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Diffusion in translucent media
Zhou Shi1,2 & Azriel Z. Genack1

Diffusion is the result of repeated random scattering. It governs a wide range of phenomena

from Brownian motion, to heat flow through window panes, neutron flux in fuel rods,

dispersion of light in human tissue, and electronic conduction. It is universally acknowledged

that the diffusion approach to describing wave transport fails in translucent samples thinner

than the distance between scattering events such as are encountered in meteorology,

astronomy, biomedicine, and communications. Here we show in optical measurements and

numerical simulations that the scaling of transmission and the intensity profiles of

transmission eigenchannels have the same form in translucent as in opaque media.

Paradoxically, the similarities in transport across translucent and opaque samples explain the

puzzling observations of suppressed optical and ultrasonic delay times relative to predictions

of diffusion theory well into the diffusive regime.
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Einstein showed that microscopically visible particles
buffeted by stochastic molecular forces perform a random
walk that can be described by the diffusion equation once

the initial motion of particles is randomized1. The diffusion
approach also describes the transport of classical and quantum
waves in multiply scattering media2–20. Waves entering a static
disordered sample interfere to produce a wavelength-scale
speckled pattern of energy or particle density that is a unique
fingerprint of the wave interaction with the disordered sample.
When such patterns are averaged over a large ensemble of
statistically equivalent samples, a smoothed profile of energy
density results that is a solution of the diffusion equation6. The
diffusion approach is assumed to fail, on time scales shorter than
the scattering time9 and on length scales smaller than the
transport mean free path, ℓ1, in which the particle direction is
randomized. On these scales, it is assumed that transport can only
be described by a detailed accounting of radiative transfer within
the sample2, 20.

The transmission of waves through a disordered material is
fully characterized by the transmission matrix, t, whose elements
tba are the field transmission coefficients between complete
sets of N orthogonal propagating channels on each side of the
sample21–33. For an incident field in channel a, Ea, the trans-
mitted field in channel b, Eb, can be expressed as the sum of the
coherent field, with the same intensity pattern as the incident
field, and a random field, which is uncorrelated with Ea, Eb=
Ecoherent+Erandom= 〈tba〉Eaδab+δEb. Here 〈···〉 represents the
average over random sample configurations and δab= 1 for a= b,
and 0 otherwise.

A widely held view is that transport in the translucent and
diffusive sample regimes regimes is totally dissimilar. True, dif-
fusion is built from a series of random ballistic steps. However,
the wave retains a degree of spatially coherence during each step,
whereas multiply scattered waves are randomized with vanishing
correlation across the sample. As a result, many characteristics of
transport are totally different in these two regimes, as is illustrated
in the next section, and propagation is described using different
formalisms.

In this article, we explore the relationship between wave pro-
pagation in translucent and diffusive samples. Here we show that,
notwithstanding the stark differences between transport in
translucent and opaque samples, the underlying structure of
transport is strikingly similar. The scaling of transmission and the
energy density inside a random medium illuminated by random
waveforms have identical forms. The energy density inside the
sample falls linearly and extrapolates to zero at the same distance
beyond the sample in both regimes. At the same time, the average
energy density profiles in the interior of specific transmission
eigenchannels have nearly identical forms. We show that the
source of these similarities is the correlation within the trans-
mission matrix, which leads to characteristic repulsion between
transmission eigenvalues on all length scales. The surprisingly
short dwell time observed in the crossover from ballistic to
diffusive propagation is shown to be a consequence of the
diffusive form of the energy density profile for the perfectly
transmitting eigenchannel.

Results
Coherent vs. randomized waves in translucent and opaque
samples. The dominance of coherent or ballistic light in optically
thin samples and of incoherent multiply-scattered light in opaque
samples is illustrated in the recursive Green’s function
simulations34, shown in Fig. 1. Simulations are carried out for a
scalar wave of wavelength λ0= 650 nm propagating through a
two-dimensional strip with reflecting sides along its length. A

random segment of length L is sandwiched between regions of
dielectric constant unity. The disordered region is divided into
square elements with sides of length λ0/2π= 103.5 nm and
dielectric function ε(x, y)= 1+ δε(x, y) with δε(x, y) selected
randomly from a uniform distribution in the range −0.2 and 0.2.
The strip of width W= 5.2 μm supports N= 16 propagating
waveguide modes. The n= 1…16 waveguide modes have trans-
verse profiles ϕn(y)~sin(knyy) with transverse components of the
k-vectors kny= nπ/W and longitudinal speed vn= cknx/k, where c
is the speed of light (details of the simulations are given in the
Methods section).

In translucent samples, the transmission coefficient of coherent
flux is of order unity, |〈tnn〉|2~1, as seen in Fig. 1a. In contrast, the
coherent flux in diffusive media is exponentially small, as seen in
Fig. 1b. The coherent flux, 〈tnn(L)〉2, falls exponentially with
sample length L at different rates for each of the N waveguide
modes (Fig. 1c). However, the coherent flux falls at a single rate in
the time domain, 1/τs, as seen in the inset of Fig. 1c. This yields
the scattering mean free time and so the scattering mean free
path, ℓs= cτs= 27.2 μm. Since the scale of the scattering element
is much smaller than the wavelength, and fluctuations in ε are
small, ℓs is expected to be nearly equal to ℓ

5.
The average delay time in transmission, tD, which equals the

average of the delay of the transmission channels weighted by the
corresponding transmission eigenvalue, is shown in Fig. 1d
(Supplementary Note 4). tD scales linearly for translucent samples
and, in the thinnest samples, is equal to the average delay over all
waveguide modes for a sample without disorder, tB= 〈L/vn〉≡L/
v+. Thus v+ represents the average longitudinal component of
velocity of a random incident wave. For the samples studied in
simulations, v+= 0.70c. tD approach quadratic scaling for L≫ ℓ.

Scaling of optical transmission. Since waves are largely coherent
in translucent samples and randomized in diffusive media, one
might expect the total transmission to scale differently in these
regimes. Surprisingly, however, measurements of total optical
transmission, which includes both the scattered and unscattered
waves, were found to be in accord with diffusion theory down to
sample lengths of L ~ 2ℓ8,13,15. We explore wave propagation on
still shorter length scales with L≪ ℓ to discover whether there is a
lower limit in thickness below which the diffusion model fails. We
note that computer simulations of the scaling of transmission of
the portion of light that has been scattered at least once can be
described by diffusion theory, even for L≪ ℓ

14. Here, however,
we consider the full transmitted flux including light that has not
been scattered, as is ordinarily the case in measurements of
transmission.

For L≫ ℓ, the scaling of average transmission of an incident
beam is found by solving the diffusion equation with the impact
of the boundary incorporated phenomenologically13. For a single
incident channel a, the ensemble average of total transmission is
〈Ta〉= (zp,a+zb)/(L+2zb)13 (Supplementary Eq. 7), where zp,a is
the effective penetration depth of radiation in channel a at which
radiation is randomized and zb is the distance beyond the sample
boundary in which the intensity within the sample extrapolates to
zero. The model is solved for a randomized source at a depth zp,a
with strength equal to the intensity that enters the sample.
Surprisingly, the above expression is in excellent agreement with
measurements down to L= 2ℓ13. But one might not expect this
model to apply to samples thinner than the penetration depth,
since the effective source would then fall beyond the output
boundary of the sample.

To explore transport in the crossover from ballistic to diffusive
propagation, we measure the scaling of optical transmission
through a dilute latex colloid contained in two wedge-shaped
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sample holders with different wedge angles. A normally incident
laser beam is softly focused on the front of the sample while the
transmitted light is collected in an integrating sphere (details of
the optical measurements are given in Methods section). The
thickness of the sample through which light passes is varied by
translating the sample vertically perpendicular to the vertex of the
wedge. The inverse of total transmission for the channel a
corresponding to the normally incident beam, 1/〈Ta〉, is seen in
Fig. 2a to increase linearly with L over the combined range of
thicknesses in the two wedged samples of from L= 20 μm to 2.5
mm. From the distance beyond the sample of 2zb at which 1/〈Ta〉
extrapolates to zero and the value of 2zb/(zp,a+ zb) to which 1/
〈Ta(L)〉 extrapolates at L= 0, we obtain zb= 0.93 mm and zp,a=
0.76 mm. This gives ℓ ~ 0.94 mm13. The linearity of measure-
ments of 1/〈Ta(L)〉 from 0.05ℓ to 2.7ℓ shows that transmission
follows the diffusion model even for L≪ ℓ. Agreement of the
scaling of transmission in the translucent regime with diffusion
theory is also found in simulations in random 2D waveguides of
the inverse of the total transmission averaged over all incident
channels, 1/〈Ta〉a, shown in Fig. 2b. Thus, despite the differences
in propagation between translucent and opaque samples shown
in Fig. 1, the expressions for the scaling of total transmission for a
single incident channel (Fig. 2a) and for the average over all
incident channels (Fig. 2b) apply equally in translucent and
opaque media.

Energy density distribution inside opaque and translucent
media. For diffusive waves, the flux though the sample is

proportional to the spatial derivative of the energy density
within the sample. It is of interest therefore to compare energy
density profiles in samples thinner and thicker than ℓ. Diffu-
sion theory predicts a linear falloff of the average energy
density with depth into a sample illuminated with a mixture of
all incident waveguide modes. This is precisely what is found in
the simulations shown in Fig. 2c for translucent as well as
diffusive samples. Moreover, we find that the energy density
extrapolates to zero at the same distance, zb= 19.2 ± 0.2 μm
from the output surface for both opaque and translucent
samples. This value of zb is in accord with the value found in
simulations of the scaling of transmission shown in Fig. 2b of
zb= 19.1 ± 0.1 μm.

In Fig. 2c, we plot W(x), the energy density integrated over the
transverse direction at a depth x averaged over random
configurations and incident waveguide modes. W(x) is normal-
ized so that at it is equal to the average transmission coefficient
through the sample at x= L, W(L)= 〈T/N〉= u(L)v+. The
transmittance T is the sum over all channel-to-channel flux
transmission coefficients, T ¼ PN

a;b¼1 tbaj j2, while u(x) is the
average energy density of a wave for unit incident flux.

The flux through a sample is given by Fick’s first law of
diffusion, 〈Ta〉a=�D duðxÞ

dx , where D is the diffusion coefficient. In
two dimensional samples, D = vℓ/2, where v is the speed of the
wave. Since W(x) extrapolates to zero at a distance zb beyond the
output surface of the sample, we can show that
ℓ= 2zbv+/v (Supplementary Eq. 4). This relation gives
ℓ= 26.9 ± 0.3 μm which is close to the value of ℓs= 27.2 ± 0.2
found from Fig. 1c. Thus both transmission and the energy
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density within the sample are well described by diffusion theory
even in translucent samples.

Transmission eigenvalues. The scaling of conductance and
transmission in multiply scattering media can be expressed in
terms of the transmission eigenvalues, τn. These are the ensemble
averages of each of the N eigenvalues of the N ×N Hermitian
matrix product tt†, where t† is the Hermitian conjugate of the

transmission matrix t. The τn are indexed in order of decreasing
transmission from n= 1 to N and are proportional to the energy
density on the output surface of the sample; their sum gives the
average transmittance, 〈T〉=

PN
1 τn. The scaling of transmission

eigenvalues, and, hence of the transmittance or conductance, was
described by Dorokhov22 in terms of a set of auxiliary localization
lengths, ξn, where, τn= 1/cosh2xn with xn= L/ξn. For L≫ ℓ. The
xn scale linearly for n < N/2 with spacing, xn+1−xn≡ Δx= L/ξ,
where ξ=Nℓ is the localization length. For n >N/2, the xn
increase somewhat more rapidly25,27.

Though waves in translucent samples are not randomized, the
transmission matrix can still be defined and the scaling of the xn
can be computed in simulations in the translucent as well as the
diffusive regime. We find a common structure for the xn with the
xn remaining equally spaced for n < N/2, as shown in Fig. 3a. The
structure persists even in the thinnest samples for which the
spacing is no longer proportional to L/Nℓ (Supplementary Fig. 3).

Another striking manifestation of universality is seen in the
probability distributions of spacing between adjacent xn in
different configurations normalized by the average spacing = Δx
for n <N/2. The distributions shown in Fig. 3b fall on a single curve
corresponding to Wigner’s surmise for the Gaussian orthogonal
ensemble for eigenvalues of large random matrices27. This
distribution, predicted for diffusive samples, is found to hold even
for translucent samples. This reflects the universal repulsion
between the xn seen in Fig. 3a and produces the same scaling law
for transmission in translucent and diffusive samples.
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Transmission eigenchannels. Since the similarity in the scaling
of transmission in translucent and diffusive samples is related to
the similarity in the statistics of the xn, and so the τn, it is
interesting to explore whether there is a similarity in form
between energy densities of the transmission eigenchannels in
translucent and diffusive media. This will determine the energy
density inside the sample, and ultimately the delay time in
transmission35–40 (Supplementary Eq. 10).

The transmission eigenchannels at the incident and output
boundaries of the sample and the transmission eigenvalues are
obtained from the singular value decomposition of the transmis-
sion matrix, t27. The field within the sample for the nth

transmission eigenchannel cannot be obtained from t, but is just
the field generated in the interior of the sample by the incident
waveform for the transmission eigenchannels. We will consider
Wn(x) or Wτ(x), the contribution to W(x) of the nth transmission
eigenchannel or the eigenchannel with transmission τ, which
are normalized so that on the output surface, Wn(L)= τn or
Wτ(L)= τ. The average profile of energy density throughout the
sample excited by a mix of all incident channels is,
WðxÞ¼PN

1 WnðxÞ=N , or equivalently an integral over the
product of Wτ(x) and the probability density of τ. To arrive at
an expression for the functional form of the energy density
profiles, it is useful to consider the scaling of the transmission
eigenchannel profiles and to consider the profiles as functions of
x/L, Wτ(x/L).

In diffusive samples, Wτ(x/L) can be written as the product of
the profile of the completely transmitting eigenchannel with
τ= 1,W1(x/L), and a function Sτ(x/L), which is independent of L/
ℓ and depends only on τ, Wτ(x/L)=W1(x/L)Sτ(x/L)40. W1(x/L)
can be expressed as 1+ F1(x/L), where F1(x/L)=A(L/ℓ)[4(x/L)(1
−x/L)] is a solution of the diffusion equation with boundary
conditions appropriate for perfect transmission40. A(L/ℓ) is the
peak value of F1(x/L) at x/L= 1/2. We show in Fig. 4a and b
that when F1(x/L) is normalized by its peak value, the
curves for translucent and diffusive media collapse to the
function 4(x/L)(1−x/L). Thus, the spatial structure of the
perfectly transmitting eigenchannel is the same in translucent
and diffusive media.

We present results for Sτ(x/L) for L/ℓ= 0.18 for three values
of τ in Fig. 4c. We have not derived an expression for Sτ(x/L) for
diffusing waves from first principles. However, the expression
for transmission eigenvalues τn in terms of xn= L/ξn suggests a
possible analytical expression for Sτ(x/L), which is in good
agreement with the simulations in Fig. 4c. For a given value of τ,
the expression for Sτ(x/L) is an extension of Dorokhov’s
expression for τn on the surfaces of the sample into the
interior22. The values of Sτ=Wτ at x= L and 0 of τ and (2−τ),
respectively, are consistent with the expression, Sτ(x/L)=
2τcosh2((1−x/L)L/ξ′)−τ, where τ is given by 1/cosh2(L/ξ′).
This expression matches the results of simulations in translu-
cent samples for various values of τ shown in Fig. 4c. In
diffusive samples, however, the expression above for Sτ(x)
shows a systematic departure from simulations (Supplementary
Fig. 5). Agreement with simulations in diffusive samples is only
obtained once an empirical function is added in the argument of
the hyperbolic cosine in the expression above for Sτ(x)40

(Supplementary Fig. 6).
A complete description of propagation in random media

requires the scaling of the energy density profiles of transmission
eigenchannels and so the scaling of W1(x/L). The form of the
energy density for the completely transmitting eigenchannel,
W1(x/L)= 1+ A(L/ℓ)[4(x/L)(1−x/L)] does not change through-
out the translucent and diffusive regimes as seen in Fig. 4a and b.
To find the scaling of W1(x/L), it remains to find the scaling of A
(L/ℓ). The variation of the peak value of W1(x/L) with L/ℓ is

plotted in Fig. 5a and fit to the sum of a constant of unity and a
linear term and a leading quadratic correction in L/ℓ. The
coefficient of the linear term is found to be 0.355.

Solving a generalized diffusion equation with flux at the output
equal to the incident flux yields the peak value of A(L/ℓ)= v+L/
2vℓ (Supplementary Note 4). We have shown above that for our
sample, the ratio of v+ and v is 0.7. This gives a linear
contribution to A(L/ℓ) with coefficient 0.35, in agreement with
the coefficient found in simulations. When L approaches ξ, A(L/ℓ)
is expected to increase more rapidly because coherent back-
scattering enhances the return of the wave to points in the
medium41. Thus W1(x) is seen to be the sum of a constant
“ballistic” term, a linear “diffusive” term, and “localization”
correction that becomes important as L approaches the localiza-
tion length Nℓ.

Dwell times. Measurements of optical11,15,18,19,42 and ultrasound16

pulsed transmission through random slabs show that on average
photons arrive earlier than predicted by diffusion theory even in
samples with L > 5ℓ. The average delay time tD can also be deter-
mined from the transmission eigenvalues and energy density pro-
files of the transmission eigenchannels37 (Supplementary Note 4).
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It can be expressed as the average delay time of the transmission
eigenchannels tn weighted by the corresponding transmission
eigenvalues, τn, tD ¼ PN

1 τntn=
PN

1 τn. The eigenchannel delay
time is proportional to the energy stored within the sample so
that tn �

R L
0WnðxÞdx37 (Supplementary Note 4).

In Fig. 5b, we plot tD and the delay time of the fully
transmitting eigenchannel, t1. Since the form of Sτ(x) is
independent of L/ℓ for diffusive waves, the scaling of tD for N
> L/ℓ > 1 largely depends upon the scaling of t1, which is given by
the integral of W1(x) over the sample length. Only for L/ℓ= 2.65
is the amplitude of the “diffusive” component of W1(x/L), equal
to the value of the “ballistic” component, while the value of the
integral of the diffusive term over the sample length only reaches
that for the ballistic term for L/ℓ= 3.82. In addition to the small
slope of A(L/ℓ) vs. L/ℓ, the dwell time increases slowly in thin
samples because the superlinear increases of the integral of W1(x)
(Supplementary Eq. 10) is offset by the sublinear increases of the
tn (Supplementary Fig. 7). In contrast, for thicker samples, τn is
typically small for channels n > g so that low transmission
eigenchannels do not contribute appreciably to tD (Supplemen-
tary Fig. 7). For these reasons, the onset of diffusive scaling of the
dwell time only begins when L/ℓ is substantially larger then unity.
Thus, it is precisely the similarities in the functional form of
characteristics of static transport between translucent and opaque

samples which lead to reduced delay times relative to predictions
of the diffusion model.

The shorter delay time in transmission relative to diffusion
theory11 limits the time in which the wave can spread in the
transverse direction and so results in a reduced width of the
transverse profile of intensity on the output surface in thin
samples13 and early times18 relative to diffusion theory. In thicker
strong scattering samples, observations of a halt in the transverse
spread of the intensity profile on the output surface indicate that
the wave is localized43. Though the present study has focused on
longitudinal propagation in translucent and diffusive quasi-one-
dimensional samples, the evolution of the transverse intensity
distribution with sample thickness in samples of any scattering
strength can be studied in the slab geometry within the
framework of transmission eigenchannels by decomposing a
narrow incident beam into a sum of transmission eigenchannels.

Discussion
A consistent picture of propagation in the crossover from ballistic
to multiple scattering has long remained elusive. On the one
hand, the scaling of transmission in samples hardly thicker than a
mean free path still obeys diffusion theory, while on the other the
dwell time in samples up to several times the mean free path scale
only slightly faster than linearly, as would be expected for waves
following nearly ballistic trajectories. This work shows that the
questions raised are even more perplexing since measurements of
optical transmission are found to scale diffusively down to one-
fiftieth of the mean free path.

We show here that a description of the energy density and flow
within random translucent and opaque systems emerges from the
common statistics of the ratios of the sample length and eigen-
channel localization lengths, xn= L/ξn, together with the intensity
profiles of the associated transmission eigenchannels. Transmis-
sion is determined by the sum over transmission eigenvalues,
which reflects the mutual repulsion of the xn, while the deviation
of dwell time from diffusion theory is a consequence of the dif-
fusive form of the energy density profiles of transmission eigen-
channels even in translucent samples. The delay time for diffusive
samples is largely determined by the profile of the fully trans-
mitting transmission eigenchannel W1(x/L), which includes a
factor which is the sum of a constant ballistic term, a diffusive
term linear in L/ℓ, and a leading-order localization correction
which is quadratic in L/ℓ. It is the small coefficient of the linear
term relative to unity which is largely responsible for the slow
approach to the quadratic scaling of tD associated with diffusion.

The delay time in reflection, which is of importance in optical
or ultrasound diffuse tomography, can also be given in terms of
the properties of transmission eigenchannels. Since the delay time
of transmission eigenchannels is the same in reflection as in
transmission37 and the reflection coefficient in the nth transmis-
sion eigenchannel is (1−τn), the average delay time in reflection is
treflectionD ¼ PN

1 ð1� τnÞtn=
PN

1 τn
37.

The work in this paper opens the door for study of many open
issues. Among these are a fuller expression for the localization
contribution to W1(x/L), not only the coefficient of the normal-
ized function F1(x/L)/F1(1/2), but also the deviation of this
function from the diffusive form. If propagation is primarily
through single peaked localized states, one would expect that
F1(x/L)/F1(1/2) would narrow significantly since the intensity
should be peaked within a localization length of the
center of the sample for high maximal transmission44. But if the
width of this function does not change appreciably,
transport would then largely be through coupled localization
centers, known as necklace states, in which the incident wave is
coupled strongly through the sample45. Thus, the width of F1(x/
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Fig. 5 Scaling of W1(L/2) and the delay times. a The scaling of W1(L/2)
(blue squares) is fit by a parabolic function 1+ a(L/ℓ)+ b(L/ℓ)2. The fit
gives a= 0.355 and b= 0.0066 (red dashed curve). The linear coefficient a
can be calculated using diffusion theory, while the quadratic term reflects
enhanced delay due to incipient localization. The sum of the constant term
of unity (black dashed horizontal line) and the linear term of a(L/ℓ) is
shown as the yellow solid line. b The delay time of the fully transmitting
eigenchannel obtained from the composite phase derivative of the
eigenchannel with respect to the frequency shift38 is shown as the triangles
in Fig. 5b. The integral of W1(x) multiplied by the proportionality
constant β is shown as the red circles in the log-log plot of Fig. 5b. The
overlap of the two plots shows that the integral W1(x) is proportonal to the
delay time of the fully transmitting eigenchannel (Supplementary Note 4).
The scaling of tD, shown as the blue squares, is similar to the scaling of t1
for diffusive waves

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04242-4

6 NATURE COMMUNICATIONS |  (2018) 9:1862 | DOI: 10.1038/s41467-018-04242-4 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


L)/F1(1/2) would indicate the dominance of the transport through
either isolated states or necklace states for localized waves. The
existence of both single peaked localized states and multiply
peaked necklace states has been observed in layered media46,
single mode waveguides47, natural materials48, and can be created
in multimode optical fiber with mode coupling49. It is also of
great interest to explore the disposition of energy within thin
anisotropic scattering media, of importance in biomedical
research50.

Obtaining the mean free path over the full range of opacity is
also of importance in monitoring colloidal, micellar, or metallic
nanoparticle concentrations, sedimentation, atmospheric condi-
tions, and medical diagnostics. Since the scaling of transmission
and time delay depend on ℓ and zb in different ways, the results
presented here suggest that it should be possible to determine the
mean free path in samples over a broad range of L/ℓ. In future
work the relationship between ℓ and zb in the presence of internal
reflection will be determined in the regime of the crossover from
translucent to multiply scattering samples. These results would,
for example, provide a path towards quantitative monitoring of
particulate concentrations in liquids or gases in sample with
thickness of the order of the mean free path. The transport mean
free path can also be obtained from the spacing of the xn in
translucent samples, in which the measurements of the TM can
be more complete since the number of coherence areas is rela-
tively small in translucent media31.

Recent developments of techniques for measuring the
transmission matrix for imaging applications are relevant to
both thin and thick scattering samples. A clearer picture of the
connection between energy density and time delay in scattering
are of importance in many approaches to imaging. For example,
in medical imaging, different regions of a sample are probed in
diffusing temporal field correlation spectroscopy51 as the dis-
tance between the probe and source are changed, while different
dwell times within the medium may be probed even for fixed
spacing by utilizing correlation spectroscopy in the time
domain52. These techniques are important in non-invasively
monitoring blood flow and managing the delivery of oxygen to
the brain.

Methods
Numerical simulations of a scalar wave propagating. The Green’s function
G(r,r′) between arrays of points on the input surface r= (0, y) and at a depth
x, r′= (x, y) can be obtained by solving the wave equation ∇2Eðx; yÞ þ
k20εðx; yÞEðx; yÞ ¼ 0 on a square grid via the recursive Green’s function method. To
calculate the transmitted flux for various incident and output waveguide modes, the
Green’s function is expressed in terms of the basis of the waveguide modes,
tbaðxÞ ¼ ffiffiffiffiffiffiffiffiffi

νbνa
p RW

0 dy′
RW
0 dy ϕbðyÞϕ�aðy′ÞGðr; r′Þ, in which va is the group velocity

of the waveguide mode a, and W is the width of the waveguide.
The incident wavefront vn and outgoing filed un associated with the nth

eigenchannel can be found using the singular value decomposition of the
transmission matrix, t=UΛV+,where un and vn are columns of the unitary matrix
U and V, respectively. Λ is a diagonal matrix with elements

ffiffiffiffiffi
τn

p
. The field at a

depth x for an incoming eigenchannel in momentum space is found by multiplying
the transmission matrix tba(x) by vn. Summing the square of the coefficients over
the N waveguide modes yields the density of the flux at x. At the output surface, x
= L, this gives τn. The energy density Wn(x) can then be obtained by dividing the
density of the flux by the average speed v+ of the wave propagating through the
waveguide. The scaling of the total transmission shown in Fig. 2b was obtained by
averaging over 5000 sample configurations. Wn(x) for L= 5.2 μm and 124.2 μm
was averaged over 200,000 and 10,000 samples, respectively, and the energy
distributions for eigenchannels with a specific value of transmission τ are found by
averaging the eigenchannel with transmission between 0.98τ and 1.02τ. To find the
scaling of the peak value of the F1(x), 500 sample realizations were averaged for
each of the lengths of samples to ranging from 5.2 to 154.5 μm to yield the 〈W1(x)〉.
The profile of the fully transmitting eigenchannels for τ > 0.98 was subsequently
fitted with a parabolic function to give the peak value.

Optical measurements of light propagation through a wedged random med-
ium. The scaling of total transmission is measured for a colloid of 0.17-μm-dia-
meter polystyrene spheres in water at a volume fraction of ~0.003. An anionic

surfactant was added to the colloidal suspension to prevent particle aggregation.
The latex spheres and surfactant were obtained from Polysciences. The colloid is
placed in two wedged sample holders made from microscope slides meeting at
vertex angles of θwedge= 0.86° and 5.88°. Polished glass and aluminum wedges were
used as spacers between the slides. The sides of the assembly were sealed with wax.
The normally incident beam of light at 532 nm is weakly focused on the incident
face of the sample. The sample is translated perpendicular to the vertex line in steps
of 1 mm after each measurement of transmission. The light spreads to a spot on the
output plane with diameter of order of L. Because the wedge angles are small, the
variation in thickness L of the colloid across the illuminated region of the sample is
much smaller than the sample thickness L. The transmitted light is collected in a
Labsphere integrating sphere.

Data availability. The authors declare that all data that support the findings of this
study are available from Zhou Shi at zhoushi.qc@gmail.com upon reasonable
request.
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