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Diabetic nephropathy (DN), a frequent microvascular complication of diabetes,

has been recognized as a primary cause of chronic kidney disease (CKD) and

end-stage renal disease (ESRD). Previous studies found that autophagy of renal

tubular epithelial cells plays an important role in DN pathogenesis. Our research

aimed to investigate the differentially expressed autophagy-related genes

(DEARGs) between DN and healthy renal tubule samples and identify a novel

autophagy-related biomarker associated with tubulointerstitial injury in DN. In

this study, gene expression profiles of renal tubules from 10 DN patients and

24 healthy controls in the GSE30122 dataset were analyzed, and 43 DEARGs

were identified by bioinformatics analysis. The Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and

correlation analysis were performed on DEARGs, and the hub gene prolyl 4-

hydroxylase subunit beta (P4HB) was screened by protein–protein interaction

and verified by utilizing other datasets and stimulating HK-2 cells under high

glucose concentration. We found that the expression of P4HB in renal tubules

was correlated with renal function. In summary, our research provided novel

insights for comprehension of DN molecular mechanisms and identified P4HB

as a novel autophagy-related biomarker of DN.
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Introduction

Diabetic nephropathy (DN), a common microvascular complication of diabetes, has

been recognized as a primary cause of chronic kidney disease (CKD) and end-stage renal

disease (ESRD) in many developed and developing countries (Bikbov et al., 2020;

Johansen et al., 2021). According to recent reports, DN has accounted for 20 %–40 %

of patients requiring kidney replacement therapy worldwide, contributing to more than
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950,000 deaths worldwide each year (Tang and Yiu, 2020). DN

has become a serious global healthcare problem.

Although glomerular injury is a major pathological

manifestation of DN, there is growing evidence suggesting

that tubulointerstitial pathological changes, such as tubular

atrophy, interstitial fibrosis, autophagy, and apoptosis of

tubular epithelial cells, play a crucial role in DN

development (Brezniceanu et al., 2010; C. Yang et al.,

2021a; Liu et al., 2022). Apart from all other reasons, non-

enzymatic glycation is considered one of the major reasons

behind diabetes, including DN. It was found that DNA-AGEs

and auto-antibodies against glycated DNA are related to

diabetic microvascular complications, such as DN (Ahmad

et al., 2014). At the same time, it was also reported that some

commonly used drugs like ezetimibe and rosuvastatin can

show strong antidiabetic and renal protective effects by

targeting AGE/RAGE-associated signaling (Nabi et al.,

2021a; Nabi et al., 2021b). In addition, some common

components in plants such as ellagic acid and lycopene

play a protective role in diabetes and DN by reducing the

formation of AGEs (Tabrez et al., 2015; Ahmad et al., 2022).

Autophagy is a cellular process in which damaged organelles,

protein aggregates, and other macromolecules are degraded in

the cytoplasm (Galluzzi et al., 2017). Autophagy dysfunction is

associated with pathogenesis of various diseases (Dikic and

Elazar, 2018; C. Zhang et al., 2020). Several pathways affect

the biological function of DN by influencing autophagy. Li et al.

(2021) reported that activation of the epidermal growth factor

receptor (EGFR) signaling pathway can exacerbate kidney damage

by inhibiting autophagy. However, autophagy-related genes (ARGs)

in DN are still largely unknown and require further exploration.

Exploration and illumination of differentially expressed autophagy-

related genes (DEARGs) inDNwill provide us with novel biomarkers

for treatment of DN. Bioinformatics is a method for efficiently and

accurately processing large quantities of data, providing valuable

information to patients. Nevertheless, studies on the investigation

of the expression of diabetic renal tubular interstitial genes and

autophagy through bioinformatics are still lacking.

Woroniecka et al. completed the DN-related dataset

GSE30122 for analysis of gene expression differences between

DN patients and healthy controls (Woroniecka et al., 2011). In

this study, we re-analyzed their dataset from other perspectives to

explore DEARGs in DN vs. normal human renal tubular

interstitial genes. Subsequently, we performed Gene Ontology

(GO) enrichment analysis, Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis, and correlation

analysis on DEARGs. Protein–protein interaction (PPI) showed

that prolyl 4-hydroxylase subunit beta (P4HB) was identified as

an autophagy-related hub gene for DN. Finally, we further

validated the upregulated expression of P4HB in DN

tubulointerstitium by exploiting another database

(GSE104954) (Grayson et al., 2018) and the European Renal

cDNA Bank (ERCB) cohort, as well as establishing an in vitro

model, and the expression of P4HB in renal tubules was

correlated with renal function. The experiments’ schematic

workflow is displayed in Figure 1. Our study suggested that

P4HB is a potential key biomarker in the pathogenesis of renal

tubular injury in DN.

Materials and methods

Data download and preprocessing

The Human Autophagy Database (HADb; http://www.

autophagy.lu/index.html) was used to obtain genes involved in

autophagy. Genomic and transcriptomic datasets of DN and

healthy renal tubule samples were obtained using Gene

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/

geo/). Data from GSE30122 (GPL571 platform, Affymetrix

Human Genome U133A 2.0 Array) included the data of

10 patients with DN (GSM757014–GSM757023) and

24 control human kidney tubules (GSM757024–GSM757035,

GSM758498–GSM758509). The basic characteristics of 10 DN

patients are summarized in Supplementary Table S1, and the

histological evaluation of the 10 DN patients showed that renal

tubular atrophy, interstitial fibrosis, vascular sclerosis, and

mesangial matrix dilatation increased significantly

(Woroniecka et al., 2011). Data from GSE104954 (GPL22,

945 platform, Affymetrix Human Genome U133 Plus 2.

0 Array, and GPL 24,120 platform, Affymetrix Human

Genome U133A Array) were used for validation. The “sva”

(Parker et al., 2014) and “limma” (Ritchie et al., 2015)

packages in R software were used to normalize raw data in

batches.

Differentially expressed autophagy-
related gene analysis

The reproducibility of the GSE30122 data was examined

using the principal component analysis (PCA) method. The

“limma” package was utilized to investigate the differential

expression of genes related to autophagy. Genes were

identified as differentially expressed genes based on an

adjusted p-value of <0.05 and an absolute fold-change value

of >1.5. Heatmaps were created using the “pheatmap” package in

R, and the volcano plots and box plots were performed using the

Sangerbox tools, a free online platform for data analysis (http://

vip.sangerbox.com/home.html).

Gene functions and correlation analysis

Enrichment analyses were conducted for DEARGs. GO

and KEGG pathway enrichment analyses were performed
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using DAVID version 6.8 (https://david.ncifcrf.gov/

conversion.jsp), a commonly used tool for detailed

analysis and classification of genes and protein functions

in bioinformatics research. The GO analysis included

cellular composition (CC), biological process (BP), and

molecular function (MF). Enrichment results and

correlation analysis were drawn by https://www.

bioinformatics.com.cn, a free online platform for data

analysis and visualization.

Protein–protein interaction network
construction

The PPI network was constructed on the basis of the Search

Tool for the Retrieval of Interacting Genes/Proteins (STRING)

online analysis (https://string-db.org/). PPI network

visualization and analyses were performed with Cytoscape

(Version 3.9.1). Thirty hub genes related to autophagy were

identified by the Density of Maximum Neighborhood

Component (DMNC), and P4HB was screened as a hub gene.

An online platform (https://www.bioinformatics.com.cn) was

also used to show the receiver operating curve (ROC) to

evaluate the ability of P4HB to discriminate between DN

patients from healthy controls.

P4HB validation and correlation analysis
with renal function

The differential gene expression of P4HB between DN and

healthy renal tubule samples was verified in the

GSE104954 dataset and ERCB cohort (31 healthy controls and

17 DN patients) (Ju et al., 2015). Then, the association analysis of

P4HB expression and clinical characteristics was validated in

ERCB using Pearson’s correlation analysis by using the

Nephroseq v5 online database (http://v5.nephroseq.org).

Cell culture and treatments

The human proximal tubular cell line HK-2 was purchased

from the National Collection of Authenticated Cell Cultures and

cultured in Dulbecco’s modified Eagle’s medium (c11885500BT,

Gibco) by adding 10 % fetal bovine serum (10270-106, Gibco)

and 1 % penicillin–streptomycin (p1400, Solarbio) at 37°C and 5

FIGURE 1
Workflow of this study. The gene expression of human renal tubulointerstitial data was extracted from the GEO database (GSE30122). GEO,
Gene Expression Omnibus; Normal, healthy controls; DN, patients with diabetic nephropathy; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; PPI, protein–protein Interaction; ERCB: European Renal cDNA Bank; ROC, receiver operating curve; GFR, glomerular filtration
rate; IHC, immunohistochemistry.
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%CO2 in a humidified environment. High glucose concentration

(30 mM, G8644, Sigma) for 24 h (Zhan et al., 2015) was used to

cause HK-2 cell damage, and the addition of 5.5 mmol/L glucose

served as the control.

RNA extraction and RT-qPCR analysis

Total RNA was extracted from cultured HK-2 cells using

the RNAfast200 Kit (Fastagen), and cDNA was synthesized

using the SureScriptTM First-Stand cDNA Synthesis

Kit (QP056T, GeneCopoeia). Real-time quantitative

polymerase chain reaction (RT-qPCR) was conducted

using SYBR Green reagent (1725201, Bio-Rad) on a Bio-

Rad CFX PCR System (Bio-Rad). The procedure was repeated

three times for each sample. The primers are given in Table 1.

Gene expression analysis was performed using the 2−ΔΔCt

method, and expression levels were normalized to those of

GAPDH.

Protein extraction and Western blotting
analysis

Total proteins were extracted by the incubation of cultured

HK-2 cells with radioimmunoprecipitation assay (RIPA) buffer

(P0013D, Beyotime) and adding 1 % phenylmethylsulfonyl

fluoride (PMSF) (329-98-6, Solarbio) and quantified by Bio-

RAD assays. The same amount of protein was separated by 10

% sodium dodecyl sulfate (SDS)-polyacrylamide gel

electrophoresis (SDS-PAGE), and proteins were transferred to

polyvinylidene difluoride (PVDF) membranes. The membranes

were then blocked with 5 % skim milk and subsequently

incubated with primary antibodies against P4HB (1:

1,000 dilution, Cat.137,110, Abcam) and GAPDH (1:

6,000 dilution, Cat. 60004-1-Ig, ProteinTech) overnight at 4°C.

After washing, the proteins were incubated with horseradish

peroxidase (HRP)-conjugated secondary antibody (1:

6,000 dilution, Cat. SA00001-2, ProteinTech) for 1 h at room

temperature. The bands were visualized using an enhanced

chemiluminescence (ECL) system, and the signal intensity was

quantitatively processed by ImageJ software.

Immunohistochemistry and
immunofluorescent staining

The paraffin-embedded kidney sections of the kidney tissues

of three DN patients diagnosed by renal biopsy from the

pathology department of Qilu Hospital affiliated with

Shandong University and the paraffin-embedded kidney

sections of healthy adjacent kidney tissues of three individuals

who underwent tumor nephrectomy (no diabetes or other kidney

diseases) were immunohistochemically stained by P4HB, as

approved by the Research Ethics Committee Qilu Hospital of

Shandong University (NO. KYLL-2020(KS)-030). These sections

were incubated with an anti-P4HB antibody (1:1,000 dilution,

Cat.137110, Abcam) at 4°C overnight. The general two-step

method was used for detection and incubation, and the 3, 3′-
diaminobenzidine (DAB) chromogenic kit was used for

immunohistochemical staining. Images were collected and

analyzed using the NIS Element software and Nikon

microscope imaging system, and ImageJ software was used for

quantitative analysis.

For immunofluorescent staining of cells, the cells were fixed

with 4 % paraformaldehyde, incubated with TritonX-100 (1 %)

for 20 min, and then incubated with the P4HB primary antibody

(1:200 dilution, Cat.137110, Abcam) overnight at 4°C, Then, the

cells were incubated with goat anti-rabbit immunoglobulin (Ig)G

DyLight 594 (1:500, Cat. A23420, Abbkine Scientific Company)

coupled with a fluorescent probe in the dark at room temperature

for 1 h, and the nuclei were observed by DAPI (AR1176, Boster

Bio) staining. Images were captured by a fluorescence microscope

(Olympus).

Statistical analysis

GraphPad Prism 7 and R software version 4.1.3 were used for

statistical analysis. A two-tailed unpaired t test was used for

comparisons between the two groups. Differences were

considered statistically significant at p <0.05. (*p < 0.05, **p <
0.01, ***p < 0.001, and ****p < 0.0001).

Results

Identification of differentially expressed
autophagy-related genes between the DN
and healthy tubule samples

The renal tubular transcriptome data GSE10322 were used

for further analysis to investigate the role of ARGs in DN

TABLE 1 Quantitative PCR primers used in the study.

Gene Primer sequence (from
59 to 39)

P4HB Forward: 5′-CTGCGGAAAAGCAACTTCGC-3′
Reverse: 5′-CCACACCAAGGGGCATAGAA-3′

NGAL Forward: 5′-AGCACCAACTACAACCAGCAT-3′
Reverse: 5′-TTGGGACAGGGAAGACGATG-3′

GAPDH Forward: 5′-GCACCGTCAAGGCTGAGAAC-3′
Reverse: 5′-TGGTGAAGACGCCAGTGGA-3′
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pathogenesis. The distribution of DN and normal samples was

shown by the PCA results (Figure 2A). The expression of

222 ARGs in 10 DN patients and 24 normal samples was

subsequently analyzed, and 43 ARGs showed differential

expression in DN with an adjusted p value <0.05 and an

absolute fold-change value of >1.5, including 38 upregulated

and 5 downregulated genes (Table 2; Figures 2B–D).

Functional enrichment analysis of the
differentially expressed autophagy-
related genes

GO and KEGG pathway enrichment analyses were

performed to further explore the biological functions of these

DEARGs. The most involved processes or components in the GO

included autophagy and apoptotic process (biological process),

autophagosome membrane and membrane raft (cell

component), and cysteine-type endopeptidase activity

involved in the apoptotic signaling pathway and ubiquitin

protein ligase binding (molecular function) (Figures 3A, B;

Supplementary Table S2). The DEARGs mainly involved in

the autophagy-associated process were shown by the KEGG

pathway enrichment analysis (Figures 3C, D; Supplementary

Table S3).

Hub gene identification and validation

A correlation analysis was conducted to investigate the

expression relevance of these DEARGs. The relationship of

43 DEARGs in the GSE30122 dataset is shown in Figure 4A.

The human protein interaction database (String) was chosen to

identify the interactions among DEARGs, and 30 hub genes were

FIGURE 2
Differentially expressed autophagy-related genes in the tubulointerstitium between DN and normal renal tissue. (A) PCA for GSE30122. (B)
Volcano plot of 222 DEARGs in DN and normal samples. (C)Heatmap of the 43 DEARGs in DN and normal samples. (D) Boxplot of the 43 DEARGs in
DN and normal samples. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. PCA, principal component analysis; DEARG, differentially expressed
autophagy-related gene; DN, diabetic nephropathy.
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calculated by the DMNC algorithm. P4HB was screened as a hub

DEARG in DN (Figure 4B). We utilized another independent

dataset GSE104954 and an ERCB cohort to further verify the

change in P4HB expression, showing that P4HB expression was

significantly upregulated in DN tubule samples (Figures 4C–F).

Additionally, the ROC analysis demonstrated that the expression

of P4HB showed an excellent diagnostic value for DN patients

and healthy controls (Figures 4C–F).

TABLE 2 43 differentially expressed autophagy-related genes in the tubulointerstitium between DN and normal renal tissue.

Gene symbol logFC Change p-value Adj.p-value Chromosome

CASP1 2.815552955 Up 1.56195E-16 3.09266E-14 11q23

CCR2 2.58694031 Up 1.36828E-10 1.35459E-08 3p21.31

PEA15 1.786883586 Up 1.39952E-05 0.00023092 1q21.1

CASP4 1.615423503 Up 1.0762E-07 4.26175E-06 11q22.2-q22.3

RAB11A 1.5878937 Up 0.000249019 0.001972229 15q22.31

CCL2 1.499910231 Up 1.94226E-07 6.40947E-06 17q11.2-q12

FKBP1B 1.303245 Up 1.08E-03 6.40E-03 2p23.3

CDKN1B 1.297208099 Up 0.000191967 0.001583727 12p13.1-p12

ATG12 1.258743997 Up 0.000488666 0.003225195 5q21-q22

FAS 1.258208019 Up 3.27484E-06 7.20464E-05 10q24.1

HSPB8 1.211358555 Up 0.002146235 0.009656732 12q24.23

CAPN2 1.191207762 Up 0.003702217 0.014511648 1q41-q42

HSPA5 1.16304934 Up 0.000273748 0.002084694 9q33.3

RB1 1.155716399 Up 5.24217E-05 0.000610559 13q14.2

CASP3 1.138499883 Up 2.22484E-08 1.46839E-06 4q34

HSP90AB1 1.122569062 Up 0.005094094 0.01833874 6p12

IKBKB 1.117062221 Up 8.29611E-08 4.10657E-06 8p11.2

TNFSF10 1.110782311 Up 6.15161E-07 1.74003E-05 3q26

MYC 1.04536829 Up 2.70E-05 3.89E-04 8q24.21

APOL1 0.982670415 Up 3.40551E-05 0.000449528 22q13.1

ITGA3 0.926426396 Up 0.001907668 0.009212639 17q21.33

SH3GLB1 0.871043634 Up 0.003591573 0.014511648 1p22

ARNT 0.835171835 Up 3.97754E-05 0.00049222 1q21

LAMP2 0.806156698 Up 6.16193E-05 0.000658743 Xq24

ATIC 0.800030145 Up 2.75244E-05 0.000389274 2q35

ITGB1 0.788846065 Up 7.99052E-05 0.000753392 10p11.2

WIPI1 0.744366027 Up 0.004194894 0.015972865 17q24.2

GNAI3 0.74200647 Up 0.001143994 0.006471739 1p13

FKBP1A 0.7292738 Up 0.009201632 0.027604895 20p13

CALCOCO2 0.719431492 Up 0.000347926 0.002551457 17q21.32

P4HB 0.71230372 Up 0.00133895 0.006976636 17q25

CXCR4 0.692229997 Up 7.17148E-05 0.000709977 2q21

TBK1 0.641395881 Up 0.001994129 0.009400893 12q14.1

CFLAR 0.618087278 Up 6.32127E-05 0.000658743 2q33-q34

TM9SF1 0.614734304 Up 0.001742586 0.008625801 14q11.2

CHMP4B 0.60073086 Up 0.005999651 0.020736493 14q12

GABARAPL2 0.598015027 Up 0.007554347 0.024929345 16q22.1

SPNS1 0.592296801 Up 0.001098847 0.006399169 16p11.2

STK11 −0.607962624 Down 8.98484E-06 0.0001779 19p13.3

HDAC6 −0.628923381 Down 1.13142E-05 0.000203656 Xp11.23

SIRT2 −0.737375167 Down 1.05727E-06 2.61673E-05 19q13

GABARAPL1 −0.760812687 Down 8.81349E-05 0.000793214 15q26.1

GRID1 −0.919198606 Down 0.008745839 0.027486922 10q23.3
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Validation of P4HB expression under high
glucose stimulation

After determining from other datasets that the expression of

P4HB was significantly elevated in DN patients, the

transcriptional and protein levels of P4HB were explored after

high glucose stimulation and normal glucose treatment of HK-2

cells. RT-qPCR (Figure 5A) and Western blot analysis (Figures

5B, C) further validated that P4HB expression was elevated in

HK-2 cells under high glucose (30 mM) stimulation,

accompanied by increased expression of NGAL, a marker for

renal tubular injury, indicating that there was significant damage

in HK-2 cells. Simultaneously, cell immunofluorescence showed

that the expression of P4HB in HK-2 cells increased significantly

after high glucose stimulation (Figure 5D).

Clinical relevance of P4HB expression and
immunohistochemical validation of P4HB
expression

The correlation analysis of the ERCB cohort was performed

to validate the relationship between the expression of P4HB in

renal tubular and renal function. P4HB expression was

positively correlated with serum creatinine levels (r = 0.351,

p = 0.028) and negatively correlated with glomerular filtration

rate (GFR) (r = −0.472, p = 0.002) (Figures 6A,B). Additionally,

we performed immunohistochemical staining of P4HB in

kidney tissues of healthy controls and DN patients, and

found that the expression of P4HB in the renal tubules of

DN patients was significantly higher than that in normal

kidneys (Figures 6C,D).

FIGURE 3
GO and KEGG enrichment analyses of 43 differentially expressed autophagy-related genes. (A, B) Bubble plot and circle plot of GO enrichment
terms. BP, biological process; CC, cellular component; MF, molecular function. (C, D) Bar plot and Chord plot of KEGG enrichment pathways. GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Discussion

DN is one of the most serious microvascular complications of

diabetes, accounting for approximately 30 %–40 % of end-stage

kidney disease patients worldwide (Maezawa, Takemoto and

Yokote., 2015; L. Zhang et al., 2016). Poor prognosis and low

quality of life are distinctive characteristics of patients with DN

(Slieker et al., 2021). Therefore, novel and satisfactory strategies

are urgently needed to treat DN. There is growing evidence that

multiple biological functions are engaged in the pathogenesis of

DN, such as immunity, inflammation, and autophagy (Yang

et al., 2019; Yang M. et al., 2021; Yu et al., 2021; Li et al., 2022). In

our research, starting from autophagy, for the first time, we

identified DEARGs in DN vs. normal human renal tubular

interstitial cells by bioinformatics analysis, as well as

determined a new autophagy-related biomarker for DN, thus

providing novel insights into the tubulointerstitial pathogenesis

of DN and contributing to the identification of novel therapeutic

targets.

P4HB, a member of the protein disulfide isomerase (PDI)

family, is a multifunctional protein capable of catalyzing the

generation and reorganization of disulfide bonds (Noiva, 1999).

P4HB, as an autophagy-related gene, can be detected in various

diseases that involve inflammation and apoptosis, including

cancer, endocrine diseases, and skin diseases. Elevated

expression of P4HB has been reported in several solid tumors,

such as ovarian cancer (Bonome et al., 2008), bladder cancer (Lyu

et al., 2020; Wang et al., 2020), and prostate cancer (Welsh et al.,

FIGURE 4
Identifying P4HB as a hub autophagy-related gene in DN and validating in the GSE104954 database and ERCB cohort. (A) Spearman’s
correlation analysis of the 43DEARGs. (B) Top 30 hubDEARGs identified via the PPI network. (C, D) Validation of P4HB in GSE104954. (C) Significantly
upregulated expression of P4HB in DN patients (n = 17) compared to healthy samples (n = 21) (p < 0.0001) (D) ROC curve of P4HB expression in DN
(AUC = 89.1%). (E, F) Validation of P4HB in the ERCB cohort. (E) Significantly upregulated expression of P4HB in DN patients (n = 17) compared
to healthy samples (n = 31) (p < 0.0001). (F) ROC curve of P4HB expression in DN (AUC = 78.9%). *p < 0.05, **p < 0.01, ***p < 0.001, and ****p <
0.0001. DEARG, differentially expressed autophagy-related gene; DN, diabetic nephropathy; PPI, protein–protein Interaction; ROC, receiver
operating curve; AUC, area under the curve; ERCB: European Renal cDNA Bank.
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2001; Singh et al., 2002). Additionally, Ding et al. (2020) reported

that targeting P4HB can reduce inflammation and melanogenesis

of the skin. Furthermore, previous studies found that

PDIA1 contributes to oxidative maturation of proinsulin in

the endoplasmic reticulum to support insulin production and

ß-cell health in diet-induced obesity (Jang et al., 2019), indicating

that P4HB could indirectly influence insulin production and ß-

cell health.

One study has determined that P4HB was substantially

elevated as an ARG in kidney renal clear cell carcinoma

(KIRC) and showed high diagnostic and prognostic ability

(Xie et al., 2020). There are also reports demonstrating that

P4HB overexpression was associated with poor prognosis in

human KIRC (Zhu et al., 2019; Wu et al., 2021), indicating

that overexpression of P4HB is an adverse prognostic factor.

Additionally, Fu et al. (2021) reported that the self-antigen P4HB

located on the cell membrane of kidney cells could be cross-

recognized by anti-HU1 (a conserved peptide derived from

DNABII proteins) and induce lupus nephritis (LN). Hence,

evidence suggests that P4HB might be a key biomarker and

therapeutic target for human kidney diseases.

In this study, transcriptomic variations of ARGs in the gene

expression profiles of 10 DN and 24 healthy renal tubule samples

were analyzed, and 43 DEARGs were identified in DN samples

compared with healthy samples. The GO and KEGG enrichment

analyses of DEARGs were subsequently performed. These genes

were mostly enriched in autophagy-related biological processes,

such as autophagy, mitophagy, autophagosome assembly, and

macroautophagy. These processes may be associated with various

infections and diseases that were inferred from the enrichment

analysis of pathways, including influenza A, lipid dysfunction

and atherosclerosis, and cancer. Previous studies have also shown

that DNwas associated with various autophagy-related biological

functions (YangM. et al., 2021; Liu et al., 2022). Then, correlation

analysis and the PPI network were constructed to further explore

the correlation between the DEARG expression. According to the

FIGURE 5
Validation of P4HB expression in vitro. (A) RT-qPCR analysis of P4HB and NGAL in HK-2 cells after HG stimulation and NG treatment. (B)
Western blot analysis of P4HB in HK-2 cells after HG stimulation and NG treatment. (C) Densitometric quantification of P4HB in HK-2 cells after HG
stimulation and NG treatment. Results are expressed as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. (D)
Immunofluorescence showing the expression of P4HB in HK-2 after HG stimulation and NG treatment. Scale bars, 50 μm. RT-qPCR, real-time
quantitative polymerase chain reaction; SEM, standard error of the mean; HG, high glucose; NG, normal glucose.
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PPI network, DMNC scores from cytoHubba confirmed that

P4HB was a key hub gene in DN tubular injury.

The elevation of renal tubular P4HB expression in DN

was verified in other datasets and in vitro experiments. We

first verified the elevated gene expression by other databases,

and the result was consistent with that of our previous study.

The ROC analysis indicated that P4HB expression showed an

excellent diagnostic value for DN patients and healthy

controls. Through in vitro experiments, we found that the

expression of P4HB was significantly elevated after high

glucose stimulation of HK-2, accompanied by increased

expression of NGAL, a marker for kidney tubular injury,

indicating that there was significant damage in HK-2 cells

(Satirapoj, 2018). In the meantime, we found that P4HB

expression was positively correlated with serum creatinine

levels and negatively correlated with GFR, and

immunohistochemistry staining showed that the

expression of P4HB in the renal tubules of DN patients

was significantly higher than that of normal kidneys.

Therefore, P4HB might serve as an autophagy-related

biomarker for DN.

This study can provide novel insights and potential targets for

further studies on the connection between DN and autophagy.

However, our analysis was limited by the number of samples

included, as transcriptomic data on DN tubuleinterstitium are

restricted and most data were tested with different platforms.

More combined samples and clinical information are required to

clarify the potential mechanisms of P4HB in DN.

Conclusion

We identified DEARGs in DN vs. normal human renal

tubular interstitial cells by bioinformatics analysis for the first

time, and P4HB was found and confirmed as an autophagy-

related biomarker for DN, thereby providing new insights and

potential targets for further studies on the correlation between

DN and autophagy.

FIGURE 6
Clinical relevance of P4HB and immunohistochemical validation of P4HB expression. (A) Relevance of the expression of P4HB and serum
creatinine level. (B) Relevance of the expression of P4HB and GFR. (C,D) Typical images and statistical charts of immunohistochemical staining of
P4HB in normal renal tissues and DN renal tissues. Scale bars, 100 μm. Results are expressed as the mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001,
and ****p < 0.0001. GFR, glomerular filtration rate; DN, diabetic nephropathy; SEM, standard error of the mean.
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