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Improved genome-scale multi-
target virtual screening via a novel 
collaborative filtering approach to 
cold-start problem
Hansaim Lim1, Paul Gray2, Lei Xie1,3 & Aleksandar Poleksic2

Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. 
Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing 
networks instead of designing selective ligands to target individual proteins, has emerged as a new drug 
discovery paradigm. Although many methods for single-target virtual screening have been developed 
to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. 
Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multi-
target virtual screening based on the one-class collaborative filtering technique. Our method overcomes 
the sparseness of the protein-chemical interaction data by means of interaction matrix weighting 
and dual regularization from both chemicals and proteins. While the statistical foundation behind 
our method is general enough to encompass genome-wide drug off-target prediction, the program is 
specifically tailored to find protein targets for new chemicals with little to no available interaction data. 
We extensively evaluate our method using a number of the most widely accepted gene-specific and 
cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art 
algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed 
algorithm may provide a powerful tool for multi-target drug design.

Drug action is a complex process. A drug starts to take effect on a biological system when it interacts with its 
targets. However, a drug rarely binds to a single target. Multiple target binding, i.e., polypharmacology, is a com-
mon phenomenon1. To understand how polypharmacology leads to the alteration of the cellular state through 
gene regulation, signaling transduction, and metabolism, and ultimately causes the change of the physiological or 
pathological state of the individual, a multi-scale modeling approach is needed2,3. In the framework of multi-scale 
modeling, drug targets are first predicted on a genome scale. Then these drug targets along with the non-targeted 
genes associated with a particular phenotype are mapped to a biological network to model, simulate, and predict 
the phenotypic response of drug action4–9. Thus, the accurate and efficient prediction of genome-scale drug-target 
interactions is critical to reveal the genetic, molecular, and cellular mechanisms of drug action.

To date, few computational tools that support the discovery and application of multi-target therapies are available. 
The existing computational methods are tailored for single-target drug design and can be classified into two groups. 
The first group consists of methods that exploit structural information of a protein binding site, trying to synthesize a 
suitable compound de novo10,11. The methods from the second group search large databases of candidate compounds 
through a process known as virtual screening12,13. Guiding criteria for virtual screening include complementary geome-
tries as well as favorable physical and chemical properties of the candidate compounds and the proteins’ binding sites14. 
Although theoretically appealing, both approaches face significant obstacles, which include:

(a)  Computational complexity, due to the number of possible ligand conformations (for de novo methods) and 
the enormous size of compound libraries (for virtual screening),
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(b)  Inability to adequately normalize the objective function in order to properly rank numerous solutions (i.e., 
ligands constructed de novo for the methods in the first group or ligands extracted from the compound 
libraries for the methods from the second group).

Recent years have seen the development of knowledge-based methods for protein-ligand interactions15–17.  
These algorithms rely on statistical and mathematical procedures to build upon the existing knowledge 
stored in the databases of known interactions18. In attempt to come up with more efficient and more accu-
rate algorithms, biomedical researchers are starting to incorporate a variety of techniques from many dif-
ferent and seemingly unrelated fields. Recommender systems, which are used in the movie industry to 
predict users’ preferences for movies, are finding their ways into computational molecular biology and 
biomedical research. In particular, techniques such as collaborative filtering19, compressed sensing20,  
and low-rank matrix completion21 have been successfully applied to discover novel protein-protein 
interactions22 and to reconstruct gene regulatory networks23. However, most of these methods have only 
sub-optimal performance in predicting preferences of new items. A computational method able to find tar-
gets for compounds with no available interaction data would help overcome the inaccuracy and complexity 
of de novo ligand design and virtual screening.

In this paper we present COSINE (COldStartINtEractions) - a statistical framework and a corresponding 
computational method for multi-target virtual screening via the “one-class collaborative filtering” technique. 
Our program exploits existing knowledge and databases of known interactions as well as the sequence sim-
ilarities between proteins and structural similarities between drug molecules to suggest potential targets for 
new chemicals. Among unique aspects of our work are position specific weights, impute values, and a novel 
weighted-profile procedure for improving target prediction for novel chemicals. The accuracy of COSINE is 
validated in blind benchmarks that utilize well-known and publicly available resources. Our data shows that 
COSINE clearly outperforms numerous state-of-the-art methods for the same problem in several different tests 
and with respect to different accuracy measures. The algorithm is freely available at http://bioinfo.cs.uni.edu/
COSINE.html.

Methods
In a typical recommender system, user rating is expressed using different scores (e.g. 1–5 scale used by 
Netflix’s users to rate movies). However, the nature of available data for protein-chemical interactions is dif-
ferent. Often times, only “positive” data consisting of known and validated interactions is available but there 
is no straightforward way of distinguishing “negative” scores (no interactions) from the missing data. The 
underlying binary score system (1 for interacting pairs and 0 otherwise) necessitates a deviation of the com-
putational models used for protein-chemical interactions from the classical recommender models. COSINE 
belongs to the category of one-class collaborative filtering methods24,25 since it does not treat all missing data 
as negative data. The protein-chemical interactions are predicted using the “low-rank matrix factorization” 
technique. More formally, given an incomplete matrix R of observed interactions, with m rows, representing 
targets, and n columns, representing chemicals, our algorithm decomposes R into a product of two lower 
dimension matrices of dimensions m ×  r and r ×  n, r ≪  min(m, n). The component matrices correspond to 
proteins’ and chemicals’ latent preferences. The assumption is that the set of proteins (respectively, chem-
icals) under consideration can be divided into a relatively small number of subsets with different proteins 
from the same subset exhibiting the same preferences to chemicals. Our algorithm takes account of the fact 
that related proteins, such as those with similar amino-acid sequences or similar three dimensional struc-
tures, exhibit similar preferences to chemicals and vice versa (structurally similar chemicals show similar 
preferences to proteins).

Statistical framework. COSINE is a dual-regularized, one-class collaborative filtering method25 that can 
employ either logistic or linear factorization. Our method can be thought of as a multi-directional extension 
of some recently described matrix factorization techniques for making recommendations26,27. Specifically, let 
m and n represent the number of proteins and chemicals, respectively, and let R =  (ri,j) be a m ×  n matrix of 
protein-chemical interactions

=





r c t1 if compound interacts with target
0 otherwise (1)

i j
j i

,

In protein-chemical interaction studies, the binary matrix R is typically incomplete. While each nonzero entry 
ri,j =  1 signifies a known interaction, the meaning of each zero entry ri,j =  0 is ambiguous in that there can be either 
no interaction between the target ti and the compound cj, or, alternatively, that an interaction exists but it has 
never been verified experimentally. Thus, the goal is to predict the missing entries (i.e., to reclassify all unknown 
entries of the matrix R).

Building upon the general low-rank matrix factorization framework, COSINE approximates the probability 
of each chemical interacting with each target by mapping both chemicals and proteins to a common latent space 
of reduced dimensionality. The assumption here is that the number of factors influencing protein-chemical inter-
actions is relatively small or, more formally, that the matrix of protein-chemical interactions is of low rank and, 
therefore, that it can be written as the product FGT of two matrices F and G of dimensions m ×  r and n ×  r, respec-
tively, where r ≪  min (m, n) represents the number of latent factors. While our program is capable of performing 
either linear or logistic factorization, in the rest of this paper we will focus on logistic factorization, because it 
allows for an elegant statistical treatment.

http://bioinfo.cs.uni.edu/COSINE.html
http://bioinfo.cs.uni.edu/COSINE.html
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Following Steck28, we first consider the loss function:

∑ λ λ+ − + + +{ }( ) ( )w e r q f g F Gln 1
(2)i j

i j
f g

i j i j i j
T

F G
,

, , , 2
2

2
2i j

T

where fi and gj denote the ith and jth row (latent vector) of the matrices F and G, respectively, wi,j are the position 
specific weights on interaction scores, qi,j are the so-called “imputation values”25, λF, λG are tunable parameters 
and 2 denotes the Frobenius norm. The regularization terms F 2

2 and G 2
2 are included to prevent over-fitting.

COSINE extends several other methods for the protein-chemical interaction prediction16,27, in at least two 
directions. Namely, the algorithm allows not only for the imputation of interaction values but also for differ-
ent weighting of the interaction entries. In fact, to the best of our knowledge, COSINE is the only method for 
protein-chemical interaction prediction that employs position-specific weight and imputation values.

To provide insight into the motivation behind our method, consider, for instance, an ambiguous case where 
ri,j =  0 but some new experimental evidence suggests that the chemical cj might interact with protein ti. We can 
utilize this new knowledge by setting qi,j =  1 while lowering the corresponding weight wi,j to account for any 
uncertainty in the imputed value. A more thorough justification of the objective function (2) is given below. For 
a less general case, we refer the reader to Johnson26 and Liu et al.27.

Position specific weights and impute values. To derive the function (2) analytically, let ei,j be the event 
that the compound cj interacts with the target ti. Assume that the probability distribution of ei,j is logistic. In other 
words, assume that the probability pi,j assigned to ei,j is given by

= = =



+





−( ) ( )p p r f g f g1 , 1/ 1 exp
(3)i j i j i j i j

T
, ,

1

Recall also that wi,j reflects the confidence in the entry ri,j of the interaction matrix R. More precisely, higher 
weights are assigned to protein-chemical pairs (ti, cj) which are known to interact (ri,j =  1), while lower val-
ues of wi,j are given to pairs for which ri,j =  0. To put it differently, a high number of positive training examples 
corresponds to each interacting pair while a lower number of negative training examples corresponds to each 
non-interacting (or unknown) pair. Hence, the likelihood of ri,j +  qi,j given fi and gj can be written as

+ =
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or, at the matrix level,
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As in Steck28, the probability p(F, G|R +  Q) can be derived through the Bayesian inference

+ ∝ +p F G R Q p R Q F G p F p G( , ) ( , ) ( ) ( ) (6)

Finally, we derive the loss function (2) by taking the negative logarithm of (6), while assuming the Gaussian 
distribution of the entries of F and G26. Thus, in contrast to linear loss function25, namely

∑ λ λ+ − + +{ }( )w r q f g F G
(7)i j

i j i j i j i j
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, , , 2
2

2
2

the logistic loss function (used by default in our method) has an explicit probabilistic interpretation.

Dual regularization from proteins and chemicals. To increase the accuracy of protein-chemical inter-
action prediction, we further extend the loss function (2) to account for the fact that similar chemicals are likely 
to interact with similar targets. Formally, let M =  (mi,j) be the matrix of pair-wise target similarity scores, where 
each entry mi,j represents the similarity between the proteins ti and tj, and let N =  (ni,j) be the matrix of pair-wise 
compound similarity scores. The affinity of similar chemicals to bind similar proteins is accounted for by mini-
mizing the protein homophily

∑∑− = −
= =
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and the compound homophily
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Incorporating the regularization terms (8) and (9) above into (2), and introducing two additional tunable 
parameters, λM and λN, our loss function becomes
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Figure 1 provides a toy example illustrating various components of the loss function.
In practice, the entries mi,j of the matrix M typically represent the sequence similarity of the primary struc-

tures of proteins ti and tj, as measured, for example, by the normalized Smith- Waterman alignment score or by 
the PSI-BLAST e-value29. Alternatively, the values mi,j can be chosen to represent the three-dimensional similarity 
of the proteins’ tertiary structures. Similarly, each ni,j represents the similarity score for the compounds ci and cj, 
as measured, for instance, by the Tanimoto score30 or by the similarity of ci′ s and cj′ s pharmacological profiles15.

Note that the partial derivatives of (10) can be written as

λ λ∂ ∂ = − + + + −F W P R Q G F D M F/ { [ ( )]} 2 2 ( ) (11)r M M

λ λ∂ ∂ = − + + + −G W P R Q F G D N G/ { [ ( )]} 2 2 ( ) (12)T T T T
r N N

where  represents the Hadamard product.
There are several ways to minimize the loss function (10)25–27. Similar to Liu et al.27, COSINE uses the 

AdaGrad - an iterative gradient descent method31.

Figure 1. The components of the loss function. INPUT: the sum of the interaction and impute matrices 
R +  Q; the weight matrix W; the protein similarity matrix M; the chemical similarity matrix N. OUTPUT: the 
matrix of protein latent preferences F; the matrix of chemical latent preferences G; the matrix of predicted 
interaction probabilities = +FG FGP (exp( )/(1 exp( )))T T .
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Weighted-profile approach for virtual screening. The most challenging task in protein-chemical inter-
action prediction is known as the “cold-start problem”. The goal is to predict interactions of chemicals (or targets) 
for which no interaction data is available. COSINE implements a modified version of the “weighted profile” 
method32,33 in which the latent preferences for a new protein (the rows of F) are computed as the sum of the latent 
preferences for that protein (calculated by the iterative minimization procedure, described above) and the latent 
preferences of J most similar proteins (those with available interaction data). More specifically, we set the ith row 
of the matrix F for the new target ti to

∑





+





=SM
v f m f1

(13)
i

j

J

i j j
1

,

where fj is the jth row of F (representing the latent preferences of the target tj), v is the weight parameter and mi,j is 
the similarity score of the targets ti and tj. The normalization factor SM is set to + ∑ =v mj

J
i j1 , .

The latent preferences for new chemicals (rows of G) are computed in the same way, using the compound 
similarity scores ni,j, namely.
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Algorithmic details. COSINE minimizes the loss function (10) twice. The first time around, all imputation 
values qi,j are set to zero. The initial weights are set to 6 if ri,j =  1 and 1 otherwise, to reflect our increased confidence 
in experimentally verified interactions and lesser confidence in values ri,j =  0 (absent or unknown interaction). In 
the second iteration of the algorithm, the weight (which might be interpreted as the confidence in the value) of ri,j  
is increased by one if the computed probability of interaction pi,j is either too small or too large (more details 
are given in the Supplementary Table S1). The imputation values qi,j are adjusted in such a way that each entry 
of the new input matrix of interactions (namely ri,j +  qi,j) is set to 1 if the probability of the interaction pi,j com-
puted in the first step is high (Supplementary Table S1). Otherwise, it is set to max(ri,j, pi,j). We take max(ri,j, pi,j)  
rather than pi,j since our underlying assumption is that the true interactions have been experimentally verified and 
hence the nonzero values of ri,j should be taken account of in the second step.

Results
To validate the algorithm, we compared it to a number of different methods for the same problem, namely 
KBMF2K34, WNN33, WNN-GIP33, NetLapRLS35, BLM-NII36, CMF37, NRLMF27, PRW38, REMAP39, Chem0832, 
Pharm1015, DASPfind40, NRWRH41 and HGBI42 in several different benchmarks, namely Yam32, Yam15, and 
ZINC39.

Benchmark #1. We first tested the accuracy of our algorithm in the classic Yam08 benchmark designed by 
Yamanishi et al.32. In this benchmarking experiment, which uses two different accuracy measures (AUPR and 
AUC), each dataset consists of four classes of targets: Enzymes, Ion Channels, GPCR’s and Nuclear Receptors 
(Supplementary Table S2).

In order to compare COSINE directly to the methods previously tested in this benchmark (KBMF2K, WNN 
and WNN-GIP) we performed a 5-fold cross-validation on the set of chemicals. More specifically, for each pro-
tein class, the set of chemicals was split into 5 subsets of approximately equal size and each subset was taken in 
turn as a test set. As described in van Laarhoven and Marchiori33, the training was performed on the remaining 
4 subsets. The summary of the methods’ accuracies, as measured by the area under the Precision-Recall curve 
(AUPR) and the area under the ROC curve (AUC), is given in Table 1. As seen in this table, while WNN method 
compares favorably to COSINE in the Enzyme class test, COSINE outperforms all of its competitors in all other 
target classes, most of the time, significantly. Moreover, the average AUPR and AUC scores achieved by COSINE 
exceed the average accuracies achieved by any other method tested in this benchmark.

Benchmark #2. Some methods for protein-chemical interaction prediction have been tested in Yam08 
benchmark that uses 10-fold instead of 5-fold cross validation. To compare COSINE with those algorithms we 
modified the testing procedure and (similar to Liu et al.27) ran 5 rounds of 10-fold cross-validation on the set of 
chemicals. Our findings are summarized in Table 2. As seen in these tables, COSINES achieves the best overall 
result, as measured by AUPR and AUC metrics. In contrast to 5-fold cross validation experiment, our method 
outperforms WNN-GIP in the Enzyme class benchmark with respect to both measures, but achieves a slightly 
lower AUPR than NRLMF (0.346 vs. 0.358).

It is interesting to note that COSINE’s closest competitor in this test, namely NRLMF, also employs logistic 
factorization. However, unlike COSINE, the NRLMF method sets the weights globally, uses no imputation values 
and employs a different weighted profile scheme for cold start predictions. A different comparison of the two 
methods, using a different test sets and a different accuracy measure is presented in the subsection Benchmark 
#5 below.

Benchmark #3. Our next benchmarking data set, Yam15, has been constructed from the previous 
one32 by extracting only the data corresponding to the compounds with available pharmacological profiles 
(Supplementary Table S3). Consequently, this benchmark mandates that all methods submitted use the similarity 
scores between pharmacological profiles computed by Yamanishi et al.15, in place of Tanimoto scores.
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Strictly speaking, the only two algorithms that have been tested previously in the Yam10 benchmark using 
cross-validation on chemicals are the Yamanishi’s 2008 algorithm, and its improved version, based on similarity 
of compounds’ pharmacological profiles. Cobanoglu et al. have submitted their probabilistic matrix factoriza-
tion method to a similar test16, but their analysis was performed under conditions conceptually different from 
cross-validation on chemicals. For this reason, we do not include the results of Cobanoglu et al. here. The results 
of KBMF2K34 are not suitable for the direct comparison with COSINE either, since they are obtained on the 
Yam08 benchmark and not on Yam10. As shown in the Supplementary Table S4, COSINE compares favorably to 
the other two methods tested, irrespective of the drug similarity matrix used (Tanimoto similarity or similarity of 
drugs’ pharmacological profiles).

Benchmark #4. We have also compared COSINE to methods previously tested in the leave-one-out cross 
validation experiment that uses the Top 1 predictions as the accuracy criterion. Following the protocol described 
in the DASPfind paper40, for each target set and each drug under consideration, we removed all of the drug’s 
known interactions and tried to retrieve them as Top1 predictions. As shown in Table 3, COSINE retrieves more 
interactions as Top1 predictions than any other method submitted to this benchmark. Although we have not 
trained the parameters of COSINE for this benchmark (we used the default ones found to work the best in the 
previous tests) it is reasonable to believe that the superior performance of COSINE over the other three methods 
is due to the fact that our algorithm has been explicitly developed to predict targets for new drugs (cold start). In 
contrast, the other three methods are tailored to not only “cold start” but also to “off-target” predictions.

Benchmark #5. Lastly, we compared the performance of COSINE to selected methods in the extensive 
ZINC benchmark. To generate the ZINC test sets, the ZINC data43 was filtered by IC50 ≤  10 μ M. This process 
yielded 31735 unique chemical-protein associations for 3,500 proteins and 12,384 chemicals. Cell-based tests and 
proteins appearing in protein complexes were excluded as well as proteins with unavailable primary sequences. 
Protein sequences were taken from UniProt44. Protein-protein similarity scores were calculated using BLAST.

KBMF2K WNN WNN-GIP COSINE

AUPR

N. Recept. 0.354 0.434 0.456 0.511

GPCR 0.347 0.308 0.311 0.354

Ion Ch. 0.245 0.249 0.233 0.322

Enzyme 0.287 0.299 0.280 0.289

AVERAGE 0.308 0.323 0.320 0.369

AUC

N. Recept. 0.810 0.788 0.839 0.901

GPCR 0.840 0.848 0.872 0.889

Ion Ch. 0.802 0.757 0.775 0.807

Enzyme 0.812 0.819 0.861 0.852

AVERAGE 0.816 0.803 0.837 0.862

Table 1.  5-fold cross-validation on Yam08 dataset. The best results are underlined. Cases where COSINE 
significantly outperforms the competitor ( t-test, p <  0.05) are shown in italic. The results for other methods 
were taken from van Laarhoven and Marchiori33.

BLM-NII CMF KBMF2K NetLapRLS NRLMF WNN-GIP COSINE

AUPR

N. Recept. 0.438 0.488 0.477 0.417 0.545 0.504 0.548

GPCR 0.315 0.365 0.366 0.229 0.364 0.295 0.397

Ion Ch. 0.302 0.286 0.308 0.200 0.344 0.258 0.359

Enzyme 0.253 0.229 0.263 0.123 0.358 0.278 0.346

AVERAGE 0.327 0.342 0.354 0.242 0.403 0.334 0.410

AUC

N. Recept. 0.799 0.818 0.844 0.789 0.900 0.890 0.914

GPCR 0.838 0.857 0.839 0.817 0.895 0.891 0.902

Ion Ch. 0.796 0.743 0.799 0.757 0.813 0.797 0.826

Enzyme 0.813 0.829 0.713 0.786 0.871 0.882 0.888

AVERAGE 0.812 0.812 0.799 0.787 0.870 0.865 0.883

Table 2.  10-fold cross-validation on Yam08 dataset. The best results are underlined. Cases where COSINE 
significantly outperforms the competitor (t-test, p <  0.05) are shown in italic. The results for other methods 
were taken from Liu et al.27.
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The ability of different algorithms to “rediscover” interactions was measured by “hiding” (setting to zero) 
the corresponding entries in the protein-chemical interaction matrix. To perform “cold start” analysis on 
ZINC data, we identified a set of chemicals having only one known target. The resulting set was further divided 
based on two criteria: 1) the number of chemicals the target proteins are associated with, and 2) the maximum 
chemical-chemical similarity score for the chemical in the dataset, with 0.1 increments. Each set was further sub-
divided into two subsets of approximately equal size, the test set (Supplementary Table S5) and the training set.

To provide for a conceptually different test, the ZINC benchmark uses the True Positive Rate (Recall or 
Recovery) at the top r% ∈ . . . . .r( {0 5, 1 0, 1 5, 2 0, 2 5}) of predictions for each chemical as the benchmarking 
measure. The Recall (Recovery) is defined as Recall =  TP/CP, where TP and CP represent the total number of true 
and condition positives, respectively. Since there is a total of 3,500 targets, the r% of predictions include (35 · r)th 
or higher ranked target for each chemical. For instance, the True Positive Rate (TPR) of 0.7 at the 35th cutoff rank 
(top 1%) means that 70% of the total tested positive pairs were ranked 35th or better for the tested chemicals. 
Using TPR in place of AUC allows us to assess the performance of COSINE from a different angle. In particular, 
it is informative to compare COSINE head-to-head to NRLMF again, since, according to the results by Liu et al.27, 
the accuracies of NRLFM are significantly higher than KBMF2K, CMF, and WNN-GIP. Aside from NRLMF, we 
also analyzed the accuracy of one of the most popular and most widely used method for the cold start problem, 
based on the Parzen–Rosenblatt window (PRW) approach38. PRW is a highly accurate chemical structure-based 
target prediction method that uses neither the information obtained from proteins nor from the interactome. 
Finally, we submitted to the ZINC test a version of the COSINE algorithm, called REMAP, which uses linear 
(instead of logistic) factorization and global (instead of position specific) weights. Comparison with the latter 
algorithm (which has been used by our group for drug “off-target” prediction) is particularly useful since it illus-
trates the contribution of novel features of COSINE to its overall accuracy. Figures 2 and 3 demonstrate the per-
formance of different algorithms in the ZINC test, as measured by Recall at the top r% of predictions for various 
values of r. The significant performance advantage of COSINE over REMAP illustrates the benefits of using local 
weights, logistic (as opposed to linear) factorization and a weighted profile approach for novel drugs and novel 
targets.

Additional analyses. We studied how the number of iterations in the matrix factorization step influences 
the accuracy of our algorithm. In our experiments, the convergence is attained after about 50 iterations for smaller 
data-sets (such as Nuclear Receptors test set) while a larger number of iterations (100–600) is needed to achieve 
comparable accuracy on larger data sets (such as Enzymes or ZINC test). As seen in Fig. 4, for very large data sets, 
such as ZINC, the added value has a low diminishing return after ~500 iterations. Thus, we opted for a reasona-
ble speed-accuracy tradeoff of 600 iterations. Increasing the number of iterations further renders the algorithm 
computationally infeasible. A proper adjustment for the number of iterations results in the runtime comparable 
to other methods (Supplementary Table S6).

We also studied how COSINE performs in less than ideal settings, for instance, as a function of noise due to 
invalid or insufficient interaction data. We recorded the AUC values obtained on four target classes (NR, GPCR, 
Ion Channels and Enzymes) as a function of missing interaction data and as a function of incorrect interaction 
data. As shown in Fig. 5, our method is able to compensate a significant fraction of incorrect or missing data, 
due to the “low-rank matrix completion” technique built into the algorithm. This technique assumes that drugs’ 
preferences to targets are determined by a relatively small number of interaction patterns. Explicitly imposing the 
rank constraint in the loss function (as done in COSINE and some other matrix factorization methods) results 
in eliminating erroneous interactions, those that cannot be explained by the small dimensionality of the space of 
latent preferences.

Discussion and Conclusion
Historically rational drug design has been characterized through identifying a single disease associated target 
and discovering exquisitely selective drugs against that target. Unfortunately, this one-drug-one-gene approach 
has been of limited success. This failure is manifest in the current issues facing the drug industry with near empty 
pipelines and costly post-market withdrawals. New methodologies are called for. Polypharmacology, which 
focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective 
ligands to target individual proteins, has emerged as a new drug discovery paradigm45.

Computational methods that can assist polypharmacology are of key importance in drug development. 
In-silico protein-chemical interaction prediction has proven useful in drug-repurposing (drug-repositioning), an 
area of drug discovery that aims to find new therapeutic indications for known, FDA approved drugs46,47. Drug 
repurposing and other rational and structure-based drug design approaches are getting increased attention in the 

NRWRH HGBI DASPfind COSINE

N. Recept. 31.48 46.3 51.85 55.56

GPCRs 25.56 42.15 51.12 53.36

Ion Chann. 33.33 35.71 44.28 54.29

Enzymes 18.65 43.6 49.66 56.4

AVERAGE 27.26 41.94 49.23 54.9

Table 3.  The percentage of correct Top 1 predictions in Yam08 LOOCV benchmark. The best results 
(highest percentage of correct Top 1 predictions) are underlined.
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Figure 2. ZINC benchmark MCS. The True Positive Rate (TPR) at top r% predictions ∈ . . .r( {0 5, 1, 1 5, 2, 2 5}) 
with varying number of (maximal) chemical structural similarity (MCS).

Figure 3. ZINC benchmark LT. The True Positive Rate (TPR) at top r% predictions ∈ . . .r( {0 5, 1, 1 5, 2, 2 5}) 
with varying number of ligands per target (LT).
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pharmaceutical industry as the cost of bringing a new drug to the market is approaching $1 billion48. A significant 
portion of the drug development cost is attributed to the inability of many candidate drug compounds to pass 
stages II and III of clinical trials, which is due to their insufficient efficacy and/or increased toxicity. Hence, the 
drug discovery pipeline can be made more efficient by taking advantage of a systematic, rational approach. This 
strategy assumes an automated prediction and analysis of interactions on a large scale, carried out by comparing 
large subsets of the proteome against a wide array of existing and candidate drug compounds.

Selected statistical techniques, including recommender systems, known as “low-rank matrix comple-
tion” and “collaborative filtering”, have been successfully used to predict protein-protein interactions49 and to 
identify the gene clusters from the microarray data50. However, to date, the use of these systems in predicting 
protein-chemical interactions has been limited, due to their limitations in ability to accurately predict interactions 
of new compounds and new targets.

We introduce a computational method for predicting protein-chemical interactions based on matrix factor-
ization. Our method builds upon “collaborative filtering” - a widely used statistical technique for making rec-
ommendations to utilize existing knowledge stored in the databases of known interactions. By incorporating 

Figure 4. Accuracy over iterations. The accuracy of COSINE (TPR at top 1%; y-axis) as a function of the 
number of iterations (x-axis) in different subsets of the ZINC benchmark (1–5, 6–10, 11–15, 26–20, and > 20 
ligands per target).

Figure 5. Accuracy as a function of noise. The accuracy of COSINE in the 10-fold CV Yam08 benchmark as a 
function of the amount of missing interaction data (left) and as a function of the amount of incorrect interaction 
data (right).
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the weighting and imputation of the interaction data, as well as the dual regularization from both chemicals and 
targets, COSINE is able to exceed accuracy of other state-of-the-art methods for the same problem.

Our algorithm integrates chemoinformatics (chemical structural similarity), bioinformatics (protein sequence 
similarity) and a drug-target network (in form of matrix completion) approaches. Utilizing chemical structural 
similarity has proven useful (and has been widely applied) in the drug discovery for single-target virtual screen-
ing. Incorporating protein sequence similarity has shown promises in the prediction of drug off-targets51–54. Our 
drug-target network approach, formulated as a matrix completion problem, has been successfully applied to 
recommender system, which improve the performance of off-target prediction, especially when the chemoinfor-
matics method fails.

The publically available chemogenomics data, on which all of existing virtual screening methods are inher-
ently based, is incomplete and noisy. The missing interaction data is predicted in COSINE by completing the 
input interaction matrix, while biased and noisy data is filtered out by selecting the objective function that mini-
mizes the rank of the output matrix of predicted interactions.

We recognize that, even though the ROC and PR curves may give a global estimation of the false positive rate 
for a prediction in the certain rank given by existing virtual screening algorithms, they may be not adequate for 
a risk-sensitive drug discovery application. In addition, in bio- and chemo-informatics applications, non-nested 
CV model is known to bias the parameters to the data set. Thus, other approaches to assessing reliability for spe-
cific new cases (including the label permutation and/or nested CV approach) will be extremely useful. We have 
developed several methods, e.g. ENTS55 and case-based reasoning56,57 for this purpose. In our on-going work, we 
plan to integrate these methods into the COSINE algorithm.
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