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ABSTRACT

Marine viruses are the most abundant biological entity in the oceans, the majority of which infect bacteria and are known
as bacteriophages. Yet, the bulk of bacteriophages form part of the vast uncultured dark matter of the microbial biosphere.
In spite of the paucity of cultured marine bacteriophages, it is known that marine bacteriophages have major impacts on

microbial population structure and the biogeochemical cycling of key elements. Despite the ecological relevance of marine
bacteriophages, there are relatively few isolates with complete genome sequences. This minireview focuses on knowledge

gathered from these genomes put in the context of viral metagenomic data and highlights key advances in the field,
particularly focusing on genome structure and auxiliary metabolic genes.
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INTRODUCTION

Marine viruses are found at concentrations up to ~1 x 108 ml?,
resulting in an estimated ~4 x 10°° viruses in the oceans (Suttle
2005). They play a key role in the biogeochemical cycling of ma-
jor elements, for example by diverting the flow of carbon into
dissolved and particulate organic matter through the lysis of
their bacterial hosts, thus influencing the amount of carbon that
is sequestered to the deep ocean by the biological pump (see
Suttle 2007 for review). Despite the importance of marine bac-
teriophages, there are relatively few isolates for which complete
genome sequences are available (from a total of 2010 bacterio-
phage genome sequences 482 belong to marine bacteriophages;
Fig. 1); therefore, the majority of bacteriophages form part of the
vast uncultured dark matter of the microbial world.

It is now over 30 years since the genome of the 5.3-kb
ssDNA bacteriophage $X174 was completed (Sanger et al. 1977),
leading to the sequencing of the first dsDNA genomes of bacte-
riophages lambda and T7 (Sanger et al. 1982; Dunn and Studier

1983). These smaller bacteriophage (hereafter phage) genomes
were completed many years before the first bacterial genome
was published in 1995 (Fleischmann et al. 1995; Fig. 1). The first
marine phage genome, PM2, infecting the heterotroph Pseudoal-
teromonas, was completed over two decades after sequencing of
¢X174 (Mannisto et al. 1999), with the first marine phage infect-
ing a photoautrophic host (Synechococcus) not completed until a
few years later (Chen and Lu 2002; Fig. 1).

The number of bacterial and phage genomes has in-
creased dramatically in the last 10 years, with 10 times
as many phage genomes sequenced post 2004 than in the
preceding two decades, in line with the decreasing per-
base cost of sequencing (Fig. 1). Notably, the number of
phage genomes deposited in 2013 exceeds that of bacterial
genomes (Fig. 1). However, there are more assembled bac-
terial (3316) than phage genomes (2010) within the Euro-
pean Nucleotide Archive (ENA: http://www.ebi.ac.uk/genomes/;
Fig. 1). This is because despite the early sequencing efforts in
phage research and their smaller genomes relative to bacteria,
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Figure 1. Number of bacterial, phage and marine phage genomes submitted per year to the International Nucleotide Sequence Database Collaboration (INSDC). Dates
were extracted for all sequences within the EBI phage database (http://www.ebi.ac.uk/genomes/phage.html). Data are only shown from 1982 onwards with the inception
of publically available databases. Dates are representative of when the sequence was submitted to INSDC rather than when any subsequent papers were published.
Prophages are not included unless they have been specifically sequenced independently of their host bacterium. Phages were classified as marine if they were isolated

from a marine environment.

thousands of bacterial isolates are being sequenced (Eyre et al.
2013; Chewapreecha et al. 2014; Nasser et al. 2014) and the data
submitted into whole genome sequencing databases as raw
read data (https://www.ebi.ac.uk/genomes/wgs.html), without
assembly of the genome. To date there are no studies carried
out at the same scale for phages.

This is even more pronounced for marine phages; whilst
the number of deposited phage genomes increased sharply post
2004, this did not occur for marine phages (Fig. 1). There was
a substantial increase in 2013 as a result of the seminal work
by Mizuno et al. (2013a,b), which assembled 208 complete ma-
rine phage genomes from metagenomic samples and the fur-
ther submission of 139 Synechococcus phage isolates. However,
the submissions in 2013 are an anomaly from the general trend
as only 11 marine phage genomes were submitted in 2014. Thus,
despite the ability to readily isolate marine phages and techno-
logical advances in sequencing, the number of marine phage
genomes submitted is similar to that of levels 10 years previ-
ously. This observation suggests that the area of marine phage
genomics has yet to fully utilise the potential of high-throughput
sequencing.

The relatively small number and diversity of marine phages
can also be deduced by examining the broad genome parame-
ters of the sequences deposited in the ENA. A comparison of mo-
lar G + C content (mol%GC) and genome size revealed a limited
range of these parameters for marine phages (Fig. 2). Whilst this
may be a specific adaptation to the marine environment that se-
lects for a certain mol%GC, it more likely results from the bias
of isolation performed on a small number of hosts, not repre-
senting the true diversity of marine phages (Table S1, Support-
ing Information). In this regard, it is clearly noticeable that there
are very few marine phage genomes which have a high mol%GC

content (Fig. 2). However, the presence of marine bacteria with
high mol%GC is well documented (Subramani and Aalbersberg
2012), highlighting even in the broad terms of genome size and
mol%GC that there are large numbers of phages for which there
are no sequenced representatives.

With an estimated 5476 pelagic viral populations in the
world’s oceans (Brum et al. 2015), only very few have cultured
isolates and even less have representative genomes. Currently,
there are 482 complete marine phage genomes within the ENA
(May 2015), for 208 of which the host has not been cultured since
they were assembled from metagenomic samples, and the re-
mainder isolated from merely 22 genera of bacteria (Table S1,
Supporting Information). With an estimated 2 x 10° bacterial
taxa present in the ocean (Curtis, Sloan and Scannell 2002), hav-
ing representative phages isolated on just 22 bacterial genera
highlights how much is still to be discovered. Despite sequenc-
ing only encompassing the tip of the phage iceberg, insights
from these genomes have radically changed our understanding
of genome evolution, phage-host interactions and phage ecol-
ogy. This review will focus on what has been learnt from the
genomes of cultured marine phage isolates, with a brief sum-
mary of the culture-independent methods of phage genome se-
quencing.

CULTURE-DEPENDENT VERSUS
CULTURE-INDEPENDENT GENOME
SEQUENCING

Historically, phage genome sequencing has relied on the tra-
ditional culturing of a bacterial host; thus, the isolation and
purification of phage is limited by the very need to culture the
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Figure 2. Scatter plot of genome size versus mol %G + C of marine phages and non-marine phages. Box and whisper plots for the range in genome size and range in

mol %G + C are also plotted adjacent to the Y- and X-axis, respectively.

host bacterium. Furthermore, the construction of shotgun clone
libraries from phage DNA presented technical difficulties, in-
cluding the presence of modified nucleotides and possession of
toxic genes in phage genomes (Breitbart et al. 2002). Whilst host
isolation remains a bottleneck, the advent of high-throughput
sequencing methods has alleviated the problems associated
with clone libraries. The relatively small size of phage genomes
(phage median genome size 44.8 kb; bacterial median genome
size 3.04 Mb) makes them ideal candidates for sequencing, with
complete genome assembly possible for the majority (Rihtman
et al. 2016). The use of bench top sequencers offers the poten-
tial to sequence ~200 phage genomes in a single run, with min-
imal method optimisation. Whilst isolation will continue to be
an issue, there are numerous reports of the isolation of novel
phages (Wichels et al. 1998; Alonso, Rodriguez and Borrego 2002),
but there is no genome information for these phages. Even for
well-developed systems where the host bacteria can be cultured,
there has been minimal utilisation of current sequencing tech-
nologies to sequence large numbers of phages. This suggests
that current technologies are not being fully used to study the
genomes of cultured marine phages.

To alleviate the issues of traditional culture-based methods,
a number of metagenomic-based approaches have been used to
study marine phage genomics. Marine phage genomics has been
at the forefront of metagenomics since the pioneering work of
Breitbart et al. (2002). Since then, there have been numerous
shotgun metagenomic studies that have sequenced small frag-
ments to explore viral diversity (e.g. see Angly et al. 2006; Dins-
dale et al. 2008; Sharon et al. 2011; McDaniel et al. 2014) or con-
structed large fosmid libraries allowing the reconstruction of
near-complete marine phage genomes (Mizuno et al. 2013a,b).

Whilst metagenomics has vastly increased our understanding
of marine phage diversity, the initial drawback was that it pre-
vented the unambiguous assignment of phage to their respec-
tive hosts. The advent of single-cell amplified genomes (Ro-
drigue et al. 2009) has gone some way to resolve the issue of who
infects whom, with phages identified within bacterial single-cell
amplified genomes. For example, the recent analysis of SUP05
bacterial single-cell amplified genomes identified co-infection
with both dsDNA and ssDNA phages, including contigs repre-
senting new genera within the Caudovirales and Gokushoviriniae
families (Roux et al. 2014). Furthermore, the latest combination
of viral tagging (Deng et al. 2012) with metagenomics is now
able to link the genomes of environmental phage isolates and
provide host information (Deng et al. 2014). Recent advances
in marine viral metagenomics are thoroughly reviewed else-
where (Brum and Sullivan 2015). Despite all the pros of metage-
nomics, the lack of phage isolates still limits further experimen-
tal work critical for understanding the dynamics of phage-host
interactions.

SHEDDING LIGHT ON PHAGE DARK MATTER

Whilst the use of metagenomics has started to reveal the
vast diversity of phage genomes, a common feature of these
metagenomic datasets is that very few sequences can be as-
signed to known phage isolates, e.g. 87%-93% of the Pacific
Ocean virome could not be associated to any viral taxa (Hur-
witz and Sullivan 2013). Hence, sequencing of phage isolates
can make substantial contributions to the analysis of these
large metagenomic datasets. This is demonstrated by the se-
quencing of four phages infecting the ubiquitous SAR11 clade,
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the most abundant marine bacterial lineage, accounting for be-
tween 22% and 55% of prokaryotic cells (Morris et al. 2002). The
small cell size and slow growth of these bacteria, attributes
that could potentially impede viral replication, initially led to
the idea that these organisms were resistant to viral infec-
tion (Yooseph et al. 2010). However, the recent isolation of four
SAR11-infecting phages (pelagiphages) enabled determination
of their abundance and distribution in metagenomic samples,
with HTVC010P-like pelagiphages 2.5x more abundant than all
T4likeviruses combined (Zhao et al. 2013).

Shortly after the characterisation of the ubiquitous
pelagiphage, phage HMO-2011 was isolated and described
(Kang et al. 2013). This phage infects Candidatus Puniceispirillum
marinum strain IMCC1322, a representative of the SAR116 clade
which contributes up to 10% of the bacterial assemblage in
euphotic zone waters (Kang et al. 2013). HMO-2011 usurped
HTVCO10P as the most abundant phage in marine viral metage-
nomic libraries, with up to 25% of taxonomically identifiable
reads assigned to HMO-2011 (Kang et al. 2013), once again
demonstrating the power of studying individual phage isolates
to understand the global distribution of marine phages.

Even for the most well studied of marine phage-host sys-
tems, sequencing of additional phage isolates can have a sig-
nificant impact on identifying the viral dark matter, as exem-
plified by cyanophage S-TIMS5 (Sabehi et al. 2012). S-TIM5 lacks
the structural module that is conserved between cyanophages
and T4likeviruses, containing instead a novel set of structural
and replication genes (Sabehi et al. 2012). These include a
mitochondrial-like DNA polymerase that is also found in a phage
infecting Acaryochloris (Chan et al. 2015), providing further sup-
port for the idea of a phage origin for mitochondrial DNA poly-
merase (Chan et al. 2011, 2015; Sabehi et al. 2012). Comparison
of the S-TIM5 genome against metagenomic datasets demon-
strated the widespread distribution of this previously unknown
phage type within the environment (Sabehi et al. 2012).

The vast viral metagenomic datasets that are available (Hur-
witz and Sullivan 2013; Brum et al. 2015) provide a powerful re-
source for determining the distribution of phage groups. How-
ever, far more individual phage isolates need to be sequenced
so that the majority of metagenomic reads can be assigned to a
phage taxa, rather than the minority.

GENOME STRUCTURE AND EVOLUTION

The sequencing of phage isolates has revealed common traits
to phage genomes, including a modular genome structure, ho-
mology with phage infecting enteric bacteria and localisation
of accessory genes within a specific region of the genome. The
most common is a modular genome structure that is found
in cyanophages, roseophages (phage infecting the roseobacter
lineage) and pelagiphages infecting SAR11 and SAR116 (Mil-
lard et al. 2009; Sullivan et al. 2010; Kang et al. 2013; Zhao et al.
2013; Chan et al. 2014). Another trait common to some groups
of marine phages is a shared gene pool with phages infecting
enteric pathogens (Fig. 3). This was first observed in the ma-
rine cyanophage S-PM2, a T4likevirus that infects Synechococcus,
where a shared gene module that encodes for phage structural
proteins was found in both S-PM2 and phage T4 infecting Es-
cherichia coli (Hambly et al. 2001) (Fig. 3).

Cyanophages have since become the most comprehensively
studied group of marine phages, with those infecting cells of the
genera Synechococcus and Prochlorococcus being predominantly
studied (Hambly et al. 2001; Chen and Lu 2002; Clokie et al. 2003;

Lindell et al. 2004; Mann et al. 2005; Sullivan et al. 2005, 2006,
2010; Weigele et al. 2007; Chenard and Suttle 2008; Millard et al.
2010; Chan et al. 2011; Labrie et al. 2013). Currently, there are 193
genome sequences deposited in the ENA (Table S1, Supporting
Information), the majority of which are part of the T4likevirus
genus (Table S1, Supporting Information), sharing both mor-
phological and genetic similarity (Hambly et al. 2001; Weigele
et al. 2007; Millard et al. 2009; Sullivan et al. 2010), as well as
an established set of core genes (Sullivan et al. 2010; Ignacio-
Espinoza and Sullivan 2012). Recently, an increased number of
cyanophages of the podoviridae family has also been sequenced,
revealing a conserved core of 12 genes and a close relation-
ship to coliphage T7 (Labrie et al. 2013). Whilst the genomes of
podoviruses and myoviruses infecting cyanobacteria share very
few genes, there are parallels with respect to the localisation of
auxiliary metabolic genes (AMGs) in their genomes. Within the
myoviridae, AMGs are found to be localised in hypervariable re-
gions (Millard et al. 2004) (Fig. 3). A similar pattern of AMG in-
sertions within genomic islands was observed in cyanophages
of the podoviridae family (Labrie et al. 2013). An analogous sys-
tem was also found for roseophages of the N4likevirus genus,
whereby AMGs were found to be localised within specific regions
(Chan et al. 2014). Whilst AMGs are acquired by horizontal gene
transfer, the mechanism that localises these genes to specific
regions remains unknown.

In common with cyanophages, roseophages of the N4likevirus
genus share a common gene pool with phages infecting en-
teric pathogens (Chan et al. 2014). A comparison of 25 N4likevirus
phages revealed 14 genes presentin all roseophages and another
nine genes present only in marine isolates, the latter likely in-
cluding genes specifically required for infecting a marine host
(Chan et al. 2014).

Not all marine phages share genes with their non-marine
counterparts. Unlike the phages discussed so far, phages infect-
ing bacteria of the genus Cellulophaga share very few genes with
any other phages (Holmfeldt et al. 2013). The diversity of these
31 phages infecting Cellulophaga baltica (Table S1, Supporting In-
formation) is far higher than observed for other marine phages
and is comparable to the diversity observed in non-marine sys-
tems (Holmfeldt et al. 2013). This single study exemplifies the
benefit of sequencing cultured phage isolates to expand our un-
derstanding of phage genomes, given itidentified 12 new genera
and one new family from just 31 phage isolates (Holmfeldt et al.
2013). The data garnered from the genomes of these Cellulophaga
phages have subsequently been combined with experimental
data, with a single nucleotide polymorphism in a gene encoding
a putative tail spike protein linked to altered host range (Holm-
feldt et al. 2014).

THE ‘SPECIES’ CONCEPT?

Sequencing the genome of phage isolates is also beginning
to provide evidence for phage ‘species’. The idea of a phage
‘species’ concept derives from one of the first marine phages to
be sequenced, SIO1, that infects Roseobacter SIO16, one of the
limited number of marine phages to have been re-sequenced
and re-annotated (Angly et al. 2009). In a study conducted some
12 years after the original isolation of SIO1, a further four
phages infecting Roseobacter SIO16 were isolated. In compari-
son to SIO1, these genomes were found to have 96%-98.4% av-
erage nucleotide identity (ANI), thus demonstrating that SIO1-
like phages are stably maintained in the environment over ~500
generations without any significant genomic re-arrangements
(Angly et al. 2009).
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Whether a ‘species’ concept is valid for other phage-host
systems remains to be determined. In cyanophages, no two
completely sequenced genomes have similar ANI levels across
their entire length, as observed for the SIO1-like phages (Millard
et al. 2009; Sullivan et al. 2010). Yet, the sequencing of eight genes
from 65 cyanophages isolated over a 10-year period confirmed
the presence of phage ‘strains’ that are maintained within the
environment (Marston and Amrich 2009). Furthermore, the use
of viral tagging combined with metagenomics suggests that dis-
crete populations of cyanophages are stable in the environment
(Deng et al. 2014).

PHAGE AMGs

A common property of marine phage genomes is their propen-
sity for carrying AMGs, which are thought to augment the
metabolic potential of the host during the infection process (Bre-
itbart et al. 2007). This was first observed in roseophage SIO1,
the first marine phage found to maintain a number of genes
that were orthologues of host genes, including genes encoding
aribonucleotide reductase, a PhoH-like protein, thioredoxin and
endodeoxyribonuclease I (Rohwer et al. 2000).

As more marine phage genomes have been sequenced, it has
become apparent that AMGs are a common feature. The most

well-studied AMG is the psbA gene, encoding the D1 protein of
Photosystem II (PSII), which was first reported in cyanophage
S-PM2 (Mann et al. 2003). It was subsequently found in the
Prochlorococcus-infecting phages P-SSM4 and P-SSM2 (Sullivan
et al. 2005) and is now known to be widespread in cyanophage
isolates (Lindell et al. 2004; Millard et al. 2004, 2009; Sullivan et al.
2005, 2006, 2010) and in the environment (Lindell et al. 2004;
Sharon et al. 2007; Chenard and Suttle 2008; Zheng et al. 2013).
The genome of S-PM2 also revealed the presence of psbD, encod-
ing the D2 protein of PSII (Mann et al. 2003). By expression of psbA
and psbD, cyanophages are thought to maintain the D1/D2 repair
cycle, which are susceptible to photodamage if not replaced, and
thus sustain photosynthetic function of their host during infec-
tion (Mann et al. 2003). This is supported by the detection of both
phage-derived psbA transcripts (Lindell et al. 2005; Clokie et al.
2006; Millard et al. 2010) and D1 peptides from infected cells in
laboratory studies (Lindell et al. 2005). Moreover, in the environ-
ment psbA is a core gene in photic viromes and phage-derived
transcripts are readily detected (Sharon et al. 2007; Hurwitz,
Brum and Sullivan 2014). Thus, the expression of phage-encoded
genes was thought to directly contribute to CO, fixation. How-
ever, there is evidence that the opposite occurs and CO; is halted
during early phage infection, whilst maintaining host photosyn-
thetic electron transfer (Puxty et al. 2016). psbA and psbD are not
the only AMGs that can be broadly classified as influencing the
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photosynthetic function of their cyanobacterial hosts. A number
of cyanophage genomes carry genes encoding proteins that may
inhibit the Calvin cycle, encode a variety of electron transport
components or are involved in pigment biosynthesis and central
carbon metabolism (Millard et al. 2004, 2009; Sullivan et al. 2005,
2010; Weigele et al. 2007; Sabehi et al. 2012; Dekel-Bird et al. 2013;
Frank et al. 2013). In addition, metagenomics has revealed a cas-
sette of genes encoding a putative functional Photosystem I (PSI)
(Sharon et al. 2009), with some phages possessing genes encod-
ing both photosystems (Alperovitch-Lavy et al. 2011). However,
no cultured phage isolates have, as yet, been found to contain a
complete PSI and PSII cassette.

The roles of many of these photosynthesis-related AMGs
have been comprehensively reviewed elsewhere (see Puxty et al.
2015). Whilst there is limited functional data for most of these
photosynthesis-related genes, it is thought that these AMGs
generally provide the same function as their cyanobacterial or-
thologues, as is the case with the photosynthesis-related genes
hol, petF and pcyA (Dammeyer et al. 2008). In the case of the
phage-encoded PebS additional function is provided, as PebS
catalyses a reaction that normally requires two host proteins
(PebA and PebB) (Dammeyer et al. 2008). The carriage of pcyA
and pebS is thought to provide a fitness advantage to the phage,
through an as yet undescribed mechanism, since these genes
were found in phage-infecting Prochlorococcus which do not pos-
sess phycobilisome complexes. The puzzling role of genes re-
lated to phycobilin biosynthesis in phages is further confounded
by the recent discovery and biochemical characterisation of
a PcyA homologue within a phage that likely infects an al-
phaproteobacteria, thus suggesting a role for phycobilins out-
side cyanobacteria (Ledermann, Beja and Frankenberg-Dinkel
2016).

Beyond photosynthesis and carbon metabolism, AMGs that
may alter other biogeochemical cycles have also been discov-
ered. Three genes with a possible role in P metabolism have
been identified so far: phoH, which is widespread in marine
phages (Goldsmith et al. 2011) and a core-gene in T4-like phages
(Ignacio-Espinoza and Sullivan 2012), is known to be part of the
phosphate regulon in Escherichia coli (Kim et al. 1993), but its func-
tion in phages is unclear (Goldsmith et al. 2011). Other genes re-
lated to P metabolism within cyanophages have also been iden-
tified: pstS encoding a potential periplasmic phosphate binding
protein and phoA encoding a putative alkaline phosphatase (Sul-
livan et al. 2010). Intriguingly, only pstS is overexpressed during
infection of a P-deplete host (Lin, Ding and Zeng 2016).

Recent research suggests that phages may also influence the
sulphur cycle. The SAR116 infecting phage HM0O-2011 contains
a gene encoding a putative hydroxylase «-subunit of methane-
sulfonate monooxygenase (MsmaA) (Kang et al. 2013). Methane-
sulfonic acid (MSA) is an important intermediate in the sulphur
cycle (Kelly and Murrell 1999). As MSA can be oxidised to sulphite
and formaldehyde (Kelly and Murrell 1999) and SAR116 con-
tains the required genes to uptake and oxidise MSA and further
metabolise formaldehyde (Kang et al. 2013), the phage-encoded
MsmaA is speculated to play a role in the initial oxidation of
MSA. Genes encoding the « and y-subunits of the reverse dis-
similatory sulphite reductase (rdsR) are found to be widespread
in phages infecting SUPO5, and are thought to provide roles in
the oxidation of sulphur to sulphite, thus providing phage with
an energy source for the infection process (Anantharaman et al.
2014).

Whilst the evidence for phage encoded genes influencing
global biogeochemical cycles is increasing, there are fewer in-
sights into the role of phage AMGs altering the virulence of their

hosts. The best example is the filamentous phage CTX, which
carries the toxin encoding genes responsible for the full viru-
lence of Vibrio cholerae (Waldor and Mekalanos 1996). Whilst V.
cholerae is found in freshwater and brackish environments, it
is also globally distributed in the marine environment (Escobar
et al. 2015). In addition, other vibriophages have been isolated
that can alter the virulence of their host. Three phages infecting
V. harveyi have been sequenced to date—two siphoviruses (VHS1
& SI0-2) (Khemayan et al. 2012) and a myovirus (VHML) (Oakey,
Cullen and Owens 2002). Despite having very different genome
content, both VHML and VHS1 are thought to have the potential
to enhance the virulence of their host by the carriage of toxin
(Khemayan et al. 2012) or toxin-associated genes (Oakey, Cullen
and Owens 2002).

Viral metagenomic surveys are currently identifying an in-
creasing diversity of AMGs. The challenge then is to link
these AMGs with specific phage genomes and derive phage-
host systems. This will enable experimental functional anal-
ysis of these genes that likely play key roles altering host
metabolism/virulence during infection and with potentially im-
portant knock-on effects for the functioning of global biogeo-
chemical cycles.

CONCLUSIONS

In the last decade, whilst there have been rapid advances in se-
quencing technologies, these advances have not been fully ex-
ploited in the field of marine phage genomics, with both the to-
tal number and diversity of phage genomes lagging in compari-
son to their bacterial hosts. To fully interpret viral metagenomes
and more completely understand the role of phage in the marine
environment, a greater emphasis needs to be placed on isolat-
ing phage to a range of marine bacterial genera and sequenc-
ing their genomes, ultimately providing new model systems for
experimental testing of phage-host interactions. The latter is
readily achievable and affordable with current sequencing plat-
forms. Even with the relatively small number of marine phage
genomes completed, rapid progress has been made; hence, the
future can only surely bring further fascinating insights into the
role phages play in marine systems.
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