq with cultured cells. Indeed, a rigorous comparison be-
tween methods should be for the same cell type and the same
monoclonal antibody.

In summary, while there are differences in epitopes and
sample types that render these comparisons indirect, TIP-seq
consistently provides much higher complexity libraries for
single-cell data.

Discussion
We show that TIP-seq produces single-cell sequencing data for
both histones and TFs with dramatically higher read coverage
per cell, substantially higher mappability and library complex-
ity, and considerably lower background compared with all
current chromatin mapping methods. Other single-cell methods
traditionally require merging the reads of hundreds of single
cells to acquire an aggregate profile that resembles bulk profiles.
Remarkably, TIP-seq yields single-cell profiles resembling those
of bulk samples with just a single sufficiently sequenced cell due
to the increased read coverage per cell. It is likely that TIP-seq
can achieve the coverage necessary to perform studies of single-
cell variation in allele-specific epigenomic features, such as both
imprinted and random monoallelic expression. Multiple anti-
gens can be mapped simultaneously in the same single cell by
preloading primary antibodies with uniquely barcoded pA-Tn5
(Gopalan et al., 2021 Preprint), or covalently binding barcoded
ME adapters to specific primary antibodies (Meers et al., 2021
Preprint). Finally, TIP-seq will also be adaptable for other plat-
forms, such as 10x Genomics, and can be adapted to capture HiC
or RNA-seq and sciTIP protein mapping data from the same
single cells.

Materials and methods
pA-Tn5 production
Our pA-Tn5 (ME unloaded) was provided by Steve Henikoff
(Fred Hutchinson Cancer Research Center, Seattle, WA) and
prepared as described in Kaya-Okur et al. (2019).

Preparation of barcoded T7 promoter pA-Tn5 transposons
The 384 uniquely barcoded transposome complexes were
adapted from Lake et al. (2018) and assembled according to
Kaya-Okur et al. (2019). Briefly, each unique ME T7 promoter
adapter oligonucleotides (ME-T7; see Table S1) were annealed to the
ME reverse oligonucleotide (ME-rev, 59-[phos]CTGTCTCTTATA-
CACATCT-39; see Table S1). For annealing, ME-T7 and ME-rev oli-
gos were diluted to 200 μM in annealing buffer (10 mM Tris, pH 8,

50 mM NaCl, 1 mM EDTA) and mixed 1:1, resulting in 100 μM
annealed product. Annealing was performed by denaturing oligo
mixture for 5 min at 95°C and slowly cooling to 20°C using a ramp
rate of 0.1°C/s. Annealed transposons were aliquoted and stored
long term at −20°C.

pA-Tn5–adapter complex formation
For bulk TIP-seq, transposome complex formation was prepared
in large batches by adding 16 μl of 100 μl preannealed ME-T7
oligonucleotides with 100 μl of 5.5 μM naked pA-Tn5 fusion
protein, stored at −20°C, and used over a period of several
months. For sciTIP-seq, transposome complex formation was
prepared within 48 h of the experiment by adding 0.5 μl of
100 μM preannealed ME-T7 transposon to 0.5 μl naked 5.5 μM
pA-Tn5 in a multiwell plate and incubating for 1 h at room
temperature at 300 rpm. Plates were stored on ice until use.

CUT&Tag
CUT&Tag was performed as described in Kaya-Okur et al.
(2019). The detailed step-by-step protocol is available on pro-
tocols.io (https://www.protocols.io/view/bench-top-cut-amp-
tag-bcuhiwt6). Briefly, cell cultures were harvested and rinsed
once with an equal volume of room-temperature PBS. Cells
were moved to a 2-ml tube and washed twice with room-
temperature wash buffer (20 mM Hepes, pH 7.5, 150 mM
NaCl, 0.5 mM spermidine, 1× protease inhibitor cocktail) before
counting with a hemocytometer and aliquoting desired cell
numbers into fresh 1.5-ml LoBind Eppendorf tubes containing
1 ml room-temperature wash buffer. ConA-coated magnetic
beads (BP531; Bangs Laboratories) were prepared as previously
described (Skene and Henikoff, 2017), and 10 μl of washed bead
slurry was added to aliquots of washed cells and rotated for
10 min at room temperature to allow beads to bind to cells.
Thereafter, solution changes and washes were performed by
gently pulse spinning (<100 xg) tubes and placing them in a
magnetic rack for 3 min to collect cells on the side of the tube
wall before removing supernatant. To resuspend, a small
amount of liquid (∼30 μl) was added to the side of the tube to let
it run over the bead clump followed by gentle tapping of the
tube until the clump was mostly broken up and resuspended
before adding the remainder of liquid to the tube. Bead-bound
cells were incubated with primary antibody (1:100) in 100 μl
antibody buffer (wash buffer + 0.01% digitonin [Dig], 2 mM
EDTA, and 1% BSA) overnight at 4°C with rotation. Antibody
buffer was removed and replaced with 100 μl Dig-wash buffer
(wash buffer + 0.01% Dig) containing guinea pig anti-rabbit IgG
secondary antibody (1:100) and rotated for 1 h at room tem-
perature. Cells were washed twice in 1 ml Dig-wash buffer and
then resuspended in 100 μl Dig-300 buffer (0.01% Dig, 20 mM
Hepes, pH 7.5, 300 mM NaCl, 0.5 mM spermidine, 1× protease
inhibitor cocktail) containing pA-Tn5 (loaded with ME-A/B
adapters; 1:100) and incubated at room temperature with ro-
tation for 1 h to allow pA-Tn5 to bind to antibody-bound sites.
Cells were washed three times with 1 ml Dig-300 buffer to
remove unbound pA-Tn5. Tagmentation was activated by re-
suspension in 100 μl Tag buffer (Dig-300 buffer + 10 mM
MgCl2) for 1 h at 37°C and was terminated by adding 3.3 μl of
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0.5MEDTA. Cellsweremixedwith 2μl of 10%SDS (0.2% final) and
0.84 μl of 20 mg/ml proteinase K and incubated at 50°C for 30min
or overnight at 37°C before being purified using 2.0× volume solid
phase reversible immobilization (SPRI) beads (A63881; Beckman
Coulter). Libraries were amplified using 21 μl CUT&Tag DNA and
adding 2 μl of uniquely barcoded i5 and i7 primers and 25 μl of
NEBNext High-Fidelity 2X PCRMasterMix (M0541L; New England
Biolabs). The samples were PCR amplified using the following
thermocycler program: 72°C for 5min (gap filling), 98°C for 30 s, 14
cycles at 98°C for 10 s and 63°C for 30 s, final extension at 72°C for
1 min, and hold at 8°C (12–15 cycles). Amplified libraries were
cleaned up with a 1.1× volume of SPRI beads, washed 2× with 80%
EtOH, and eluted into 30 μl 10 mM Tris (pH 8.0).

Bulk TIP-seq
All steps before DNA purification of tagmented cells are the
same as in CUT&Tag, with the only exception being the use of a
custom pA-Tn5 transposon that contains within it a T7 promoter
upstream of the standard Nextera ME-A/B transposons. Refer to
the CUT&Tag section for all steps before DNA purification. After
SPRI purification of tagmented gDNA, the DNA and beads were
resuspended in 8 μl water (SPRI beads remain in solution for
IVT and cDNA prep) and gap filled by adding 2 μl of Taq 5X
Master Mix (M0285; New England Biolabs) and incubating at
72°C for 3 min. IVT was performed using the HiScribe T7 high-
yield synthesis kit (E2040S; New England Biolabs) by adding
2 μl of 100 mM NTP set, 2 μl 10× T7 reaction buffer, 2 μl T7
polymerase mix, and 0.3 μl RNase inhibitor and incubating at
37°C for 16–19 h. RNA was purified by adding 2.0× volume SPRI
binding buffer (20% polyethylene glycol 8000, 2.5 M NaCl,
10 mM Tris-HCl, 1 mM EDTA) to reactivate the beads’ binding
capacity. After washing twice with 80% EtOH and removing all
liquid, residual EtOH was dried from RNA and SPRI beads for
3 min before being resuspended in 9 μl RNase-free water. First-
strand synthesis was primed by adding 2.5 μl of 20 μM random
hexamer to the sample and incubating at 70°C for 3 min, then
immediately placing on ice. First-strand synthesis was per-
formed using SMARTMMLV Reverse Transcriptase kit (639524;
Takara) by adding 4 μl of 5× first-strand synthesis buffer, 2 μl of
10 mM dNTP mix, 2 μl of 100 mM DTT, and 0.5 μl SMART
MMLV Reverse Transcriptase. Samples were mixed well and
incubated at 22°C for 10 min, 42°C for 60 min, and then termi-
nated at 70°C for 10 min. 1 μl of a 1:10 dilution of 5 U/μl RNase H
was added and incubated at 37°C for 20 min to degrade RNA in
cDNA–RNA hybrids. Second-strand synthesis was primed by
adding 2.5 μl of 20 μM sss_scnXTv2 oligo (anneals to transposon
directly downstream of T7 promoter transcription start site) and
heating the sample to 65°C for 2 min and placing immediately on
ice. Second-strand synthesis was performed by adding 5.9 μl of
Taq 5X Master Mix (M0285; New England Biolabs) and incu-
bating at 72°C for 8 min, then cooling on ice. cDNA was purified
by the addition of 2.0× SPRI binding buffer, washed twice in
80% EtOH, and resuspended in 7 μl water. Fragmentation and
39-end adapter tagging of cDNA were performed by adding 2 μl
TAPS buffer and 2 μl of 0.7 μM Tn5 (loaded with ME-B adapters
only), incubated at 55°C for 6 min, then briefly cooled on ice
before adding GuHCl (4 M final concentration) and vortexing to

degrade Tn5. DNA was purified again by adding 2.0× volume
SPRI binding buffer, washing twice with 80% EtOH, and eluting
DNA off the beads into 16 μl water. Eluent was moved to a fresh
tube, this time leaving behind SPRI beads to discard. PCR re-
actions were prepared by adding 20 μl NEBNext High-Fidelity
2X PCR Master Mix (M0541L; New England Biolabs), 2 μl of
10 μM standard Nextera index primers, and 2 μl of 10 μM
standard i7 Nextera indexes, for a total volume of 40 μl. The
optimal number of PCR cycles was determined as performed in
Buenrostro et al. (2015) (~7–9 cycles). Post-PCR libraries were
checked for proper library size distribution and concentration
on TapeStation HS D1000, pooled to equimolar ratios, and SPRI
purified and left-side size selected by 0.85× volume SPRI beads
(>200 bp). Sampleswere sequenced paired-end onNovaSeq 6000.

Single-cell TIP-seq
TIP-seq for individual single cells was performed as in bulk TIP-
seq, except binding of conA beads was omitted to permit FACS
sorting of cells. For solution changes, centrifugation (500 xg for
3 min in a swing-bucket rotor) was used in place of magnetic
bead separation. Briefly, cells were trypsinized, and a single-cell
suspension was harvested and washed once with an equal vol-
ume of room-temperature PBS, then moved to a 2-ml tube and
washed twice with room-temperature wash buffer. Cells were
counted, and 100,000 cells were moved to a 1.5-ml LoBind Ep-
pendorf tube and incubated with primary antibody (1:100) in
antibody buffer overnight with rotation, incubated with sec-
ondary antibody (1:100) in Dig-wash buffer for 1 h at room
temperature with rotation, then washed twice with 1 ml Dig-
wash buffer and bound with pA-Tn5 (1:100) containing T7
promoter in Dig-300 buffer at room temperature with rotation.
Cells were washed three times with 1 ml Dig-300 buffer to re-
move unbound pA-Tn5, and transposition was activated by
adding 100 μl Tag buffer and incubated at 37°C for 1 h. Tag-
mentation was halted with the addition of 4 μl of 0.5 M EDTA
(20 mM final), and cells were washed and resuspended in FACS
buffer on ice. Single cells were FACS sorted into individual wells
containing 10 μl PBS (+ EDTA) and underwent the remainder of
TIP-seq as previously described in bulk.

sciTIP-seq
The majority of sciTIP-seq was performed as in bulk TIP-seq,
except binding of conA beads was omitted to permit FACS
sorting of cells. For solution changes, centrifugation (500 ×g for
3 min in a swing-bucket rotor) was used in place of magnetic
bead separation. Briefly, cells were trypsinized, and a single-cell
suspension was harvested and washed once with an equal vol-
ume of room-temperature PBS, then moved to a 2-ml tube and
washed twice with room-temperature wash buffer. Approxi-
mately 100,000 cells were moved to a 1.5-ml LoBind Eppendorf
tube and incubated with primary antibody (1:100) in antibody
buffer overnight with rotation, then incubated with secondary
antibody (1:100) in Dig-wash buffer for 30–60 min at room
temperature with rotation. pA-Tn5–adapter complexes were
prepared as in the pA-Tn5–adapter complex formation section.
After secondary antibody binding, cells were washed twice with
1 ml Dig-wash buffer before distributing ∼2,000 cells/well in a
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96-well plate containing barcoded pA-Tn5–adapter complexes
(up to four 96-well plates can be processed at a time with 384
uniquely barcoded pA-Tn5 transposons) in a final volume of
50 μl in Dig-300 buffer. Cells were incubated at room temper-
ature for 1 h with rotation to allow pA-Tn5 to bind to antibody
targets. Cells werewashed three times for 5 min with 180 μl Dig-
300 buffer to remove unbound pA-Tn5. Tagmentation was ac-
tivated by resuspending cells in 20 μl Tag buffer and incubating
for 1 h at 37°C. Tagmentation was terminated with the addition
of 1 μl of 0.5 M EDTA (20 mM final concentration) and gentle
agitation and incubated at room temperature for 15 min. Cells
were gently pipetted up and down three times to mix and de-
clump cells and then pooled in a single 2-ml LoBind Eppendorf
tube. The wells of the 96-well plate were rinsed with 1× FACS
buffer (2 mM EDTA, 1% BSA in PBS) to collect any residual cells
and combined into the same 2-ml tube. Cells were either stored
temporarily at −20°C or continued immediately for FACS re-
distribution. Cells were pelleted and resuspended in 1 ml of 1×
FACS buffer containing 50 μl propidium iodide, then strained
though 30-μm mesh to remove cell clumps. Cells were stored on
ice until FACS sorting of 25–100 cells into each well of a 96-well
plate containing 10 μl PBS. (The number of cells that can be pooled
between indexing steps is a function of the number of possible
index combinations used. As the number of possible index com-
binations increase, the theoretical probability of collisions de-
creases exponentially. Using more index 1 combinations decreases
the probability of two cells receiving the same combination of
barcodes (i.e., collision) during both indexing steps, thus increasing
the number of cells that can be processed per well for index 2 ad-
dition. If only using 96 barcodes, 25 cells per well are sorted.)

DNA purification, IVT, cDNA synthesis, and fragmentation
were all performed as described in bulk TIP-seq, except a
different primerwas used during second-strand synthesis (sss_sci-
nXTv2; Table S1) for compatibility with custom sciTIP transposons.
Index 2 was added by PCR using 8 × 12 Nextera indexes. PCR re-
actions were prepared by adding 20 μl NEBNext High-Fidelity 2X
PCR Master Mix, 2 μl of 10 μM custom scT7_S5XX index primers,
and 2 μl of 10 μMstandard i7 Nextera indexes, for a total volume of
40 μl. The optimal number of PCR cycles was determined through
quantitative PCR as performed in Buenrostro et al. (2015) (typically
7–12 cycles). Post-PCR libraries were checked for proper library size
distribution and concentration on TapeStation HS D1000. Libraries
were pooled to equimolar ratios then purified and left-side size
selected using SPRI beads (0.85× volume; >200 bp). Note for se-
quencing: The resulting library fragment structure is such that the
P7 end contains a standard 8-bp i7 index, while the P5 end con-
tains both a 6-bp r5 index (1–6 bp) and an 8-bp i5 index (21–29 bp),
separated by a 15-bp spacer. Thus, the sciTIP-seq library pool was
paired-end sequenced on a NovaSeq 6000 SP v1.5 flow cell using a
modified run setup (see Table S2) to capture all necessary index
sequence information for demultiplexing (51 cycles for read 1; 8
cycles for index 1 [i7]; 29 cycles for index 2 [i5 and r5]; 51 cycles for
read 2).

TIP-seq/CUT&Tag data processing
TIP-seq and CUT&Tag data processing were performed as de-
scribed in Kaya-Okur et al. (2019). Briefly, paired-end sequencing

reads were aligned to hg38 or mm10 reference genomes using
Bowtie 2 (Langmead and Salzberg, 2012) and filtered for PCR/
optical duplicates using SAMtools markdup and fixmate (Danecek
et al., 2021), and TIP-seq samples were filtered for T7 duplicate
reads based on read 1 start positions using a custom script. BAM
files were converted to BED files containing read positions and
either converted to BigWig files for visualization in Integrative
Genomics Viewer (IGV) or processed in parallel with sciTIP-seq
and/or bulk ChIP-seq data.

sciTIP-seq data processing
Index sequences were appended to the header of their corre-
sponding reads in read 1 and read 2 FASTQ files using bcl2fastq
(see Table S2 for instructions on how to set up bcl2fastq to
output FASTQ files with index sequences appended to read
headers). Demultiplexing of single cells, read mapping and
filtering, and subsequent data analysis were performed using
custom R scripts. Read 1 and read 2 FASTQ files were de-
multiplexed to single-cell FASTQ files based on their unique
combinations of i5, i7, and r5 index barcodes using a custom
demultiplexing script. Sample subtypes were assigned accord-
ing to which r5 barcodes were used on that subsample, and
single-cell FASTQ files were renamed accordingly (i.e., sub-
sample_S5XX_N7XX_r5XXX_R1/2.fastq). Single-cell paired-end
FASTQ files were aligned to either mm10 or hg38 reference ge-
nomes using Bowtie 2 (Langmead and Salzberg, 2012), and reads
were filtered for low-qualitymapping scores and PCR and optical
duplicates using SAMtools markdup and fixmate (Danecek et al.,
2021). T7 duplicate reads were filtered based on read 1 start
positions using a custom script. Cells containing <1,000 reads
were removed for subsequent analysis. Pseudo-bulk samples
(aggregate of all single cells) were created in R using bedCat from
the R package travis (https://github.com/dvera/travis). For vi-
sualization in IGV, BED files were binned into 2.5-kb genomic
windows using BEDTools coverage (Quinlan and Hall, 2010) and
converted to BigWig files using bedgraphToBigWig. Peak calling
was performed using MACS2 (Zhang et al., 2008) or SEACR
(Meers et al., 2019), and peak overlap was plotted using R
package ChIPpeakAnno (Zhu et al., 2010). Motif searching
was conducted using MEME Suite (Bailey et al., 2009) on
repeat-masked peak FASTA files. Enrichment heatmaps were
made using BAMscale (Pongor et al., 2020) and deepTools
computeMatrix (Ramı́rez et al., 2016), with peaks from EN-
CODE ChIP-seq as reference. FRiP was performed using custom R
scripts to calculate the intersection of reads from each single
cell with the pseudo-bulk peak files. For evaluation of doublet
contamination (collision rate), single-cell FASTQ files from a
mixed-species experiment were mapped to both mm10 and hg38
reference genomes using Bowtie 2, and cells with <200 reads were
filtered out. Cells with >10% reads mapping to both reference ge-
nomes were classified as collisions. Allele parsing was performed
using SNPsplit (Krueger and Andrews, 2016; https://www.
bioinformatics.babraham.ac.uk/projects/SNPsplit) with the SNP
VCF file downloaded from https://www.sanger.ac.uk/science/
data/mouse-genomes-project. For a direct data comparison be-
tween sciTIP-seq and Paired-Tag, datasets were downloaded from
the National Center for Biotechnology Information (NCBI) Gene
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Expression Omnibus (GEO) under accession number GSE152020
and preprocessed as described in Zhu et al. (2010) using custom
scripts from the study (available at https://github.com/cxzhu/
Paired-Tag). Demultiplexed single cells for H3K27me3 and
H3K9me3 from Paired-Tag sublibrary 1 were processed and
analyzed in parallel with sciTIP-seq single cells using identical
filters as the Paired-Tag manuscript and identical peak calling
parameters between each library type. scRNA-seq data were
downloaded from GEO under accession no. GSM3160745 and
processed using Cell Ranger and Seurat (Hao et al., 2021) with
RNAPII sciTIP-seq data to produce UMAPs. scRNA-seq cells
were randomly downsampled to match the number of RNAPII
sciTIP-seq cells.

Antibodies
Antibodies used in this study were rabbit anti-H3K27me3
monoclonal antibody (mAb; 9733; Cell Signaling Technology);
rabbit anti-H3K9me3 polyclonal antibody (pAb; ab8898; Ab-
cam); rabbit anti-CTCF pAb (07-729; Millipore); rabbit anti-
RNAPII-Ser2Ph mAb (13499; Cell Signaling Technology); rabbit
anti-H3K27ac pAb (ab4729; Abcam); and guinea pig anti-rabbit
IgG pAb (ABIN101961; antibodies-online).

Online supplemental materials
Fig. S1 shows Pearson correlationmatrices and Venn diagrams of
peak overlap among bulk TIP-seq samples and the MEME logos
from motif searches of CTCF samples. Fig. S2 shows various
sciTIP-seq quality metrics, including unique read counts before
filtering out low-read cells, percent unique reads before and after
filtering of low-read cells, PCR and T7 duplication rate vs. read
count of single cells, and barnyard analysis of collision rates. Fig. S3
shows a comparison of unique reads counts and FRiPs between
sciTIP-seq and Paired-Tag datasets and UMAPs of RNAPII sciTIP-
seq vs. scRNA-seq. Table S1 shows a list of all oligonucleotides used
in this study. Table S2 shows bcl2fastq instructions on how to ap-
pend index sequence to FASTQ read headers for demultiplexing.

Data availability
The sequencing data obtained in this study have been deposited
at the NCBI GEO under accession number GSE188512. ENCODE
(https://www.encodeproject.org/) ChIP-seq datasets were down-
loaded with the following accession numbers: HCT116 CTCF
(ENCBS409ENC) and mESC H3K9me3 (ENCSR000CFZ). 4D Nu-
cleome (https://www.4dnucleome.org/) ChIP-seq datasets were
downloaded with the following accession numbers: HCT116
H3K27me3 (4DNESBI57YML), mESC H3K27me3 (4DNESKIB4QKT),
mESC RNAPII (4DNESW1G42GW), mESC H3K27ac (4DNESEU-
GAD5F), and mESC CTCF (4DNESD1LH7J9). Other external da-
tasets were downloaded from NCBI GEO with the following
accession numbers: Paired-Tag (GSE152020) and scRNA-seq
(GSE114952). Scripts for single-cell demultiplexing and data
analysis are available at https://github.com/dbart1807/TIP-seq.
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Supplemental material

Figure S1. Bulk TIP-seq quality metrics. (A) H3K27me3 Pearson correlations among TIP-seq, CUT&Tag, and ENCODE ChIP-seq targeting H3K27me3 in an
HCT116 cell using 50-kb bins. (B) H3K27me3 Venn diagram displaying peak overlap among samples. (C) CTCF Pearson correlations among TIP-seq, CUT&Tag,
and ENCODE ChIP-seq targeting TF CTCF in an HCT116 cell using 50-kb bins. (D) CTCF Venn diagram displaying peak overlap among samples. (E)MEME logo
representations for CTCF bulk, single-cell aggregate (Agg.), and five single cells chosen at random showing the most prevalent motif identified for each re-
spective library and the P value associated with it.
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Figure S2. sciTIP-seq quality metrics. (A) Violin plots showing the number of unique reads per cell for each sample before filtering out low-read cells.
(B) Violin plots showing the percent unique reads for each sample before filtering out low-read cells. (C) Violin plots showing the percent unique reads for each
sample after filtering out low-read cells. (D) PCR duplication rate vs. read count for each single cell (samples grouped by color). Mean and median duplication
rates (after filtering out cells with <1,000 reads). (E) T7 duplication rate vs. read count for each single cell (samples grouped by color). (F) Overall (PCR and T7)
duplication rate vs. read count for each single cell (samples grouped by color). Mean and median duplication rates (after filtering out cells with <1,000 reads)
are shown in bottom right corner of duplication scatterplots D–F. (G) Table displaying the mean PCR, T7, and overall duplication rates before and after filtering
of low-reads cells. (H) Barnyard analysis scatterplot displaying cross mapping of mouse and human cells to mm10 and hg38 reference genomes. 5.6% of cells
had >10% reads mapping to both reference genomes after removal of cells with <200 reads. (I) FRiP violin plot with cell read counts (x axis) showing that the
cohort of cells with fewer reads retains a high signal-to-noise ratio. dup, duplication; frag, fragment.
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Table S1, provided online as a separate Excel file, shows a list of all oligonucleotides used in this study. Table S2, provided online as a
separate Word file, shows instructions for appending index sequences to FASTQ read headers to enable demultiplexing of
single cells.

Figure S3. Comparison to Paired-Tag and scRNA-seq. Library comparisons between downloaded Paired-Tag from mouse hippocampus cells (red) and TIP-
seq from F121-9 mESCs (blue) using identical filters and peak calling parameters between both library types. (A and B) Violin plots showing unique read counts
and FRiP for H3K27me3. (C and D) Violin plots showing unique read counts and FRiP for H3K9me3. Means are marked with a black dot. Peak numbers provided
below FRiP violins. (E) UMAPs of 10x Genomics scRNA-seq data (GEO accession no. GSM3160745) and RNAPII sciTIP-seq data. scRNA-seq cell numbers were
randomly downsampled to match that of RNAPII sciTIP-seq (480 cells).
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