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Abstract: Background/Objectives: Artificial intelligence is rapidly permeating the field of
psychiatry. It offers novel avenues for the diagnosis, treatment, and prediction of mental
health disorders. This structured review aims to consolidate current approaches to the
application of AI in telepsychiatry. In addition, it evaluates their technological maturity,
clinical utility, and ethical–legal robustness. Methods: A systematic search was conducted
across the PubMed, Scopus, and Google Scholar databases for the period spanning 2015
to 2025. The selection and analysis processes adhered to the PRISMA 2020 guidelines.
The final synthesis included 44 publications, among which 14 were empirical studies en-
compassing a broad spectrum of algorithmic approaches—ranging from neural networks
and natural language processing (NLP) to multimodal architectures. Results: The review
revealed a wide array of AI applications in telepsychiatry, encompassing automated diag-
nostics, therapeutic support, predictive modeling, and risk stratification. The most actively
employed techniques include natural language and speech processing, multimodal anal-
ysis, and advanced forecasting models. However, significant barriers to implementation
persist—ethical (threats to autonomy and risks of algorithmic bias), technological (limited
generalizability and a lack of explainability), and legal (ambiguous accountability and
weak regulatory frameworks). Conclusions: This review underscores a growing disconnect
between the rapid evolution of AI technologies and the institutional maturity of tools
suitable for scalable clinical integration. Despite notable technological advances, the clin-
ical adoption of AI in telepsychiatry remains limited. The analysis identifies persistent
methodological gaps and systemic barriers that demand coordinated efforts across research,
technical, and regulatory communities. It also outlines key directions for future empirical
studies and interdisciplinary development of implementation standards.

Keywords: artificial intelligence; telepsychiatry; digital psychiatry; machine learning;
AI ethics; remote diagnostics; digital interventions; translational research

1. Introduction
Mental disorders represent one of the most urgent and destructive challenges con-

fronting global public health in the 21st century. According to the World Health Organiza-
tion (WHO), anxiety disorders alone had already affected more than 300 million people
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by 2019. The situation deteriorated dramatically during the COVID-19 pandemic. Within
a single year, the prevalence of anxiety and depressive symptoms surged by 25%. As of
early 2023, depression had been diagnosed in 280 million individuals—approximately 4%
of the global population [1,2]. These conditions not only compromise quality of life and
social functioning but also impose a profound economic burden: an estimated 12 billion
workdays are lost annually, costing the global economy over one trillion USD [3].

The crisis is further compounded by a pronounced shortage of qualified mental health
professionals, particularly in low-resource settings and remote regions where psychiatric
care is often entirely unavailable. According to a WHO report, the median global psychia-
trist density in 2020 was 13 per 100,000 population, with high-income countries exceeding
the rate observed in low-income regions by more than fortyfold [4]. Even in the United
States—home to one of the world’s most developed healthcare systems—a shortfall of
over 17,000 psychiatrists is projected by 2030 [5]. In the United Kingdom, nearly one-third
of child psychiatry positions are currently unfilled [6]. Several European countries fare
no better, with fewer than one psychiatrist available per 10,000 inhabitants [7]. These
data collectively underscore the urgent need to reconsider existing models of psychiatric
service delivery.

In response to these challenges, the digital transformation of healthcare—particularly
the integration of artificial intelligence (AI)—is increasingly viewed as a strategic axis of
development [8,9]. In psychiatry, AI has already been employed for speech and affec-
tive behavior analysis, suicide risk prediction, and psychometric monitoring via mobile
applications, as well as for remote support through chatbot-assisted interactions [10,11].
Telepsychiatric platforms based on machine learning and the concept of “digital phenotyp-
ing” are especially promising, enabling the design of personalized therapeutic strategies
and expanding access to care in resource-limited regions [12]. However, this potential is
far from self-actualizing. The use of AI in psychiatry faces a constellation of challenges
that extend well beyond the technological domain. A critical gap remains between the
laboratory precision of AI models and their real-world clinical applicability—a gap that
must be acknowledged and strategically bridged.

Over the past decade, only a limited number of reviews have addressed the intersec-
tion of artificial intelligence and telepsychiatry, with most being either outdated or narrowly
focused. For example, the scoping review by T. & Annamalai (2020) [13] summarized early
conceptual developments but included literature only up to mid-2020 and did not as-
sess methodological quality. Subsequent narrative reviews have concentrated on isolated
aspects—AI-based chatbots [14], traditional telepsychiatric processes [15], or generative
language models [16]—while overlooking multimodal architectures and regulatory shifts.
To the best of our knowledge, no structured review published since 2021 has systematically
examined AI applications across all stages of telepsychiatric care—diagnosis, monitoring,
therapeutic support, and prediction—while simultaneously assessing technological ma-
turity and ethical–legal robustness. This review seeks to fill that critical gap by offering a
comprehensive, PRISMA-aligned synthesis of the literature, with a focus on translational
barriers, system readiness, and governance of digital interventions. While there has been
substantial interest in the technological progress of artificial intelligence, the majority of
reviews limit themselves to describing possibilities without adequately addressing the
primary barriers to scaling and integration into clinical practice. This study is dedicated to
a systematic analysis of these translational challenges and outlines practical steps necessary
for transitioning from experimental models to clinically robust tools in telepsychiatry.

Figure 1 schematically illustrates how the convergence of critical challenges—including
workforce shortages, rising demand, and massive economic losses—creates a “crisis zone” in
which innovative solutions are no longer optional but imperative.
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Figure 1. Mental health in crisis: global burden and AI-driven solution.

Despite the growing interest in the application of artificial intelligence in psychiatry,
its use within telepsychiatry remains fragmented and insufficiently systematized. Ex-
isting reviews tend to focus either on digital platforms or machine learning algorithms,
often neglecting the distinct challenges of remote mental health care and the nuances of
clinical context.

Bridging foundational innovation and clinical relevance, this review delivers a struc-
tured analysis of artificial intelligence in telepsychiatry. It encompasses the full technolog-
ical range—from classical machine learning methods (support vector machines, logistic
regression, random forests, and boosting) to advanced deep learning architectures, such as
transformers, BERT, GRU/LSTM, and hybrid models. Special attention is given to natural
language processing for speech and text analysis, state-of-the-art tools for explainability
and algorithmic fairness (integrated gradients, SHAP, and reweighing), as well as digi-
tal assistants, chatbots, federated learning, and privacy-preserving techniques. Ethical
and regulatory aspects are addressed through the frameworks of GDPR, LINDDUN, and
living-lab models.

This comprehensive yet focused overview provides a nuanced perspective on the
current AI ecosystem in psychiatry, forming a basis for assessing technological maturity
and clinical applicability. By classifying algorithms and clinical cases, the review highlights
key barriers to implementation and research gaps hindering clinical translation, with a
distinct emphasis on the interplay of technical, ethical, and regulatory factors shaping the
future of digital psychiatry.

The aims of this review are threefold: (1) to synthesize existing scientific evidence on
the use of AI in psychiatric practice; (2) to delineate the primary ethical, technological, and
legal obstacles; and (3) to outline pathways toward more accessible and effective global
mental health care.

2. Methodology
2.1. Aim and Rationale for the Chosen Format

In line with the stated objectives, the review was initially conceived as a narrative
synthesis. However, as empirical studies with reportable quantitative metrics were pro-
gressively incorporated, the structure evolved toward that of a systematic review. While a
full formalization of all components of a systematic review—such as protocol registration
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(e.g., in PROSPERO)—was not originally intended, the core stages, including eligibil-
ity criteria formulation, search strategy, screening procedures, and data analysis, were
subsequently formalized in accordance with PRISMA 2020 recommendations [17].

2.2. Sources and Databases

The systematic search was conducted across the international bibliographic databases
PubMed and Scopus, with Google Scholar used as a supplementary source to identify
non-standard publications and preprints. The search covered the period from 1 January
2015 to 25 March 2025, with a particular emphasis on studies published between 2023 and
2025. These sources were selected due to their relevance and representativeness for the field
of digital psychiatry and artificial intelligence. Databases such as Embase and Cochrane
were excluded due to substantial overlap with the already covered sources. In addition,
a manual search was performed using reference lists from the included studies, recent
thematic reviews, and official sources (e.g., WHO, UNESCO, AMA, and Royal College of
Psychiatrists, among others).

Grey literature—including dissertations, reports, and conference proceedings—was delib-
erately excluded, with the exception of preprints and official publications from international
organizations that were openly accessible and provided clear methodological descriptions.

2.3. Search Strategy

A tailored search strategy was developed for each database, incorporating Boolean
operators (AND, OR), domain-specific terminology, and field-specific filters (Title, Abstract,
Keywords, and MeSH). The search was structured around three core conceptual domains:
(1) artificial intelligence, (2) mental health, and (3) digital psychiatry and telemedicine. The
final search iteration was completed on 25 March 2025.

As an example, the search query applied to PubMed is presented below (targeting
the Title/Abstract/MeSH fields). In addition to the listed terms, filters were applied for
publication date (1 January–25 March 2025), language (English), and sample type (Humans),
which may introduce a potential language bias (see Box 1).

Box 1. Example of PubMed search query.

(“Artificial Intelligence”[Mesh] OR “Machine Learning”[Mesh]
OR “Deep Learning” OR “Natural Language Processing” OR AI OR ML)
AND
(“Psychiatry”[Mesh] OR “Mental Health” OR Depression OR Anxiety)
AND
(“Telemedicine”[Mesh] OR Telepsychiatry)
AND
(“1 January 2018”[Date—Publication]: “25 March 2025”[Date—Publication])

A separate search strategy was applied for Google Scholar, based on manually curated
keyword phrases without the use of formal filters. Search queries were constructed by hand,
with an emphasis on identifying non-standard publications, preprints, and thematically
relevant sources. Result rankings were determined automatically by the platform, while
selection was performed manually through the screening of titles and abstracts. Examples
of key phrases used are provided in Supplementary Table S1 (Google Scholar section). All
the retrieved records were imported into Zotero (v6.0.30), where duplicate entries were
automatically removed. A two-stage screening process followed, consisting of an initial
relevance check based on titles and abstracts, and a subsequent full-text evaluation. At
each stage, selection was carried out independently by two reviewers; disagreements were
resolved through discussion until consensus was achieved.
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2.4. Inclusion and Exclusion Criteria

Original studies were eligible for inclusion if they applied artificial intelligence meth-
ods within psychiatry or closely related disciplines. To meet the criteria, studies were
required to report methodological details, describe sample characteristics, and present at
least one quantitative performance metric.

Systematic and scoping reviews were also considered, provided they employed a
formalized analytical framework.

Only English-language publications released between 2015 and March 2025 were
eligible and only if their content aligned with the thematic scope of this review.

Exclusion criteria encompassed studies lacking an AI component, methodological
transparency, or quantitative indicators. Additional exclusions included non-full-text mate-
rials, opinion pieces, letters to the editor, and publications in languages other than English.

Final inclusion decisions were made independently by two reviewers, in accordance
with predefined criteria (see Supplementary Table S2).

2.5. Study Selection Procedure

The initial search yielded 4812 unique records. Additional sources of grey literature
were also considered: websites (n = 14), organizational documents (n = 6), and backward
citation chains (n = 5). However, all of these were directly merged into the main corpus
and not processed separately. Deduplication using Zotero (v6.0.30) reduced the dataset
to 3225 entries. The initial screening, based on titles and abstracts, was conducted inde-
pendently by two reviewers and resulted in the exclusion of 3093 records that failed to
meet the predefined relevance criteria, including topic, document type, language, and
publication date.

At the full-text assessment stage, 132 publications were reviewed. Of these, 94 were
excluded due to the absence of quantitative metrics, the lack of methodological detail,
or a primary focus unrelated to the application of AI in psychiatry. The final selection
comprised 44 publications, including 14 empirical studies reporting explicit performance
metrics for AI models. A step-wise exclusion log is summarized in Supplementary Table S2.
The remaining 24 studies were included for contextual and normative–ethical analysis.

Screening at all stages was conducted in parallel by two independent reviewers;
discrepancies were resolved through discussion until consensus was reached. Formal
inter-rater reliability measures (e.g., Cohen’s kappa) were not applied due to the limited
volume and high initial agreement between reviewers. All decisions were made following
a structured selection procedure. The literature selection process is depicted in the PRISMA
2020 flow diagram (see Supplementary Figure S1).

In addition to the core PRISMA criteria, the study selection also considered the di-
versity of methodological approaches and geographic representation. Particular attention
was given to the variety of AI model types, target mental health conditions, and levels of
technological maturity. Priority was assigned to studies providing detailed accounts of
algorithmic architectures, performance metrics, and model limitations, which subsequently
enabled thematic classification and critical appraisal of the literature.

2.6. Compliance with Transparency Principles

Data extraction was performed manually using standardized Microsoft Excel (v. 2108,
Build 14332.20721) spreadsheets. This process was applied exclusively to the 15 empirical
studies that met the criteria for comprehensive reporting. The extracted parameters in-
cluded model architecture and type, sample characteristics, and quantitative performance
metrics. Review articles were used primarily for contextual and thematic analysis; no
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formalized data extraction was applied to these sources. Their inclusion was justified by
methodological rigor and thematic relevance.

To ensure methodological rigor and transparency, a structured assessment of potential
sources of bias was performed for each included study. The evaluation encompassed
sample size and representativeness, the presence of blinding or control groups, external
validation procedures, outcome assessment methods (both objective and self-reported),
data completeness, and disclosure of conflicts of interest. Limitations and risk-of-bias
considerations are summarized in Supplementary Table S3 and discussed in detail in
Section 4.2.

During the preparation of the manuscript, ChatGPT (OpenAI, GPT-4o mini, v.1.2025.139.0)
was used exclusively for stylistic refinement and phrasing alignment. All scientific decisions
and conclusions were formulated by the authors; no AI tools were employed for data analysis
or result interpretation. All the content related to scientific reasoning and argumentation was
developed and edited manually.

3. Results
3.1. Empirical Studies and Model Characteristics

From each included empirical study, key parameters were extracted: model archi-
tecture, data type, performance metrics, and methodological features. A standardized
summary of these elements is provided in Supplementary Table S3.

Model architectures ranged from classical approaches (e.g., SVM and logistic regres-
sion) to advanced implementations based on GRU, Transformer, and federated learning.
The input data spanned audio, text, visual and behavioral signals, sensor outputs, and elec-
tronic health records. Several studies conducted external validation procedures, confirming
the robustness of the models.

Despite the heterogeneity of study designs, most models demonstrated high perfor-
mance metrics—such as accuracy, sensitivity, and area under the curve (AUC)—comparable
to clinical benchmarks. Limitations of individual approaches (e.g., small sample sizes and a
lack of validation) are addressed in Section 4.2. All the studies were categorized according
to their application domains and are presented in the corresponding subsections.

3.2. Applications of AI in Psychiatric Practice
3.2.1. Diagnosis and Screening

Among the most widespread and effective approaches currently employed are natural
language processing (NLP) techniques, which enable the automatic extraction of semantic
and emotional features from patients’ spontaneous speech, written narratives, and med-
ical documentation. Contemporary diagnostic algorithms built on technologies such as
transformers, bidirectional long short-term memory networks (BiLSTM), gated recurrent
units (GRUs), and parallel convolutional neural networks (CNNs) have demonstrated high
levels of effectiveness.

For instance, in a study involving 270 participants, a support vector machine (SVM)-
based model trained on deep speech features achieved a diagnostic accuracy of 94.1%,
with sensitivity and specificity reaching 96.7% and 90.7%, respectively [18]. The highest
performance was observed when analyzing spontaneous speech collected during psychi-
atric interviews, underscoring the importance of naturalistic context in patient assessment.
However, the model was evaluated exclusively under internal cross-validation conditions,
with no external testing, which limits its generalizability beyond the laboratory setting.

The review represents one of the few systematic attempts to synthesize multimodal
(CNN, RNN, BiLSTM, and SVM) approaches that integrate auditory, visual, and textual
signals for automated depression detection. Drawing on datasets such as DAIC-WOZ,
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AVEC, MMDA, and D-Vlog, the authors report accuracy values ranging from 65% to 94.8%,
with the highest performance observed in models combining facial and vocal inputs. The
survey underscores two consistent findings: multimodal fusion architectures consistently
outperform single-channel baselines, and generalizability remains constrained by small,
heterogeneous datasets and the lack of standardized evaluation frameworks [19].

Another promising model—TCC (Transformer combined with Parallel CNNs)—demonstrated
high performance, achieving both elevated accuracy and resilience to computational resource
constraints across multiple datasets. The reported F1-scores reached 93.6% on DAIC-WOZ and
96.7% on MODMA, significantly outperforming baseline models [20]. However, both datasets
were used exclusively for internal evaluation without external validation, and participant-level data
partitioning may not have been enforced, increasing the risk of overfitting. Despite its
architectural novelty and computational efficiency, the model remains experimental and is
not yet suitable for clinical deployment.

Contemporary diagnostic approaches increasingly incorporate visual cues—particularly
fine-grained facial dynamics and gaze patterns. Mahayossanunt et al. (2023) introduced
a Window-Block LSTM with attention and label smoothing that analyzes head pose, eye
orientation, and facial action units to detect depressive states. Tested on an internal split of
474 videos (134 moderate–severe depression; 340 non-depressed), the model achieved accu-
racy = 91.7% and F1 = 88.9%; precision and recall reached 91.4% and 87%, respectively. Al-
though the classifier offered post hoc explainability via integrated gradients—highlighting
clinically plausible cues such as downward gaze and reduced brow movement—its gen-
eralizability remains uncertain due to the absence of external validation and the small
proportion of severe cases [21]. However, validation was limited to a single center with a
methodologically homogeneous sample, and causal inferences regarding treatment out-
comes were not supported by randomized controlled trials. While the technology shows
strong potential, it remains confined to the research setting. Generalized characteristics of
the models, maturity levels, and limitations are presented in Table 1.

Table 1. The main approaches to the diagnosis and screening of mental disorders using AI.

Study Approach Data
Type Models Validation Accuracy

(%) F1 (%) Sample
Size/Classes

Maturity
Level Limitation

Chen Y. et al.,
2024 [18]

NLP
models for
speech
analysis

Audio

SVM, MLP,
HuBERT,
CNN,
Trans-
former

Internal (k-fold CV);
no external 94.1 Not

reported
N = 270
2 classes Moderate

Lab
conditions
only

Yin F. et al., 2023
[20]

Parallel ar-
chitecture Audio

Transformer
+ Parallel
CNN

Internal (LOOCV); no
external

Not
reported 96.7

DAIC-WOZ =
4401
MODMA
= 1321
2 classes each

Moderate

Potential
leakage;
no indepen-
dent
evaluation

Mahayossanunt
Y. et al., 2023 [21]

Facial
LSTM
w/attention

Video
Window-
Block
LSTM + IG

Train/dev/test
split +
external
test set

91.7 88.9 N = 474
2 classes Prototype

Few severe
cases; data
closed

Thus, despite the high accuracy demonstrated by various models, large-scale imple-
mentation remains constrained by a number of fundamental limitations. According to a
review of 115 studies, most NLP-based models in neuroscience and psychiatry encounter
challenges related to the limited availability of high-quality annotated datasets and training-
induced biases, both of which compromise generalizability [22]. This underscores that
effective diagnostic use of AI requires not only architectural advancement but also the
development of robust methodological foundations—from the creation of open, validated
datasets to the formulation of independent testing protocols. It can be inferred that inte-
grating multiple data modalities—audio, text, and visual signals—significantly enhances
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the precision and reliability of early psychiatric diagnosis. However, accurate identification
is merely the starting point. Early detection does not translate into improved outcomes
unless timely support is provided. This is where AI-powered technologies designed for
therapeutic support and ongoing monitoring come into focus.

3.2.2. Therapeutic Support and Monitoring

A growing number of AI-driven interventions are designed to offer patients real-time
support. These technologies aim to reduce barriers stemming from workforce shortages
and the geographic inaccessibility of mental health services. Among the most prominent
examples are intelligent chatbots grounded in the principles of cognitive behavioral ther-
apy (CBT), which are capable of delivering psychological assistance in real-time contexts.
The use of such systems has been associated with statistically significant reductions in
symptoms of anxiety and depression. A review of recent pilot and randomized studies
indicated that AI-powered bots—such as Woebot and Youper—can contribute to short-term
symptom reduction of up to 43% for anxiety and 48% for depression, with user engagement
rates reaching 76% and therapeutic alliance scores averaging 3.03 on the WAI-SR scale [14],
suggesting a high level of patient receptivity.

However, these findings are derived from studies with considerable variability in
design and duration, often lacking control groups and blinding procedures. While the
self-report instruments used (PHQ-9, GAD-7, and WAI-SR) are validated, they remain
susceptible to subjective interpretation and short-term fluctuation. Although the effects
achieved statistical significance, they do not always meet thresholds for clinical relevance
and warrant direct comparison with traditional CBT. The potential of multimodal interfaces
(text, voice, and video) is noted in several publications, yet systematic verification of their
added value is still lacking.

The relevance of chatbot interventions as a form of autonomous patient support is
substantiated by practical evidence. In a two-week, unblinded randomized controlled trial
involving 70 university students, using Woebot at least five times per week led to a mean
reduction of 2.58 points on the PHQ-9 scale (p = 0.017; Cohen’s d = 0.44) [23]. Reported
user satisfaction reached 4.3 out of 5, indicating a high level of subjective engagement.
Nonetheless, the study was limited by its brief duration, the absence of objective behavioral
metrics, and the use of a passive control condition (e-book), all of which constrain the gener-
alizability of the findings. The observed effect size, while statistically significant, remained
moderate in terms of clinical relevance and warrants replication in more representative
cohorts. Direct comparison with traditional CBT is further complicated by methodological
and temporal discrepancies between interventions.

A complementary example is offered by a retrospective analysis of data from 2061
users of the Wysa AI application during the COVID-19 pandemic. The study revealed
statistically significant reductions in depressive and anxiety symptoms, with correlation
coefficients of r = 0.569 (PHQ-9) and r = 0.562 (GAD-7), both at p < 0.001 [24]. On average,
users completed 29 digital sessions over the first 15 days, with the highest engagement
observed in modules targeting anxiety, sleep, and self-compassion. Despite promising
outcomes, the absence of a control group, the anonymized nature of the data, and the
high variability in user engagement complicate efforts to evaluate the sustainability and
clinical robustness of the effects. These findings appear to reflect short-term symptom shifts
under pandemic-induced psychological strain and necessitate confirmation through more
rigorously controlled and systematically designed studies.

The ability to detect crisis situations before users explicitly report them has become a
defining frontier in the evolution of AI-powered mental health systems. According to an
internal report by Wysa, based on engagement data from 19,000 users across 99 countries,
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approximately 5.2% of users exhibited crisis indicators, and in 82% of those cases, the
system identified the potential threat prior to user confirmation [25]. Despite this, only 2.4%
of individuals reached out to professional help lines, while 49.2% followed the platform’s
recommended safety plan, and 46.6% engaged with breathing and stabilization exercises.
While these figures suggest the prospective utility of automated algorithms for crisis
response, the findings are derived from an unpublished corporate report lacking peer
review or methodological standardization. As such, they should be interpreted with
caution and not construed as clinical evidence of efficacy.

An alternative and conceptually advanced approach is exemplified by the FedThera-
pist project, which utilizes federated learning to enable continuous monitoring of patients’
psychoemotional states. The system analyzes user-generated textual and speech inputs
directly on personal devices, without transmitting sensitive data to a centralized server. In
a pilot study involving 46 English-speaking participants (10-day observation via MTurk
and LOUO cross-validation), the model achieved a 0.15 improvement in the AUROC and
an 8.21% reduction in the MAE for predicting depression, anxiety, stress, and mood levels,
outperforming baseline methods [26]. Although the model demonstrated high accuracy
under experimental conditions and adhered to ethical protocols, the results must be in-
terpreted in light of important limitations: a small and non-representative sample, a brief
observation period, and the absence of validation in real-world clinical environments. As
of publication, the system remains at the prototype stage and has not been integrated into
electronic health records (EHRs) or telemedicine platforms.

Summary characteristics of the included empirical studies are presented in Table 2.

Table 2. AI tools to support therapy and monitoring: architectures, metrics, and limitations of
empirical research.

Study Approach Data Type Models Validation Key Metrics Sample
Size/Classes

Maturity
Level Limitation

Fitzpatrick K.
et al., 2017
[23]

CBT chatbot Text Decision tree
+ NLP

RCT (2
weeks, ITT),
no external
validation

PHQ-9
d = 0.44
(p = 0.017)

N = 70
2 arms Trial stage

Short
follow-up;
small N; no
blinding

Sinha C.
et al., 2023
[24]

AI-chatbot +
CBT Text

ML +
behavioral
modules

Retrospective
user analysis,
no external
validation

PHQ-9
r = 0.569;
GAD-7
r = 0.562

N = 4541
continuous
scores

Market
product

No control
group;
anonymized
data; general-
izability
unclear

Shin J. et al.,
2023 [25]

FL-based
CALL model

Text +
speech +
context

Fixed-BERT
+ MLP

LOUO (N =
46; 10 days),
no external
validation

AUROC =
0.746;
MAE ↓
8.21%

N = 46
users—
regression
outputs

Prototype

Short period;
small
sample;
English only;
no EHR
integration

Despite high user engagement and encouraging short-term outcomes, the broader
scalability of such systems remains hindered by the lack of longitudinal trials, heterogeneity
in evaluation methodologies, and unresolved concerns regarding data privacy and legal
integration within healthcare infrastructures. To date, randomized long-term trials remain
scarce, and the applied efficacy metrics are often inconsistent across studies. As a result,
most AI-enabled interventions remain outside the bounds of formal medical systems
capable of assessing their durability in real-world clinical environments.

Nonetheless, these technologies reveal the prognostic potential of AI—extending
beyond therapeutic support toward the early anticipation of symptom exacerbation and
individualized risk trajectories, well before the manifestation of overt clinical pathology.
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3.2.3. Predictive Models

Some patients seek help only after symptoms have already manifested. But what
if we could anticipate clinical deterioration before it occurs? This is precisely where
predictive AI models come into play. These technologies integrate heterogeneous data
sources—ranging from structured medical records and clinical documentation to behav-
ioral indicators passively captured via mobile devices—thereby enhancing the precision
of individualized risk assessment for outcomes such as suicidal behavior, relapse, and
treatment non-adherence. On average, these models have demonstrated predictive accura-
cies ranging from 70% to 85%, with AUC-ROC scores approaching 0.90, indicating strong
discriminatory capacity in stratifying patients by risk of depression and other psychiatric
disorders [27].

One of the most large-scale and compelling examples of artificial intelligence applied
to suicide risk prediction is the Army STARRS project, which analyzed data from 53,769 psy-
chiatric hospitalizations of U.S. military personnel between 2004 and 2009. The model,
based on elastic net regression and trained on 421 features—including sociodemographic
factors, psychiatric history, medication use, and criminal records—demonstrated strong
stratification performance: 52.9% of all suicides occurred within the top 5% of individuals
identified as highest risk (AUC = 0.85). Elevated risk was particularly pronounced during
the first 30 days post-discharge, especially among those with combat exposure (HR = 2.4;
95% CI: 1.3–4.5) and active psychiatric conditions (HR = 3.1; 95% CI: 1.5–6.4) [28]. However,
it is important to note that the model lacked interpretability mechanisms—no explainable
AI (XAI) tools such as SHAP or LIME were applied, and key predictors were not contex-
tualized in clinical terms. Validation was conducted internally (10-fold cross-validation),
with no external dataset used, thereby limiting generalizability. Moreover, there is no
evidence of the model’s deployment in real-world clinical workflows; it remains unclear
whether predictions influenced surveillance strategies or decision-making processes. Nev-
ertheless, the study illustrates the potential of machine learning to identify small, high-risk
subpopulations—an asset that could support targeted intervention strategies.

Another promising example of predictive modeling was presented in a Chinese study
involving patients with bipolar disorder (n = 384). A nomogram was constructed based
on logistic regression, incorporating key clinical and demographic predictors: the Social
Dysfunction Screening Scale (SDSS), sleep quality (PSQI), history of suicidal behavior,
frequency of outpatient visits, and receipt of electroconvulsive therapy (ECT). Internal
validation on the training set (n = 303) yielded high predictive accuracy (AUC = 0.924),
whereas performance on an independent external test set (n = 81) declined to a moderate
level (AUC = 0.741) [29]. The model offers a visual interpretive interface through the
nomogram, which enhances its clinical usability. However, the application of modern
explainable AI (XAI) techniques—such as SHAP or LIME—was not reported, and the
contribution of individual variables to personalized predictions remains insufficiently
explained. No information was provided regarding clinical implementation or how the
predictions are used by practitioners in real-world settings. Moreover, the model was not
evaluated over extended time intervals (e.g., 18–24 months), which raises concerns about
its long-term robustness. Despite these limitations, the study demonstrates a high degree
of interpretability and technical accessibility, particularly due to its reliance on simple,
clinician-friendly variables. This makes the model potentially attractive for routine use,
although its scalability and technological maturity remain limited.

Further evidence of predictive potential was demonstrated in a South Korean study
(n = 330) that combined structured data from electronic health records (EHRs) with un-
structured clinical notes—including psychological assessments, intake reports, and nursing
documentation—processed using latent Dirichlet allocation (LDA) for topic modeling. This
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multimodal integration significantly improved predictive accuracy: the AUROC increased
from 0.784 to 0.946 when all data types were included. However, external validation on an
independent cohort (n = 4391) revealed a marked decline in performance, with the AUROC
dropping to 0.616, highlighting the model’s limited transferability and its dependency on
localized data structures [30].

Algorithmic transparency remained low, as no explainable AI (XAI) tools were im-
plemented and the interpretability of contributing factors was restricted. Moreover, no
information was provided regarding clinical integration or longitudinal performance as-
sessment. As such, the model is currently classified as a research-stage prototype requiring
further refinement before scaling or real-world application.

A summary of the key characteristics, architectures, and limitations of predictive
models is presented in Table 3.

Table 3. Predictive AI models in psychiatry: architectures, data, validation, and limitations.

Study Approach Data Type Models Validation Key Metrics Sample
Size/Classes

Maturity
Level Limitation

Kessler R.C.
et al., 2015
[28]

Suicide risk
post-
discharge
(Army
STARRS)

EHR
Elastic Net +
Survival
Model

Internal
(10-fold CV),
no external
validation

AUC = 0.85 N = 53,769
2 classes Prototype

No XAI;
no
deployment

Zhang X.
et al., 2025
[29]

Bipolar
relapse
prediction

Demographics,
SDSS, PSQI,
visits

Logistic +
Nomogram

Internal
(train: n =
301),
external (test:
n = 81)

AUC =
0.924 (train);
0.741 (valid)

N = 384
2 classes Moderate

Small
external set;
short
follow-up;
no XAI

Lee D.Y.
et al., 2022
[30]

Psychosis
relapse
prediction

EHR +
clinical notes
(NLP)

LASSO-
LogReg +
LDA

Internal
(3-fold CV: n
= 330),
external (test:
n = 4391)

AUROC
0.946 →
0.616 (ext.)

Int. n = 330;
Ext. n = 4391
2 classes

Exploratory
prototype

Heterogeneous
DX; limited
variable
types;
no PANSS;
lacks XAI

In summary, one of the most prevalent limitations of predictive models lies in their
context-dependent accuracy: performance tends to deteriorate markedly during external
validation, with even well-trained models losing predictive power beyond their original
training cohorts. Second, such models are often highly sensitive to local data formats,
resulting in reduced reproducibility when applied across institutions or countries. Third,
interpretability remains limited—most algorithms lack integrated explainable AI (XAI)
mechanisms, and clinicians are seldom provided with transparent justifications for decision-
making. Moreover, the clinical impact of these models is rarely assessed; their influence
on patient management strategies remains largely undefined. Collectively, these issues
point to a low level of technological maturity, with most solutions still confined to the
prototyping stage.

What is needed is a shift from static, one-time predictions toward dynamic, context-
aware patient support. This appears to be an emerging direction for some telepsychiatry
initiatives, which are exploring the integration of AI for continuous monitoring and adap-
tive care delivery, although current evidence remains limited.

3.3. Perspectives of Telepsychiatry

Modern telepsychiatry has begun to show promise in addressing shortages in the
psychiatric workforce, geographic barriers, and inequities in access to mental healthcare,
though robust empirical validation is still needed to confirm these benefits at scale. It is
essential, however, to distinguish between the value of remote communication itself—such
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as video conferencing, scheduling flexibility, and reduced access barriers—and the added
value of artificial intelligence as a functionality-enhancing layer. The integration of AI into
digital platforms creates opportunities to automate key processes, from screening and triage
to monitoring and decision support, thereby enabling more adaptive and personalized
interactions. This is particularly relevant in regions with critically low psychiatrist-to-
population ratios, where there is fewer than one specialist per 100,000 people. In such
contexts, the increasing adoption of digital modalities can largely be attributed to this
underlying structural deficit. For instance, in India, a systematic review has outlined several
promising trajectories for AI-enhanced telepsychiatry—including speech and behavior
analysis, NLP modules, and recommender systems—with a strong emphasis on the need
for local adaptation and model validation [13]. Notably, most of these approaches remain
at the stage of conceptual development or prototyping.

At the same time, the COVID-19 pandemic served as a powerful catalyst for the expan-
sion of telepsychiatric channels. At VCU Health in the United States, remote consultations
rapidly became the predominant mode of service delivery: in April 2020, telepsychiatric vis-
its accounted for 92% of all encounters and subsequently stabilized at approximately 80%.
Patients reported high levels of satisfaction with the ability to receive care in a comfortable
and safe home environment, while clinicians emphasized the more “humanizing” quality
of video visits compared to in-person interactions conducted under strict infection control
protocols. Notably, even among elderly patients, no reduction in access to telemedicine
services was observed [31].

The emerging paradigm of personalized telepsychiatry is increasingly structured
around a three-tiered architecture: (1) acquisition of multimodal data—speech, text, be-
havioral patterns, physical activity, smartphone usage, and physiological signals; (2) algo-
rithmic interpretation through ensemble learning, feature transformation, and selection
of key predictive variables; (3) generation of therapeutic recommendations and dynamic,
adaptive monitoring (see Figure 2).

Figure 2. Conceptual framework of AI-enhanced telepsychiatry services. The illustration outlines the
operational flow of AI-integrated telepsychiatry, beginning with the acquisition of patient-generated
multimodal data (e.g., speech and text), followed by algorithmic interpretation via neural networks,
and culminating in a personalized clinical response. This includes real-time interventions such as video
consultations, chatbot-guided interaction, and adaptive safety protocols tailored to individual needs.

It is essential to delineate the respective contributions of each component: while
telemedicine infrastructure provides the remote communication channel and facilitates
continuous data collection, it is the AI layer that performs signal interpretation and pre-
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diction of clinical-state transitions. Studies have shown that models integrating data from
wearable devices and smartphones can effectively estimate the severity of depressive symp-
toms. By combining sensor-based metrics—such as electrodermal activity (EDA), heart rate
variability (HRV), temperature, motion, and sleep—with smartphone-derived indicators
like screen activity, geolocation, call logs, and app usage, the researchers developed a
model capable of predicting HDRS-17 depression severity with a correlation of r = 0.7 and
a mean absolute error (MAE) of 3.88 (under time-split validation). The most informative
predictors included activity level, phone interaction frequency, skin conductance, and HRV.
The system demonstrated high user adherence: after resolving initial technical issues, over
90% of participants wore the sensors on a daily basis [32]. These findings suggest that
telepsychiatry has the potential to move beyond traditional video consultations toward dy-
namic, adaptive digital accompaniment—an especially valuable asset for managing chronic
affective disorders and high relapse risk. Moreover, such architectures may enhance patient
autonomy by reducing the need for external prompts and increasing engagement in care.
Nonetheless, as noted by the authors, the study was conducted at a pilot stage: the sample
size was small (n = 31), symptom variability was limited, and while predictive accuracy
was acceptable, it did not reach a clinically reliable threshold.

Although telepsychiatry expanded rapidly during the COVID-19 pandemic, percep-
tions of its effectiveness and acceptability remain ambivalent. A multinational study by
Sheriff et al. (2023) [33], encompassing 1798 participants from the United Kingdom and
Italy, revealed substantial discrepancies in attitudes across stakeholder groups—namely,
patients, caregivers, and clinicians. While nearly 60% of users found remote consultations
convenient for routine care, only 12.4% expressed willingness to transition fully to online
formats. Moreover, in 58.5% of cases, the choice of consultation modality was determined
by clinicians without incorporating patient preferences. Fewer than 30% of physicians
considered telepsychiatry acceptable for initial diagnostic assessments, particularly in acute
cases such as psychosis, suicidality, or severe agitation. The study highlighted several
persistent barriers: limited patient involvement in decision-making, concerns about con-
fidentiality, and poor suitability of remote care for acute psychiatric presentations. It is
important to note that the study was conducted at an advanced observational stage but
included only four clinical sites (two in each country), with evident underrepresentation
of ethnic minorities and male participants. Additionally, systematic selection bias may
have occurred, as individuals with low digital literacy could have been excluded from
the sample. These factors limit the generalizability of findings but do not diminish their
value: such evidence is critical for the design of equitable, adaptive, and consensus-driven
telepsychiatry strategies.

In sum, the convergence of telepsychiatry and artificial intelligence holds significant
promise for overcoming infrastructural and workforce constraints while fostering a more
flexible, context-sensitive, and patient-centered model of care. Yet the realization of this
potential depends on a set of interlocking prerequisites: institutional recognition, clinical
validation, regulatory integration, and resilient digital infrastructure. Only under these
conditions can AI have the potential to evolve from an experimental adjunct into a clini-
cally integrated component of psychiatric care—one that meaningfully contributes to the
individualization of care and the expansion of mental health service accessibility.

4. Discussion
4.1. Ethical and Legal Risks

At the intersection of psychiatry and artificial intelligence, what emerges is not simply
a technological breakthrough but an ethically and legally intricate landscape defined by
profound dilemmas. This multidimensional complexity has been repeatedly underscored in
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recent systematic reviews [34], which highlight autonomy, transparency, justice, and trust as
particularly acute challenges in mental health contexts. Unlike other medical fields, psychiatry
places questions of personal identity and social vulnerability at the very center, such that even
minor algorithmic deviations may lead to disproportionate consequences—from unwarranted
patient labeling to the exacerbation of existing social inequities [35]. Our findings both
corroborate and extend these previous observations, offering empirical evidence of such risks
across a wide range of clinical scenarios and AI model architectures.

4.1.1. Violation of Autonomy and Justice

Even when highly accurate, algorithms may systematically reproduce inequalities
embedded in the source data—and psychiatry is particularly susceptible to such effects.
For example, at the University Medical Center Utrecht, gender bias was identified in an
AI model predicting repeat benzodiazepine prescriptions: the Disparate Impact value
was 0.793, indicating a consistent advantage for male patients. The implementation of a
reweighing strategy significantly reduced this bias without a notable loss in accuracy (bal-
anced accuracy: 0.834 → 0.830; F1-score: 0.843 → 0.839). This study, which demonstrated
the feasibility of mitigating algorithmic bias using real-world psychiatric data, sends a
clear message: fairness does not arise “by default”—it must be deliberately designed [36].
Algorithmic discrimination may manifest not only along gender lines but also in relation
to age, ethnicity, educational background, or even the language used to interact with the
system—and often remains undetected in the absence of dedicated fairness audits. This
is why addressing bias requires not only technical instruments (e.g., reweighing, adver-
sarial debiasing, and Fairlearn) but also mandatory procedures for evaluating fairness in
the context of social vulnerability. Yet even this is insufficient: without formalized legal
accountability—who bears responsibility for an error, the clinician or the developer? —any
adjustments to the code will remain merely technical fixes. Without a clearly defined agent
of responsibility, no genuine ethics is possible.

The broader societal context is equally critical. According to a representative survey
of 2060 respondents from the United States and the United Kingdom, conducted as a
randomized comparison between AI- and DSM-based diagnostics, the most frequently
cited concerns included risks of discrimination, psychological distress following diagnosis,
disruption of self-perception, and difficulty in communicating the diagnosis to others—all
scoring above 4.5 on a 7-point scale. Paradoxically, DSM-based diagnosis elicited greater
anxiety than the hypothetical AI algorithm, particularly in terms of communicability,
emotional strain, and stigmatization (p < 0.05) [37]. Yet this is not an endorsement of
AI—it reflects a deeper fatigue with models that exclude the patient from the process. An
algorithm, even if explainable, does not resolve the fundamental question: who makes the
decision, and who is held accountable? As long as AI systems remain faceless, they cannot
inspire trust or offer protection. Genuine justice requires not only technical correction but a
normative framework—one in which every diagnosis comes not only with an explanation
but with a guarantee of responsibility.

4.1.2. Privacy

Psychiatric data are inherently vulnerable—not merely reflecting symptoms but en-
compassing the most intimate dimensions of personhood: voice, text, behavioral patterns,
lexical choices, and emotional states. In mobile environments, such data are under constant
threat. A review of 27 widely used mental health apps revealed that 96% leaked personal
information, 15 stored sensitive data in unencrypted form, and 20 posed critical security
risks [38]. Particularly alarming are the risks of re-identification and deanonymization:
through metadata and user IDs, individual profiles can be reconstructed even under the
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appearance of anonymity. While technical solutions such as differential privacy and feder-
ated learning have been proposed, they are rarely implemented in practice. Developers
continue to rely on insecure channels and weak encryption protocols, and privacy policies
often require graduate-level literacy to comprehend. Who bears responsibility for such vul-
nerability remains an unresolved question. In the absence of Privacy Impact Assessments
(PIAs) and enforceable legal frameworks, patients are left defenseless against systems that
process the most private facets of their identity.

4.1.3. Opacity of Algorithmic Decision-Making

One of the most persistent challenges in applying AI to psychiatry is the opacity
of algorithmic decision-making. Unlike a clinician, who can justify a diagnosis through
transparent reasoning, most models function as “black boxes”, offering no insight into
which features contributed to a given classification or prediction. This issue is particularly
acute in psychiatry, where the input data often comprise behavioral, linguistic, and affective
markers—domains highly susceptible to interpretive ambiguity. A systematic review of
ethical risks [39] underscores that opacity not only limits verifiability but also undermines
clinical interaction, erecting a barrier to meaningful informed consent. Even the use of
explainable AI techniques—such as SHAP, LIME, or attention-based mechanisms—does
not ensure interpretability at a level comprehensible to patients. In the absence of regulatory
requirements for explainability and algorithmic auditing, such decisions remain effectively
beyond the control of both clinicians and patients.

This lack of transparency is directly linked to the risk of harm: opaque models hinder
error detection and increase the likelihood of overdiagnosis, misclassification, or inap-
propriate treatment allocation. As highlighted in a recent narrative review [40], ethical
considerations in the application of AI to mental health underscore the imperative for trans-
parency and explainability, as the absence of interpretability not only introduces new risks
but also undermines patient trust and autonomy. In the context of stigmatized psychiatric
diagnoses, the consequences may be not only psychological but also social—ranging from
erosion of trust to the restriction of individual rights. Of particular concern is the absence
of compensation mechanisms in cases of harm: neither patients nor clinicians are afforded
assurances that an erroneous decision can be contested, reversed, or documented within a
legal framework.

In this context, opacity emerges not merely as a technical limitation but as a normative
failure—undermining trust, constraining autonomy, and reinforcing epistemic inequality
between actors within the clinical encounter.

4.1.4. International Ethical Frameworks and Their Implementation Gap

Several international organizations, including the WHO and UNESCO, have issued
normative frameworks for the application of AI in medicine, aimed at mitigating core
ethical risks—namely, autonomy, beneficence, non-maleficence, justice, transparency, and
accountability [41,42]. These documents place particular emphasis on the protection of vul-
nerable populations, including individuals with mental health disorders, and highlight the
need for routine algorithmic audits, multidisciplinary oversight, and meaningful informed
consent. In practice, however, these principles rarely translate into enforceable mechanisms.
In many countries, relevant regulations remain under development or exist only in the
form of non-binding guidelines—for example, the EU Ethics Guidelines for Trustworthy
AI [43] and the U.S. Blueprint for an AI Bill of Rights [44]. This underscores the fact that in
the absence of mandatory national strategies and legal standards for explainability, even
well-trained models may become sources of uncertainty—and, at times, of risk.
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Thus, the ethical and legal risks of AI in psychiatry are not abstract constructs but
tangible realities that implicate patient identity, equity, and safety. Without built-in account-
ability, transparency, and protection mechanisms, any AI system risks not only forfeiting
public trust but also exacerbating preexisting forms of vulnerability. The question is no
longer whether algorithms can be trusted but whether the healthcare system can guarantee
that trust. Figure 3 illustrates ethical risks across all stages of AI implementation—from data
collection and model architecture to decision-making and clinical outcomes—underscoring
the critical role of institutional safeguards.

Figure 3. Ethical and legal risks of AI in psychiatry: from algorithm to patient. This conceptual
diagram outlines the ethical risks at each stage of AI implementation in psychiatry—from data
collection and algorithmic interpretation to decision-making. It also highlights the guiding role of
international frameworks such as those developed by WHO and UNESCO, emphasizing fairness,
transparency, and accountability in clinical outcomes.

4.2. Technological and Clinical Limitations

While ethical risks delineate the external boundaries of acceptability, technological
and clinical limitations establish the internal constraints on the real-world applicability of
AI systems. It is precisely at this intersection that the disparity between theoretical potential
and operational resilience becomes most pronounced. During internal validation, neural
network models—such as BERT or ResNet—may achieve remarkably high performance
metrics, with AUC values reaching up to 0.98. However, when subjected to external
validation, their accuracy frequently declines by as much as 6–22.8% [45]. This discrepancy
stems not only from limited sample sizes but also from internal fragmentation within
the datasets themselves. Specific examples of this external-performance degradation are
documented in Supplementary Table S3.

Even in large-scale studies such as PREVENT (N = 6.6 million patients across 46 co-
horts), critical variables were missing for substantial subgroups: race or ethnicity data
were absent in 4–5% of cases; HbA1c values were unavailable for 70–75% of non-diabetic
patients; and the Social Deprivation Index (SDI) was recorded for fewer than one-third [46].
This demonstrates that even with impressive sample sizes, representativeness may remain
limited—particularly for age-, ethnicity-, and condition-specific subpopulations—thereby
undermining the generalizability of models when applied to clinical settings. Older adults,
ethnic minorities, and individuals with chronic or complex conditions are frequently
overlooked by these systems, creating what has been termed an “invisible data crisis”. Al-
gorithms trained on such foundations not only lose precision but risk reinforcing systemic
distortions—especially in relation to marginalized or multifactorial patients.

Beyond algorithmic and data-related limitations, the issue of clinician trust remains un-
resolved. According to a survey conducted by the Alan Turing Institute in the United King-
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dom, 29% of physicians reported using AI tools in their practice over the past 12 months,
and more than half (52%) expressed optimism regarding its role in healthcare. Nonetheless,
nearly one-third (32%) admitted that they do not fully understand the risks associated with
AI implementation [47]. The primary sources of skepticism include insufficient algorithmic
transparency, the inability to communicate decision logic to patients, and a lack of validated
clinical evidence. Equally salient are interface-related barriers: cluttered visualizations,
absence of standardized result formats, and unintuitive user experiences may hinder in-
terpretation and reduce clinicians’ willingness to rely on the algorithm—even when its
accuracy is demonstrably high.

Figure 4 illustrates barriers to clinical implementation of AI in telepsychiatry—from
clinician distrust to technical opacity and the lack of representativeness in training datasets.
Despite advances in model architecture, failure to address these challenges will relegate AI
to the status of an experimental tool, incapable of integration into routine clinical practice.

 

Figure 4. Technological and clinical limitations of AI in psychiatry: from data gaps to clinical
uncertainty. This diagram illustrates the key limitations that hinder the clinical applicability of
AI in psychiatry. It highlights the cascade of challenges—from missing or fragmented training
data and a lack of external validation to issues with algorithmic transparency and clinician trust.
Together, these factors undermine the robustness and generalizability of AI-based models in real-
world healthcare settings.

Ultimately, the issues outlined above do not negate the value of artificial intelligence—they
underscore the need to fundamentally reconsider its methodological foundations. It is essential to
recognize that technological robustness and clinical applicability cannot be reduced to algorithmic
refinement alone. Without expanded and diversified training datasets, independent external
validation, and algorithmic explainability, we risk developing systems that excel at a single task:
performing well under conditions that do not exist in the real world. Even high performance
metrics become insufficient if a model cannot deliver clinically meaningful interpretations in a
form suitable for decision-making. In this context, explainability is no longer merely an ethical
imperative—it becomes a technical prerequisite for integration into practice: without a clear
explanation, there can be no clinical action.

4.3. Scientific Gaps, Methodological Deficiencies, and Future Research Directions

Despite the growing body of literature on the application of AI in psychiatry, our anal-
ysis reveals systemic shortcomings in both research design and methodological maturity.
Aggregated metrics and model architectures have been reviewed in Sections 3.1–3.3 and
summarized in Supplementary Table S3. While the field has undoubtedly progressed, a
number of foundational limitations continue to impede clinical integration at the level of
healthcare systems. These gaps demand not rhetorical declarations but targeted, method-
ologically rigorous work—particularly if the goal is clinically actionable AI rather than
experimental prototyping.
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Unlike previous reviews focused predominantly on technical performance bench-
marks, our analysis draws attention to the persistent gap between model-level metrics
and real-world clinical applicability—particularly with respect to interpretability, ethical
soundness, and long-term sustainability. While we reaffirm earlier findings on user engage-
ment with AI-powered chatbots [14], our study underscores the lack of rigorous evaluation
frameworks and the absence of harmonized assessment standards. Furthermore, in contrast
to broader telepsychiatry literature [15], our synthesis offers a more nuanced typology of
model maturity and translational challenges, substantiated by empirical indicators.

First, there is a notable absence of multicenter randomized controlled trials (RCTs)
capable of objectively confirming the effectiveness and safety of digital interventions under
real-world conditions. Without controlled studies featuring extended follow-up periods,
it is impossible to assess the durability of treatment effects, their impact on quality of
life, the risk of relapse, or the potential adverse consequences of AI-based interventions.
Most current publications rely on small sample sizes and internal validation, often lacking
control groups or clinical blinding—rendering their findings ineligible for direct extrapola-
tion. Overcoming the limitations of laboratory-level evidence will require a new wave of
standardized multicenter RCTs featuring transparent study designs, harmonized metrics,
and clinically meaningful endpoints.

Second, although explainability is widely acknowledged as a prerequisite for clinical
applicability, operationalized standards for its evaluation remain poorly defined in the
scientific literature. As a result, “explainability” often functions as a rhetorical claim rather
than a verifiable property of the model. This not only impedes translation into clinical
practice but also undermines the comparability of findings across studies. Bridging this
gap requires the development of formalized criteria—from method selection to validated
interpretability metrics—that can be incorporated into standardized protocols for assessing
the effectiveness and reliability of AI systems in psychiatry.

Third, there is still a lack of systematic research on the transferability of AI models
to vulnerable subgroups—including older adults, adolescents, and ethnic or linguistic
minorities. The majority of publications rely on validation within homogeneous samples,
without conducting stratified analyses. We do not yet know how these algorithms perform
outside their source populations. Without accumulating evidence on cross-group stability
in model performance, it is impossible to speak of scientific reliability or to plan for
scalable implementation.

Fourth, the field of psychiatric AI still lacks a recognized scale for assessing the clinical
maturity of models. This absence hinders cross-study comparisons, impedes systematic
progress tracking, and makes it impossible to stratify technologies by their level of readiness.
Without a formal equivalent to the Technology Readiness Level (TRL)—adapted to the
specific demands of clinical medicine—the research community is left without a framework
for distinguishing between experimental prototypes and models that have completed the
full cycle of clinical validation.

Fifth, ethics remains largely absent from the design process of AI models—it is typi-
cally addressed post hoc, once the architectural framework has already been established.
There is no institutionalized practice of “ethics by design”, which would entail embedding
principles of fairness, transparency, and accountability at every stage—from data selection
to the publication of performance metrics. This is not merely an ethical concern; it con-
stitutes a gap in scientific methodology itself, which still lacks standardized criteria for
evaluating the ethical integrity of a model. Isolated instances—such as the use of fairness
toolkits or reweighing procedures [36]—remain the exception rather than the rule.

Finally, there is a complete lack of systematic research tracking the long-term effects
of AI interventions in psychiatry. The durability of diagnostic and therapeutic outcomes,
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the evolution of patient trust, and the impact on the therapeutic alliance all remain beyond
the scope of empirical verification. Most RCTs are limited to observation periods of just
2–4 weeks [23], whereas psychiatric care demands time horizons measured in months
and years. Without assessing delayed effects, risks of trust attrition, or relapse dynamics,
it is impossible to evaluate the clinical viability of AI-based solutions under real-world
conditions. This is not merely a research gap—it is a foundational deficit that renders the
construction of a sustainable evidence base impossible.

These unresolved issues delineate key directions that demand priority in future research
and the establishment of a robust scientific foundation for subsequent clinical integration.

4.4. The Potential of AI and Its Actual Clinical Applicability

Contemporary experience with the implementation of artificial intelligence in psy-
chiatry demonstrates that technological advances, in and of themselves, do not guarantee
clinical integration. Even the most advanced solutions remain at the stage of prototypes
unless they are embedded within the institutional infrastructure, supported at the organiza-
tional level, and accompanied by changes in both administrative and educational practices.
Illustrative examples from a pilot project—such as automated triage systems and digital
assistants for therapeutic support—clearly indicate that effectiveness is determined by the
flexibility of clinical workflows, the readiness of teams for interdisciplinary collaboration,
the maturity of IT environments, the transparency of algorithms, and the incorporation of
ethics-by-design principles from the outset of development. Ultimately, it is the healthcare
system’s capacity for comprehensive adaptation—ranging from technological innovation
to organizational culture—that constitutes the decisive condition for transforming potential
into practical outcomes. System-wide adaptation at all levels, from technological platforms
to institutional ethos, is essential for this transition.

4.5. Practical Mechanisms for the Sustainable Integration of AI into Psychiatric Practice

Whereas previous sections have outlined the scientific, technological, and organiza-
tional gaps impeding the clinical maturity of AI in telepsychiatry, the present subsection
offers a comprehensive framework for overcoming these challenges. The central focus is
placed on institutional, educational, and ethical mechanisms that can transform innovation
from a laboratory prototype into an integrated tool of psychiatric care.

The consistent integration of AI into healthcare does not begin with isolated pilot
projects but with a deliberate restructuring of clinical workflows. It is insufficient to limit
efforts to technical testing or one-off implementations; what is required is the embedding
of AI into the very fabric of routine practice. At every stage—from initial piloting to large-
scale deployment—a rigorous analysis of real-world use cases is conducted, with active
engagement of clinical teams, ongoing feedback, and adaptive refinement of standard
operating procedures. Only such an approach allows for the transition from “adding a
tool” to the genuine transformation of clinical routines, where innovation ceases to be an
external addition and instead becomes an intrinsic element of professional practice.

Ethical stewardship must transcend formal compliance. The establishment of dedi-
cated AI ethics boards—multidisciplinary committees composed of clinicians, engineers,
patient representatives, and legal experts—ensures not merely declarative but truly effec-
tive oversight. Their role is not limited to verifying compliance with principles of fairness,
transparency, and accountability at the design stage but extends to continuous guidance
throughout the entire product lifecycle. In this way, the “ethics-by-design” principle is real-
ized as a living process: sustained dialogue, vigilant monitoring of changes, and proactive
mitigation of professional and social risks long before large-scale implementation.
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A reimagining of educational policy is equally strategic. Certification programs,
mandatory training for all categories of healthcare professionals, and regular in-person and
remote workshops, as well as targeted courses for IT specialists and administrative teams,
must evolve from isolated initiatives into a seamless part of professional development.
Crucially, these programs should be grounded not in abstract knowledge but in real-
world scenarios, reflecting the dynamic nature of clinical tasks and the constantly evolving
requirements of digital tools. Only then can the inertia of traditional training be overcome
and a culture of conscious and safe AI use in clinical settings be cultivated.

The creation of living laboratories for collaborative action is of fundamental importance.
Living-lab platforms are not merely assemblies of stakeholders but ongoing, functional
working groups in which clinicians, developers, patients, and regulators co-create, test, and
iteratively refine solutions in real time. This approach provides the flexibility to identify
and address weaknesses prior to scaling and ensures that all participants share collective
responsibility for outcomes. Here, shared decision-making, transparent communication, and
deep stakeholder engagement are established as standard practice rather than exception.

Another systemic mechanism is the standardization and openness of data. The de-
velopment of open, validated, and continuously updated datasets; the implementation
of independent audit procedures; and the public dissemination of model quality and
reproducibility assessments together constitute the bedrock of trust, both within the profes-
sional community and among patients. Open infrastructure not only facilitates the scaling
of successful solutions but also allows for the prompt correction of deficiencies, thereby
minimizing the risks of inefficiency or uncontrolled proliferation of suboptimal models.

It is vital to underscore that none of these mechanisms can function effectively in isolation.
Sustainable integration is achieved only when all directions—ethical supervision, professional
education, collaborative expertise, and transparent data verification—advance in parallel,
reinforcing and amplifying one another. Such a synergistic approach ensures not merely the
incremental evolution from pilot projects to mature products, but fosters the emergence of a
new culture of digital psychiatry: open, accountable, and inherently self-improving.

In conclusion, the proposed framework is not a collection of disparate initiatives
but a coherent system of coordinated efforts by institutions, professional and patient
communities, regulatory bodies, and technology companies. Only such a holistic strategy
can transform artificial intelligence from an object of research enthusiasm into a robust and
ethically grounded instrument for sustainable psychiatric care.

5. Limitations
This review has several limitations that should be taken into account when interpreting

the findings. Foremost among them is the high heterogeneity of the included studies: sample
characteristics, clinical contexts, AI model architectures, data modalities, and validation
methods vary substantially. This heterogeneity precludes the possibility of conducting a
meta-analysis and limits the potential for the quantitative integration of the results.

The search strategy was limited to English-language sources, which may have led to
the omission of relevant publications in other languages. Some of the included studies
were available only in preprint format, posing potential risks associated with unverified
information. In addition, the possibility of publication bias cannot be ruled out—namely,
the underrepresentation of studies reporting neutral or negative results.

A formal risk-of-bias assessment was not performed, as the methodological hetero-
geneity of study designs precluded the use of a unified analytical tool. Potential limitations
were instead addressed qualitatively and are further discussed in Section 4.2.
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These factors underscore the need for future standardized empirical studies employing
consistent reporting frameworks, independent validation, and stratified analysis of AI
models in psychiatric research.

6. Use of Artificial Intelligence
During the preparation of this review, the language model ChatGPT (OpenAI, GPT-4o

mini, desktop application v.1.2025.139.0) was used exclusively for editorial support. The
model assisted with stylistic editing, refinement of phrasing, and verification of logical
coherence across sections. No part of the analytical process—including screening, data
extraction, or result interpretation—was performed automatically; all steps remained fully
under the control of the researchers.

7. Conclusions
7.1. Summary and Outlook

Artificial intelligence in psychiatry remains a high-potential technology that, despite
growing interest, has yet to be fully integrated into clinical practice. This review offers the
first PRISMA-structured synthesis to concurrently address both empirical evidence and the
normative–ethical landscape of AI implementation in telepsychiatry. Its objective is not
only to consolidate fragmented literature but also to establish a thematic framework for
evaluating the maturity of digital interventions and identifying structural impediments to
their sustainable integration. Among the persistent deficits are the absence of multicenter
clinical trials, a lack of longitudinal data, the underdevelopment of criteria for model
interpretability, and limited representation of vulnerable populations.

The practical relevance of this review lies in its multi-stakeholder orientation. For
clinicians, the findings offer a reference point for navigating available models and assessing
their clinical applicability. For developers, it is demonstrated that further progress depends
less on architectural innovation than on addressing challenges of linguistic adaptability,
reproducible model transparency, and privacy-preserving learning frameworks. For regu-
lators and decision-makers, the review outlines concrete priorities: developing certification
levels for technological maturity, implementing fairness auditing mechanisms, and formal-
izing regulatory standards for both autonomous and hybrid AI systems. Telepsychiatry, in
particular, calls for a systematic, normatively verifiable, and ethically grounded approach
to AI integration—as a trustworthy component of complex digital health infrastructure.

The proposed research agenda is articulated around four interdependent priorities.
First, the implementation of multicenter randomized controlled trials of at least one year in
duration, with clinically meaningful endpoints. Second, the development of a TRL-Psy scale
to classify models along a continuum from laboratory prototypes to real-world deployment,
with mandatory validation of interpretability. Third, the creation of open-access multimodal
corpora representing diverse regions and languages—crucial for assessing transferability
and mitigating hidden bias. Fourth, the institutionalization of ethics-by-design principles
and long-term monitoring of delayed effects of AI interventions among sensitive and
high-risk populations.

7.2. Practical Recommendations for Clinical Practitioners and Policymakers

For the sustainable and meaningful integration of artificial intelligence into psychiatric
care, it is advisable to adopt the following approach. Clinical teams should prioritize AI
tools that have undergone independent external validation and demonstrate transparency in
their decision-making logic. It is essential to integrate algorithm-generated recommendations
into the structure of professional judgment, viewing them as a complementary—rather than
definitive—source of information. This requires active participation in comprehensive educa-
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tional programs, where training in the safe and effective use of digital solutions becomes not
an isolated episode but an integral component of ongoing professional development.

From the perspective of regulators and policymakers, the introduction of mandatory
procedures for external validation and independent auditing of all deployed AI systems
is warranted, alongside the development of standards for transparency, explainability,
and ethics by design to be implemented at both the design and maintenance stages of
algorithmic solutions. Supporting initiatives for the creation and open dissemination of
representative datasets is also critical for ensuring reproducibility and equity in diverse
clinical and sociocultural contexts. Only the comprehensive implementation of these
mechanisms can transform AI into a reliable, clinically mature, and ethically grounded
instrument of contemporary psychiatric practice.

Only through coordinated progress across these domains can artificial intelligence
evolve from demonstrative prototypes into a clinically robust, personalized, and equitable
tool in psychiatric care.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/healthcare13111348/s1: Figure S1: PRISMA 2020 flow
diagram illustrating the publication selection process. Table S1: Search strategy for each database.
Table S2: Inclusion and exclusion criteria for publication selection. Table S3: Characteristics of
empirical studies: model architecture, sample, metrics, and limitations. Table S4: PRISMA 2020
compliance checklist.

Author Contributions: Conceptualization, A.B., J.X. and F.C.; methodology, A.B., J.X. and F.C.;
formal analysis, A.B. and J.X.; data curation, A.B., F.D., X.J., F.C. and D.K.; writing—original draft
preparation, A.B., T.B. and J.H.; writing—review and editing, A.B., J.X. and F.C.; Visualization, F.C.
and A.B.; project administration, Z.K.; Supervision, Z.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was funded by the National Natural Science Foundation of China (grant
numbers 72074064 and 71573068).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data used in this review are provided within the main text and
Supplementary Materials (Tables S1–S4; Figure S1). No new primary data were generated in the
course of this study.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

AI Artificial Intelligence
AMA American Medical Association
AUC Area Under the Curve
AUROC Area Under the Receiver Operating Characteristic Curve
CBT Cognitive Behavioral Therapy
CI Confidence Interval
EHRs Electronic Health Records
GRU Gated Recurrent Unit
HR Hazard Ratio
JMIR Journal of Medical Internet Research
LIME Local Interpretable Model-Agnostic Explanations
MAE Mean Absolute Error
NLP Natural Language Processing

https://www.mdpi.com/article/10.3390/healthcare13111348/s1


Healthcare 2025, 13, 1348 23 of 25

PREVENT Predicting Cardiovascular Events Study
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RCT Randomized Controlled Trial
SHAP SHapley Additive exPlanations
SR Short Revised (Working Alliance Inventory)
STARRS Study to Assess Risk and Resilience in Servicemembers
SVM Support Vector Machine
UNESCO United Nations Educational, Scientific and Cultural Organization
WHO World Health Organization

References
1. World Health Organization. Anxiety Disorders. Geneva: World Health Organization; 2023. Available online: https://www.who.

int/news-room/fact-sheets/detail/anxiety-disorders (accessed on 28 January 2025).
2. World Health Organization. Depression. Geneva: World Health Organization; 2023. Available online: https://www.who.int/

news-room/fact-sheets/detail/depression (accessed on 28 January 2025).
3. World Health Organization; International Labour Organization. WHO and ILO Call for New Measures to Tackle Mental Health

Issues at Work. Geneva: World Health Organization. 28 September 2022. Available online: https://www.who.int/news/item/28
-09-2022-who-and-ilo-call-for-new-measures-to-tackle-mental-health-issues-at-work (accessed on 12 February 2025).

4. World Health Organization. WHO Report Highlights Global Shortfall in Investment in Mental Health. Geneva: World Health
Organization. 8 October 2021. Available online: https://www.who.int/ru/news/item/08-10-2021-who-report-highlights-global-
shortfall-in-investment-in-mental-health (accessed on 12 February 2025).

5. National Center of Psychiatry and Narcology Named after V.P. Serbsky. Artificial Intelligence in Psychiatry: Prospects and
Challenges. Moscow: NCPN. 2023. Available online: https://ncpz.ru/newscomplete/846 (accessed on 22 February 2025).

6. Royal College of Psychiatrists. Children’s Mental Health Crisis Deepens—Severe Shortage of Psychiatrists to Meet Growing
Demand. London: RCPsych. 28 November 2024. Available online: https://www.rcpsych.ac.uk/news-and-features/latest-news/
detail/2024/11/28/children-s-mental-health-crisis-deepens--severe-shortage-of-psychiatrists-to-meet-growing-demand (ac-
cessed on 22 February 2025).

7. European Health Information Gateway. Psychiatrists per 10 000. Copenhagen: WHO Regional Office for Europe. 2023. Available
online: https://gateway.euro.who.int/ru/indicators/hlthres_229-psychiatrists-per-10-000/ (accessed on 22 February 2025).

8. Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [CrossRef] [PubMed]
9. Walsh, C.G.; Ribeiro, J.D.; Franklin, J.C. Predicting risk of suicide attempts over time through machine learning. Clin. Psychol. Sci.

2018, 6, 428–444. [CrossRef]
10. Graham, S.; Depp, C.; Lee, E.E.; Nebeker, C.; Tu, X.; Kim, H.C.; Jeste, D.V. Artificial intelligence for mental health and mental

illnesses: An overview. Curr. Psychiatry Rep. 2019, 21, 116. [CrossRef]
11. Shatte, A.B.R.; Hutchinson, D.M.; Teague, S.J. Machine learning in mental health: A scoping review of methods and applications.

Psychol. Med. 2019, 49, 1426–1448. [CrossRef] [PubMed]
12. Sharma, S.; Rawal, R.; Shah, D. Addressing the challenges of AI-based telemedicine: Best practices and lessons learned. J. Educ.

Health Promot. 2023, 12, 338. [CrossRef]
13. Thenral, M.; Annamalai, A. Telepsychiatry and the Role of Artificial Intelligence in Mental Health in Post-COVID-19 India: A

Scoping Review on Opportunities. Indian J. Psychol. Med. 2020, 42, 428–434. [CrossRef]
14. Mamidisetti, S.; Reddy, M. Multimodal Depression Detection Using Audio, Visual and Textual Cues: A Survey. NeuroQuantology

2022, 20, 325–336. [CrossRef]
15. Sharma, G.; Devan, K. The Effectiveness of Telepsychiatry: Thematic Review. BJPsych Bull. 2021, 47, 82–89. [CrossRef]
16. Kolding, S.; Lundin, R.M.; Hansen, L.; Østergaard, S.D. Use of Generative Artificial Intelligence (AI) in Psychiatry and Mental

Health Care: A Systematic Review. Acta Neuropsychiatr. 2024. [CrossRef]
17. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;

Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71.
[CrossRef]

18. Chen, Y.; Xu, C.; Liang, C.; Tao, Y.; Shi, C. Speech-based clinical depression screening: An empirical study. arXiv 2024,
arXiv:2406.03510.

19. Yin, F.; Du, J.; Xu, X.; Zhao, L. Depression detection in speech using transformer and parallel convolutional neural networks.
Electronics 2023, 12, 328. [CrossRef]

20. Mahayossanunt, Y.; Nupairoj, N.; Hemrungrojn, S.; Vateekul, P. Explainable Depression Detection Based on Facial Expression
Using LSTM on Attentional Intermediate Feature Fusion with Label Smoothing. Sensors 2023, 23, 9402. [CrossRef]

https://www.who.int/news-room/fact-sheets/detail/anxiety-disorders
https://www.who.int/news-room/fact-sheets/detail/anxiety-disorders
https://www.who.int/news-room/fact-sheets/detail/depression
https://www.who.int/news-room/fact-sheets/detail/depression
https://www.who.int/news/item/28-09-2022-who-and-ilo-call-for-new-measures-to-tackle-mental-health-issues-at-work
https://www.who.int/news/item/28-09-2022-who-and-ilo-call-for-new-measures-to-tackle-mental-health-issues-at-work
https://www.who.int/ru/news/item/08-10-2021-who-report-highlights-global-shortfall-in-investment-in-mental-health
https://www.who.int/ru/news/item/08-10-2021-who-report-highlights-global-shortfall-in-investment-in-mental-health
https://ncpz.ru/newscomplete/846
https://www.rcpsych.ac.uk/news-and-features/latest-news/detail/2024/11/28/children-s-mental-health-crisis-deepens--severe-shortage-of-psychiatrists-to-meet-growing-demand
https://www.rcpsych.ac.uk/news-and-features/latest-news/detail/2024/11/28/children-s-mental-health-crisis-deepens--severe-shortage-of-psychiatrists-to-meet-growing-demand
https://gateway.euro.who.int/ru/indicators/hlthres_229-psychiatrists-per-10-000/
https://doi.org/10.1056/NEJMra1814259
https://www.ncbi.nlm.nih.gov/pubmed/30943338
https://doi.org/10.1177/2167702617691560
https://doi.org/10.1007/s11920-019-1094-0
https://doi.org/10.1017/S0033291719000151
https://www.ncbi.nlm.nih.gov/pubmed/30744717
https://doi.org/10.4103/jehp.jehp_402_23
https://doi.org/10.1177/0253717620952160
https://doi.org/10.14704/nq.2022.20.4.NQ22127
https://doi.org/10.1192/bjb.2021.115
https://doi.org/10.1017/neu.2024.50
https://doi.org/10.1136/bmj.n71
https://doi.org/10.3390/electronics12020328
https://doi.org/10.3390/s23239402


Healthcare 2025, 13, 1348 24 of 25

21. Crema, C.; Attardi, G.; Sartiano, D.; Redolfi, A. Natural language processing in clinical neuroscience and psychiatry: A review.
Front. Psychiatry 2022, 13, 946387. [CrossRef]

22. Farzan, M.; Ebrahimi, H.; Pourali, M.; Sabeti, F. Artificial intelligence-powered cognitive behavioral therapy chatbots: A systematic
review. Iran J. Psychiatry 2023, 18, 12. [CrossRef]

23. Fitzpatrick, K.K.; Darcy, A.; Vierhile, M. Delivering cognitive behavior therapy to young adults with symptoms of depression and
anxiety using a fully automated conversational agent (Woebot): A randomized controlled trial. JMIR Ment. Health 2017, 4, e19.
[CrossRef]

24. Sinha, C.; Saha, M.; Kadaba, M. Understanding digital mental health needs and usage with an AI-led mental health app (Wysa)
during the COVID-19 pandemic: Retrospective analysis. JMIR Form. Res. 2023, 7, e41913. [CrossRef]

25. Wysa. AI Detects 82% of Mental Health App Users in Crisis, Finds Wysa’s Global Study Released on the Role of AI to Detect and Manage
Distress; [Online]; Wysa Blog: Boston, MA, USA, 2024. Available online: https://blogs.wysa.io/blog/company-news/ai-detects-
82-of-mental-health-app-users-in-crisis-finds-wysas-global-study-released-on-the-role-of-ai-to-detect-and-manage-distress (ac-
cessed on 21 March 2025).

26. Shin, J.; Yoon, H.; Lee, S.; Park, S.; Liu, Y.; Choi, J.D.; Lee, S.J. FedTherapist: Mental Health Monitoring with User-Generated
Linguistic Expressions on Smartphones via Federated Learning. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2023), Singapore, 6–10 December 2023; Association for Computational Linguistics:
Singapore, 2023; pp. 13456–13470. [CrossRef]

27. Nickson, D.; Meyer, C.; Walasek, L.; Toro, C. Prediction and diagnosis of depression using machine learning with electronic health
records data: A systematic review. BMC Med. Inform. Decis. Mak. 2023, 23, 271. [CrossRef]

28. Kessler, R.C.; Warner, C.H.; Ivany, C.; Petukhova, M.V.; Rose, S.; Bromet, E.J.; Army STARRS Collaborators. Predicting suicides
after psychiatric hospitalization in US Army soldiers: The Army Study to Assess Risk and rEsilience in Servicemembers (Army
STARRS). JAMA Psychiatry 2015, 72, 49–57. [CrossRef]

29. Zhang, X.; Wu, M.; Wang, D.; Wang, L.; Xie, W. Establishment and validation a relapse prediction model for bipolar disorder.
Front. Psychiatry 2025, 15, 1500892. [CrossRef]

30. Lee, D.Y.; Kim, C.; Lee, S.; Son, S.J.; Cho, S.M.; Cho, Y.H.; Park, R.W. Psychosis relapse prediction leveraging electronic health
records data and natural language processing enrichment methods. Front. Psychiatry 2022, 13, 844442. [CrossRef]

31. American Medical Association. Return on Health Telehealth Case Study: Telepsychiatry During COVID-19; [Online]; AMA: Chicago,
IL, USA, 2021. Available online: https://www.ama-assn.org/practice-management/digital/return-health-telehealth-case-study-
telepsychiatry-during-covid-19 (accessed on 21 March 2025).

32. Pedrelli, P.; Fedor, S.; Ghandeharioun, A.; Howe, E.; Ionescu, D.F.; Bhathena, D.; Picard, R.W. Monitoring Changes in Depression
Severity Using Wearable and Mobile Sensors. Front. Psychiatry 2020, 11, 584711. [CrossRef]

33. Sheriff, R.; Hong, J.S.W.; Henshall, C.; D’Agostino, A.; Tomassi, S.; Stein, H.C.; Cipriani, A. Evaluation of telepsychiatry during
the COVID-19 pandemic across service users, carers and clinicians: An international mixed-methods study. BMJ Ment. Health
2023, 26, e300646. [CrossRef]

34. Poudel, U.; Jakhar, S.; Mohan, P.; Nepal, A. AI in Mental Health: A Review of Technological Advancements and Ethical Issues in
Psychiatry. Issues Ment. Health Nurs. 2025. [CrossRef]

35. Rahsepar Meadi, M.; Sillekens, T.; Metselaar, S.; van Balkom, A.; Bernstein, J.; Batelaan, N. Exploring the Ethical Challenges of
Conversational AI in Mental Health Care: Scoping Review. JMIR Ment. Health 2025, 12, e60432. [CrossRef]

36. Mosteiro, P.; Kuiper, J.; Masthoff, J.; Scheepers, F.; Spruit, M. Bias discovery in machine learning models for mental health.
Information 2022, 13, 237. [CrossRef]

37. O’Connor, C. Public perspectives on AI diagnosis of mental illness. Gen. Psychiatry 2024, 37, e101370. [CrossRef]
38. Iwaya, L.H.; Babar, M.A.; Rashid, A.; Wijayarathna, C. On the Privacy of Mental Health Apps: An Empirical Investigation and Its

Implications for App Development. Empir. Softw. Eng. 2022, 28, 2. [CrossRef]
39. Karimian, G.; Petelos, E.; Evers, S.M.A.A.E. The ethical issues of the application of artificial intelligence in healthcare: A systematic

scoping review. AI Ethics 2022, 2, 539–551. [CrossRef]
40. Thakkar, A.; Gupta, A.; De Sousa, A. Artificial intelligence in positive mental health: A narrative review. Front. Digit. Health 2024,

6, 1280235. [CrossRef]
41. World Health Organization. Ethics and Governance of Artificial Intelligence for Health: WHO Guidance; World Health Organization:

Geneva, Switzerland, 2021. Available online: https://apps.who.int/iris/handle/10665/350567 (accessed on 21 March 2025).
42. UNESCO. Recommendation on the Ethics of Artificial Intelligence; UNESCO: Paris, France, 2021. Available online: https://unesdoc.

unesco.org/ark:/48223/pf0000380455_rus (accessed on 21 March 2025).
43. European Commission. Ethics Guidelines for Trustworthy AI; European Commission: Brussels, Belgium, 2019. Available online:

https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai (accessed on 12 March 2025).

https://doi.org/10.3389/fpsyt.2022.946387
https://doi.org/10.18502/ijps.v20i1.17395
https://doi.org/10.2196/mental.7785
https://doi.org/10.2196/41913
https://blogs.wysa.io/blog/company-news/ai-detects-82-of-mental-health-app-users-in-crisis-finds-wysas-global-study-released-on-the-role-of-ai-to-detect-and-manage-distress
https://blogs.wysa.io/blog/company-news/ai-detects-82-of-mental-health-app-users-in-crisis-finds-wysas-global-study-released-on-the-role-of-ai-to-detect-and-manage-distress
https://doi.org/10.18653/v1/2023.emnlp-main.734
https://doi.org/10.1186/s12911-023-02341-x
https://doi.org/10.1001/jamapsychiatry.2014.1754
https://doi.org/10.3389/fpsyt.2024.1500892
https://doi.org/10.3389/fpsyt.2022.844442
https://www.ama-assn.org/practice-management/digital/return-health-telehealth-case-study-telepsychiatry-during-covid-19
https://www.ama-assn.org/practice-management/digital/return-health-telehealth-case-study-telepsychiatry-during-covid-19
https://doi.org/10.3389/fpsyt.2020.584711
https://doi.org/10.1136/bmjment-2022-300646
https://doi.org/10.1080/01612840.2025.2502943
https://doi.org/10.2196/60432
https://doi.org/10.3390/info13050237
https://doi.org/10.1136/gpsych-2023-101370
https://doi.org/10.1007/s10664-022-10236-0
https://doi.org/10.1007/s43681-021-00131-7
https://doi.org/10.3389/fdgth.2024.1280235
https://apps.who.int/iris/handle/10665/350567
https://unesdoc.unesco.org/ark:/48223/pf0000380455_rus
https://unesdoc.unesco.org/ark:/48223/pf0000380455_rus
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai


Healthcare 2025, 13, 1348 25 of 25

44. The White House. Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People; Office of Science and
Technology Policy (OSTP): Washington, DC, USA, 2022. Available online: https://bidenwhitehouse.archives.gov/ostp/ai-bill-of-
rights/ (accessed on 13 March 2025).

45. Yang, Y.; Sun, K.; Gao, Y.; Wang, K.; Yu, G. Preparing data for artificial intelligence in pathology with clinical-grade performance.
Diagnostics 2023, 13, 3115. [CrossRef] [PubMed]

46. Khan, S.S.; Matsushita, K.; Sang, Y.; Ballew, S.H.; Grams, M.E.; Surapaneni, A.; Chronic Kidney Disease Prognosis Consortium
and the American Heart Association Cardiovascular-Kidney-Metabolic Science Advisory Group. Development and validation of
the American Heart Association’s PREVENT Equations. Circulation 2024, 149, 430–449. [CrossRef] [PubMed]

47. The Alan Turing Institute. Majority of Doctors Using AI Are Optimistic About Its Benefits; [Online]; The Alan Turing Institute
London: London, UK, 2024. Available online: https://www.turing.ac.uk/news/majority-doctors-using-ai-are-optimistic-about-
its-benefits (accessed on 21 March 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://bidenwhitehouse.archives.gov/ostp/ai-bill-of-rights/
https://bidenwhitehouse.archives.gov/ostp/ai-bill-of-rights/
https://doi.org/10.3390/diagnostics13193115
https://www.ncbi.nlm.nih.gov/pubmed/37835858
https://doi.org/10.1161/CIRCULATIONAHA.123.067626
https://www.ncbi.nlm.nih.gov/pubmed/37947085
https://www.turing.ac.uk/news/majority-doctors-using-ai-are-optimistic-about-its-benefits
https://www.turing.ac.uk/news/majority-doctors-using-ai-are-optimistic-about-its-benefits

	Introduction 
	Methodology 
	Aim and Rationale for the Chosen Format 
	Sources and Databases 
	Search Strategy 
	Inclusion and Exclusion Criteria 
	Study Selection Procedure 
	Compliance with Transparency Principles 

	Results 
	Empirical Studies and Model Characteristics 
	Applications of AI in Psychiatric Practice 
	Diagnosis and Screening 
	Therapeutic Support and Monitoring 
	Predictive Models 

	Perspectives of Telepsychiatry 

	Discussion 
	Ethical and Legal Risks 
	Violation of Autonomy and Justice 
	Privacy 
	Opacity of Algorithmic Decision-Making 
	International Ethical Frameworks and Their Implementation Gap 

	Technological and Clinical Limitations 
	Scientific Gaps, Methodological Deficiencies, and Future Research Directions 
	The Potential of AI and Its Actual Clinical Applicability 
	Practical Mechanisms for the Sustainable Integration of AI into Psychiatric Practice 

	Limitations 
	Use of Artificial Intelligence 
	Conclusions 
	Summary and Outlook 
	Practical Recommendations for Clinical Practitioners and Policymakers 

	References

