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Post-refinement method for snapshot
serial crystallography

Thomas A. White

Center for Free-Electron Laser Science, Deutches Elektronen-Synchrotron DESY, Notkestrasse 85,
22607 Hamburg, Germany

A post-refinement procedure has been devised for ‘snapshot’ diffraction data

consisting entirely of partially recorded reflections, each diffraction pattern

from a crystal in an orientation unrelated to the others. Initial estimates of

the diffraction geometry are used to calculate initial partialities, which are

then used to scale the entire dataset together to produce initial estimates of

the fully integrated intensities. The geometrical parameters for each pattern

are then refined to maximize the agreement between these estimates and the

calculated intensities in each pattern, and the procedure repeated iteratively.

The performance of the procedure was investigated using simulated data

and found to yield a significant improvement in the data quality.

1. Introduction
In ‘serial femtosecond crystallography’ (SFX), a single X-ray diffraction pattern

is acquired from each one of a very large number of crystals, delivered into the

path of an X-ray free-electron laser (FEL) beam by a liquid injection technique

which results in all the crystals having random and unrelated orientations [1].

Because a single pulse of FEL radiation destroys each crystal, controlled rotation

or oscillation of the crystals is impossible, and there is no possibility of return-

ing to a particular crystal to acquire more data. It is the very short duration of

the X-ray pulse, only a few tens of femtoseconds, which allows a diffraction pat-

tern to be recorded despite the destruction of the crystal [2]. Owing to the

resulting lack of rotation or oscillation, and the use of an X-ray beam with

small bandwidth and convergence angle (although generally neither mono-

chromatic nor perfectly collimated), it can be expected that the reflections in

each diffraction pattern would be partially recorded. In the experiments of

this kind performed to date, integrated intensities have been calculated using

the so-called Monte Carlo technique in which the full reflection intensities are

determined simply by taking the mean of sufficiently large number of measure-

ments [3], and it has been demonstrated several times that this method can

indeed produce useful intensities from experimental data [4].

The Monte Carlo method makes no attempt to assign partialities to any of the

reflections. Assuming that the unknown partialities of the reflections really are

the dominant error source which necessitates such a large volume of data in SFX

experiments, a great improvement in the final data quality could be achieved by

assigning values to them. However, useful partiality estimates cannot usually be

made with the initial geometrical parameters (unit cell parameters and crystal orien-

tation) given by the indexing procedure. ‘Post-refinement’ is the method by which

these parameters can be refined in order to get the best agreement between the

‘scaled up’ partial intensity and some reference intensity [5], improving the accuracy

of the geometrical parameters to a point where useful partiality estimates can be

made. The need for special data processing techniques for the ‘one crystal–one

photograph’ situation was identified as early as 1979, when Winker et al. [6] reported

a suitable post-refinement procedure. However, their method relies on having fully

recorded ‘reference’ measurements for at least a fraction of the partial reflections,

whereas in the SFX situation, there are no fully recorded reflections whatsoever.

Rossmann & van Beek [5] identified two methods for handling partially

recorded reflections. The first ‘method of summed partials’ involves summing
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Figure 1. (a) Cross section of reciprocal space showing the volume between the limiting Ewald spheres within which reflections can be excited (shaded in grey). The
enlarged regions show five reflections, labelled A – E, which have different values of partiality and Lorentz factor. (b) Further enlargement of reflection ‘A’ showing
the definition of rhigh and rlow.
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partial reflections from adjacent images in a rotation series and is

obviously not applicable here. The second ‘method of scaled

partials’ involves taking an average of individual estimates of

the fully integrated intensity after individually correcting each

partial intensity using its calculated partiality. A suitable scaling

method for SFX could consist of incorporating post-refinement

in this method and iterating, performing post-refinement of

each diffraction pattern against the estimates of the full intensi-

ties at each step, calculating new overall scaling factors and

then making improved estimates of the full intensities before

repeating. This article describes an implementation of this

‘method of scaled partials with post-refinement’, a processing

technique with appears not to have been described so far.

Using simulated test data, it will be demonstrated that post-

refinement can be applied to a dataset which consists entirely

of partially recorded reflections, yielding sufficiently accurate

partiality estimates to allow significant improvements to be

made to the quality of the final intensity measurements.
2. Geometrical model for partiality
For this work, the diffraction geometry was modelled as

described previously with the partiality of a reflection being

defined as the volume fraction of a sphere, centred on the reci-

procal lattice point, which is within the region of reciprocal

space covered by the nest of Ewald spheres representing the

different X-ray wavelengths (to model spectral bandwidth)

and incident angles (to model beam convergence) [7]. The

model is similar to that described by Rossmann et al. [8].

Consider the five reflections shown schematically in

figure 1a, in which the thickness of the excited region of reci-

procal space has been exaggerated for clarity and to show

the extreme situations of partiality even though they are not

necessarily expected in real data. The filled circles A–E rep-

resent some hypothetical reflections which all have the same

structure factor and hence would appear, when fully recorded

under equivalent conditions, with the same intensity. Reflec-

tions B and C have very similar scattering angles, as do

reflections D and E. The grey region represents the volume

of reciprocal space within which reflections can be excited.

Assuming that the X-ray beam is perfectly collimated and

that its spectrum is a top hat function (i.e. all wavelengths

within the bandwidth of the beam appear with equal inten-

sity), reflections A and C would appear with approximately

equal intensity, even though reflection A has a small partiality
whereas reflection C is fully recorded. This can be seen by con-

sidering each of the Ewald spheres within the ‘nest’

individually: every one of them intersects both of the reflec-

tions, the only difference being that the central region of

reflection A is excited, whereas the excited volume of reflection

C includes the entire volume of the sphere. For the same

reason, reflections B and E would also have similar intensities.

Because the distance between the limiting Ewald spheres

increases with scattering angle, the available incident intensity

is spread over a larger volume of reciprocal space near the

high-resolution reflections D and E than near the lower-resol-

ution reflections B and C. Reflection D would therefore have a

much lower intensity than reflection B, and E lower than C,

despite both pairs of reflections having equal partiality. Reflec-

tions A, B and D all have similar partialities, yet they would

appear with different intensities.

The diffracting extent for a particular reflection is defined

by the distances rhigh and rlow, from which the partiality can

be calculated. The definition of these distances is shown in

figure 1b. They are the distances from the centre of the reci-

procal lattice point to the limiting Ewald spheres, measured

radially from the Ewald sphere centre. A negative value for

either distance indicates that the surface of the corresponding

limiting Ewald sphere is closer to the centre of the Ewald

sphere than the reciprocal lattice point.

To account for the increasing distance between the limit-

ing Ewald spheres with scattering angle, a ‘Lorentz’ factor

was used in combination with the calculated partialities.

The Lorentz factor is proportional to (rhigh 2 rlow)21.

Before calculating the partialities, rhigh and rlow were

clamped to be within the range 2r . . . þr, and this clamping

taken into account for the later gradient calculation. This

accounts for reflections such as reflection B in figure 1a, where

moving the lower limiting Ewald sphere would not affect the

partiality of the reflection, or reflection E where moving neither

limiting Ewald sphere would affect the partiality.

The formula for converting the eth partially recorded

intensity measurement in diffraction pattern j, Iej,partial to a

full intensity Iej,full is therefore

Iej, full ¼
Iej,partial

pejLej
,

where p and L are the partiality and Lorentz factor, res-

pectively. The cell parameters and orientations were

represented together by using the x, y and z components of
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Figure 2. Mean and maximum partialities and number of reflections in the
test dataset.
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the reciprocal lattice basis vectors a*, b* and c*. The partiality

itself is given by

pej ¼ (3q2
low � 2q3

low)� (3q2
high � 2q3

high),

where qlow ¼ 1/2r(rlow þ r), qhigh ¼ 1/2r(rhigh þ r) and r is the

radius of the reflection sphere [8].

For the least-squares calculation at the core of post-refine-

ment, the gradient of p with respect to the individual

components of the basis vectors (aw
x , aw

y , aw
z , bw

x and so on) is

required, and is given by

@p
@aw

x
¼ h sinf cosc

@p
@rhigh

� @p
@rlow

� �
,

@p
@aw

y
¼ h sinf sinc

@p
@rhigh

� @p
@rlow

� �
and

@p
@aw

z
¼ h sinf

@p
@rhigh

� @p
@rlow

� �
,

where

@p
@rhigh

¼ 3

r
(qhigh � q2

high)

and

@p
@rlow

¼ 3

r
(qlow � q2

low):

The expressions are similar for the components of b*
and c* except that k and l, respectively, appear in the equation

instead of h. The position of the reflection in the direction per-

pendicular to the nearest limiting Ewald sphere, which most

strongly affects its partiality, does not strongly affect L. There-

fore, the Lorentz gradient @L/@v, where v represents any

reciprocal lattice basis vector component, was taken to be

zero so that @pL/@v ¼ L(@p/@v).
3. Methods
A simulated dataset was created by calculating partial intensities

for 1000 randomly chosen crystal orientations using the model

described above. Full intensities were calculated for PDB code

3PQR [9], which has a rhombohedral unit cell with a ¼ 144.2 Å

and a ¼ 113.788, space group R32, expressed using hexagonal

axes (‘H32’). The simulated photon energy was 8 keV (wavelength

1.5498 Å), the bandwidth 0.05% and the convergence angle of the

X-ray beam 1 mrad. The radius of the spheres of scattering density

around each reciprocal lattice point was 5 � 1023 nm21. To simu-

late the limited accuracy of the initial geometrical parameters,

errors were added to each of the reciprocal lattice basis vector com-

ponents with a flat top distribution, maximum value +0.1% of the

component itself. The partial intensities were multiplied by an over-

all scaling factor, chosen randomly for each pattern according to a

normal distribution with a mean of 1 and a standard deviation of

0.3. A square detector was simulated with side length 76.8 mm, a

distance of 50 mm from the interaction point. Figure 2 shows the

number of reflections, mean partiality and maximum partiality

in resolution shells. The overall mean partiality was 0.25, and

the maximum partiality of any reflection in the test dataset was

0.77. The largest number of reflections was encountered at the

edge of the simulated detector where d ¼ 2.41 Å, the steep fall-off

at higher resolution corresponding to the corner regions. Normally

distributed random noise was added to all reflections, with a con-

stant standard deviation approximately equal to the mean

intensity in the highest resolution shell. The resolution limit of the

dataset was at d ¼ 1.93 Å. A further dataset was prepared, identical

to the first except for having a maximum reciprocal parameter
error of 1.0% instead of 0.1%. Polarization of the X-ray beam

was neglected in this simulation and its processing, but an

additional correction factor could easily be used when handling

experimental data.

To begin the scaling and post-refinement process, the fully inte-

grated intensities for each symmetrically unique reflection (Ifull) were

estimated by combining the many estimates from the n diffraction

patterns using the parameters from the previous iteration

Ifull ¼
Pn

j¼0 Gj
Pkj

e¼0 Iej,fullPn
j¼0 kj

,

where the reflection has kj symmetry equivalents in image j, num-

bered e ¼ 0 . . . kj, Gj is the overall scaling factor for image j, and

the expression for Iej,full was given earlier. Reflections for which

pej , 0.1 were not included in the sum.

Before combining the intensity estimates, the overall scaling

factors Gj must be determined by a standard scaling procedure.

The traditional matrix-based methods [10,11], which involve sol-

ving a square matrix equation with a side length equal to the

number of patterns, are problematic when the number of patterns

is very large, as is the case here, because the computational require-

ments scale in proportion to the square of the number of patterns.

By contrast, the method described by Kabsch [12] operates by

first merging all the patterns using equal scaling factors, then scal-

ing each pattern to the combined dataset, merging the patterns

again and iterating a small number of times. The computational

requirements of this method are roughly proportional to the

number of patterns, and it is therefore strongly preferred over

the matrix-based method. A method similar to the Kabsch

method was used in this work to scale and merge the individual

diffraction patterns.

After combining the full intensity estimates from all patterns,

the aim of post-refinement is to optimize the geometrical par-

ameters such that the agreement is maximized between the

partial intensity from a single reflection measurement, Iej,partial,

and the corresponding fully integrated intensity, Ifull. The

residual DIej for a given partial reflection is therefore defined as

DIej ¼ GjIej,partial � pejLejIfull,
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where pej is the partiality of the reflection calculated using cur-

rent estimates of the diffraction parameters. The object is to

minimize the sum of the squared residuals from all reflections

in the pattern

E ¼
X

DI2
ej, (3:1)

which was performed by nonlinear least-squares fitting. Any

reflection was omitted from the least-squares procedure whose

intensity was less than three times the estimated error in the

intensity, if its partiality pej , 0.1, or if there was not at least

one other scalable measurement of the reflection in the dataset

(whether in the same pattern or not). If no reflections remained

in particular pattern after these rejection criteria had been

applied, then no refinement was performed on that pattern.

The nine reciprocal lattice basis vector components were used

as parameters for the refinement. The normal equations were

solved using singular value decomposition (SVD), after applying

the rescaling procedure described by Bricogne [13], which

ensures that the diagonal elements of the matrix are all 1, and

therefore that any small eigenvalues were due only to corre-

lations between parameters and not owing to differences of

scale. Eigenvalues were eliminated if their moduli were less

than 1026 times the largest eigenvalue. Iteration was continued

until the largest change in partiality was less than 0.01, or to a

maximum of 10 iterations, whichever came first. If the step

taken by an iteration caused more than one third of the reflec-

tions to be assigned partialities of zero (i.e. determined not to

appear in the pattern), the step was reverted. The procedure

was then repeated from the scaling and merging step, using

the refined geometrical parameters to calculate new partialities

and Lorentz factors.

The procedure was tested with zero, one and three cycles of

the procedure, where zero iterations correspond so performing

the initial scaling and merging step alone, using the initial reci-

procal lattice basis vectors to estimate partialities, and skipping

the post-refinement step altogether. For each trial of the pro-

cedure, the accuracy of the resulting estimates of the fully

integrated intensities was evaluated by calculating the R-factor

in resolution shells between them, and the ‘reference intensities

which were used to create the test data at the beginning’.
4. Results
Figure 3 shows the results of the application of the scaling

and post-refinement procedure to the first simulated test

dataset (maximum reciprocal parameter error +0.1%).

Three cycles of the post-refinement procedure give the best

agreement between the reference intensities and the merged

intensities, with one cycle of the procedure performing only

slightly less well. Post-refinement made an improvement to

the data quality in all resolution shells up to the resolution

limit of the data.

The results with p ¼ 1 (i.e. with all partialities set to 1)

extend to slightly lower resolution than the others because of

the rejection of reflections with very small partialities, which

are more frequently found at the very lowest resolutions. One

eigenvalue was found to have been eliminated during each

iteration of the filtering procedure after SVD, consistent

with the finding of Rossmann et al. [8] that a rotation of

the crystal around the direction of the incident X-ray beam

does not affect the partialities and so leads to a redundancy

in the refinable parameters. Although the least-squares

problem was expressed using the Cartesian components of

the basis vectors in this work, there is a linear relationship

between these and the setting angles and cell parameter
representation used in the earlier work, and so the same

problem occurs. The least-squares fitting procedure was

nevertheless able to continue and refine the parameters.

For a given reflection, the ‘observed partiality’ can be

defined as the ratio of the intensity in the pattern, after correc-

tion for the overall scaling and Lorentz factors (but not

partiality), to the current estimate of the full intensity. These

values were plotted in a scatter graph against the ‘calculated

partiality’, which is the estimate pej from the geometrical

model, shown in figure 4. To reduce the number of points in

the graphs for clarity, points were randomly selected from

the entire dataset with a probability chosen to include approxi-

mately the number of reflections found in a single diffraction

pattern. The graphs show that a weak correlation is visible

before refinement, and that the correlation becomes much

stronger after one iteration.

The results shown in figure 3 with ‘no refinement’ are sig-

nificantly better than those with p ¼ 1, indicating that under

these conditions the parameters were still sufficiently accurate

that they could be used to make useful partiality estimates

without post-refinement. The gap between the ‘no refine-

ment, no scaling’ and ‘no refinement’ lines indicates the

amount of error introduced by the distribution of overall scal-

ing factors under these conditions. For the second test dataset

(maximum reciprocal parameter error of +1.0%), the initial

parameters were not accurate enough to produce useful par-

tiality estimates, as can be seen in figure 5. This is a much

more challenging situation for the post-refinement algorithm,

but it was still able to make a significant improvement to the

data quality.
5. Conclusion
It has been shown that a post-refinement procedure can be

used to improve the parameters of a geometrical model of
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partiality when the entire dataset consists of partially recor-

ded reflections. The refinement can be performed in a stable

manner, and works even when the initial estimates of the

parameters are very far from the true values. The refined
parameters can be used to assign partialities to the reflections

which allow significant improvements in the data quality

compared with when no partiality estimates are made.

This demonstration used simulated data, and the partiality

model used during post-refinement was the same as that used

to produce the test data at the beginning. Future work on this

subject will consist of tests with diffraction patterns simulated

using Fourier methods [3], indexed and integrated using the

established SFX analysis pipeline, and on experimental data

from SFX experiments. Applying this method to experimental

data is likely to require first achieving a greater understanding

of the importance of the spectral fluctuations arising from the

stochastic mode of FEL operation, as well as accounting for

vast differences in diffraction strength and resolution between

crystals, and perhaps several additional confounding factors.

Nevertheless, these simulations still serve to demonstrate

the above points concerning the practicality and stability of

the method, which is likely to be of great importance for

improving the data quality which can be achieved using a

given number of patterns in an SFX experiment.

The post-refinement method has been implemented as

part of the serial femtosecond crystallography suite CRYSTFEL

[14], embodied in the program partialator. The generation of

test data was performed using the CRYSTFEL program

partial_sim. The results described in this article may be

reproduced by using version 0.5.2 of CRYSTFEL.
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