
R AD I A T I ON ONCO LOG Y PH Y S I C S

MR‐based treatment planning in radiation therapy using a
deep learning approach

Fang Liu1 | Poonam Yadav2 | Andrew M. Baschnagel2 | Alan B. McMillan1

1Department of Radiology, School of

Medicine and Public Health, University of

Wisconsin, Madison, WI, USA

2Department of Human Oncology, School

of Medicine and Public Health, University

of Wisconsin, Madison, WI, USA

Author to whom correspondence should be

addressed. Fang Liu

E-mail: fliu37@wisc.edu

Telephone: 612-222-9728

Funding information

NIH, Grant/Award Number: R01EB026708

Abstract

Purpose: To develop and evaluate the feasibility of deep learning approaches for

MR‐based treatment planning (deepMTP) in brain tumor radiation therapy.

Methods and materials: A treatment planning pipeline was constructed using a

deep learning approach to generate continuously valued pseudo CT images from

MR images. A deep convolutional neural network was designed to identify tissue

features in volumetric head MR images training with co‐registered kVCT images. A

set of 40 retrospective 3D T1‐weighted head images was utilized to train the

model, and evaluated in 10 clinical cases with brain metastases by comparing

treatment plans using deep learning generated pseudo CT and using an acquired

planning kVCT. Paired‐sample Wilcoxon signed rank sum tests were used for sta-

tistical analysis to compare dosimetric parameters of plans made with pseudo CT

images generated from deepMTP to those made with kVCT‐based clinical treat-

ment plan (CTTP).

Results: deepMTP provides an accurate pseudo CT with Dice coefficients for air:

0.95 ± 0.01, soft tissue: 0.94 ± 0.02, and bone: 0.85 ± 0.02 and a mean absolute

error of 75 ± 23 HU compared with acquired kVCTs. The absolute percentage dif-

ferences of dosimetric parameters between deepMTP and CTTP was

0.24% ± 0.46% for planning target volume (PTV) volume, 1.39% ± 1.31% for maxi-

mum dose and 0.27% ± 0.79% for the PTV receiving 95% of the prescribed dose

(V95). Furthermore, no significant difference was found for PTV volume (P = 0.50),

the maximum dose (P = 0.83) and V95 (P = 0.19) between deepMTP and CTTP.

Conclusions: We have developed an automated approach (deepMTP) that allows

generation of a continuously valued pseudo CT from a single high‐resolution 3D

MR image and evaluated it in partial brain tumor treatment planning. The deepMTP

provided dose distribution with no significant difference relative to a kVCT‐based
standard volumetric modulated arc therapy plans.
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1 | INTRODUCTION

In recent years there have been many efforts to develop Magnetic

Resonance Imaging (MRI)‐based treatment planning methods that

avoid auxiliary computed tomography (CT) for radiation therapy

treatment planning.1 MRI provides superior soft tissue contrast com-

pared to CT which makes it an excellent image modality to delineate

accurate boundaries for targeted treatment regions to deliver the

most desirable dose distribution.2,3 In addition, image techniques

that do not administer ionizing radiation, such as MRI, are desirable

for pursuing reduced treatment dose to patients.

A key challenge for MRI‐based treatment planning is the lack of

a direct approach to obtain electron density for dose calculation.

Unlike conventional CT‐based treatment planning where additional

acquired CT images can be scaled to a photon attenuation map (μ‐
map),4,5 MRI does not provide linear image contrast and is limited in

achieving positive contrast in bone (the highest attenuating tissue).

Therefore, no straightforward conversion from MR images to a μ‐
map is available for compensating dose calculation. Additionally,

other challenges include the presence of MR image artifacts as a

result of a relatively complex image formulation and potentially long

scan time in contrast to CT scans.

Given the importance of an accurate μ‐map to enable accurate

dose calculation in treatment planning, the development of novel

approaches to generate pseudo CTs or synthetic CTs from MRI is an

actively studied topic.6–9 State‐of‐the‐art approaches can be roughly

classified into two main categories: image intensity‐based and atlas‐
based.1 The typical intensity‐based approach is to utilize individual

or combined T1‐weighted, T2‐weighted, and water/fat separated MR

sequences that estimate tissue compartments with a single or multi-

ple acquisition.1 These images are then further processed to directly

assign Hounsfield Unit (HU) values to air, fat, lung, and water com-

partments10 or to estimate the continuously valued HU to various

tissues by MR signal conversion model.11 However, because bone

cannot be visualized with positive contrast on conventional MR

imaging approaches, bone is typically challenging to estimate in

these approaches. Specialized MRI acquisitions using an ultrashort

echo time (UTE) or zero echo time can be implemented to allow the

measurement of the rapidly decaying MR signal in bone tissue to

estimate bone. Unfortunately, most UTE acquisitions are challenging

to integrate into clinical workflows as a result of technical difficulties

in implementation, require a relatively long scan time, and have lim-

ited availability across different vendor platforms. Additionally, even

with advanced UTE acquisitions, bony structure and air often remain

difficult to distinguish and pose errors in consecutive attenuation

calculation. In addition, partial volume effects and signal inhomo-

geneity due to RF pulse and receive coil arrays are additional con-

founding factors that influence the accuracy and precision of

segmentation‐based approaches in MR.

Atlas‐based approaches for treatment planning utilize registration

and spatial normalization of a population‐based CT image template

to acquired MR images to estimate the location and geometry of tis-

sue types.12,13 A particular advantage of these techniques is that an

existing, clinically useful MRI series can be used as the input dataset,

eliminating the need for an extra MR acquisition particular for treat-

ment planning. However, this process is highly dependent upon the

accuracy of image registration where the patient anatomy must be

appropriate for the atlas used. Therefore, atlas‐based approaches

may suffer when utilized in subjects with abnormal anatomy such as

missing tissues or the presence of surgical implants.

Deep learning utilizing convolutional neural networks (CNN) have

recently been applied to medical imaging with successful implemen-

tations for a wide range of applications.14 A study in Ref15 demon-

strated the feasibility of pseudo CTs generation using MR images

with a deep CNN model. The deep learning method compared favor-

ably with an atlas‐based method for generating pseudo CTs with

high accuracy and efficient computation speed at test time. In PET/

MR, one pilot study16 utilized deep learning to enable accurate gen-

eration of pseudo CTs from a single acquisition of T1‐weighted MRI

image acquired in standard clinical brain protocol. In this study, a

deep CNN model was designed to classify tissues on the MRI images

after training with registered kilovoltage CT (kVCT) images. As a

result, three‐discrete labels were assigned to soft tissue, air and bone

in the generated pseudo CTs that delivered accurate PET/MR atten-

uation correction with significantly reduced error in reconstructed

PET images compared with existing segmentation‐based and atlas‐
based methods.16 In one recent study from the same group, the

deep learning approach was applied in combination with an

advanced UTE sequence, which achieved reliable and accurate tissue

identification for bone in PET/MR attenuation correction in brain

imaging.17 Another recent study demonstrated excellent perfor-

mance utilizing deep learning generated pseudo CTs for PET/MR

attenuation correction in pelvis.18

The purpose of this study was to further evaluate the efficacy

and efficiency of deep learning generated pseudo CTs in the applica-

tion of treatment planning in radiation therapy on brain tumor

patients. Specifically, we evaluated an MRI‐based treatment planning

approach, deepMTP, which allows generation of a continuously val-

ued pseudo CT from a single MRI acquisition from clinical protocol

using deep CNN model. To the best of our knowledge, this study is

one of the pilot studies to implement deep learning generated

pseudo CTs into the workflow of treatment planning and to evaluate

the accuracy and robustness of such approach for dose calculation

accuracy in clinical cases of radiotherapy for brain metastases. While

other studies have demonstrated techniques for the generation of

pseudo CTs with hypothesized applications for radiotherapy treat-

ment planning, none have evaluated their efficacy in evaluating clini-

cal radiotherapy treatment plans using the generated pseudo CT

images.

2 | MATERIALS AND METHODS

2.A | Convolutional neural network architecture

Inspired by the network design in Ref., [16,17] we utilized the deep

convolutional encoder‐decoder network structure shown in Fig. 1,
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which is capable of mapping pixel‐wise image intensity from MRI to

CT in multiple image scales. The basic framework of this type of net-

work was built based on structures that perform well in natural

image object recognition19 and MRI segmentation for various tis-

sues.20–24 The network consisted an encoder network directly fol-

lowed by a decoder network, where the encoder network uses a set

of combined 2D convolution filtering, batch normalization,25 ReLU

activation,26 and max‐pooling to achieve image feature extraction for

unique spatial invariant input image features. The decoder network

takes the output of the encoder network and combines extracted

image features in multiple resolution scale to generate targeted high‐
resolution image output through an image upsampling process. The

encoder uses the same 13 convolutional layers from the VGG16 net-

work27 originally designed for image recognition and later tested in

multiple image segmentation tasks.16,20 The decoder is applied

directly after the encoder network and features a reversed VGG16

network structure with the max‐pooling layers replaced by corre-

sponding upsampling layers. In Ref., [16] the pseudo CT generation

was treated as a semantic segmentation problem for multiple tissue

classes in MR images. More specifically, a multiclass softmax layer

was inserted into the final layer of decoder network and the model

was optimized with multiclass cross‐entropy image loss which yields

a pixel‐wise discrete label output matching the input MR image reso-

lution. The different fixed HU values were assigned to different tis-

sue compartments based on the discrete label to create discrete

pseudo CT model. In this study, we substituted the softmax layer

with a 2D convolutional layer and optimized image loss using a mean

square error cost function. The pseudo CT generation was treated as

a signal regression problem for converting MR contrast to CT con-

trast. More specifically, instead of outputting tissue classes as in

F I G . 1 . Schematic illustration of deepMTP pipeline. The convolutional encoder‐decoder (CED) network is used to convert MR images into
pseudo CT images. This network consists of a combined encoder network (VGG16) and decoder network (reversed VGG16) with multiple
symmetrical shortcut connection (SC) between layers. The insertion of SC follows the strategy of full preactivation deep residual network. The
deepMTP process consists of a training phase to optimize the CED network and a planning phase to generate pseudo CTs for new MR data
using trained and fixed CED network. This figure is adapted from the Figure 1 of the Ref. [16] with permission to be used in this paper.
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Ref., [16] the CNN in this study directly outputted pseudo CTs and

the actual pixel‐wise HU values of pseudo CTs were optimized

against the real CT values to minimize the contrast difference. As a

result, an output of pseudo CTs with continuously valued HU num-

ber is enabled in contrast to the output of discrete tissue labels in

Ref. [16].

Additionally, like the popular U‐Net,28 shortcut connections (SC)

were added between the encoder and decoder network to enhance

the mapping performance of the encoder‐decoder structure. The

added SC are advantageous in preventing excess image detail loss

during the max‐pooling process of the encoder in deep CNN net-

works.29,30 A total of four SC were created between the network

layers by following the full preactivation method described in the

deep residual network configuration30 and one additional shortcut

connection was also generated from the input image directly to the

output image. The detailed structure of the proposed networks is

schematically illustrated in Fig. 1.

2.B | deepMTP procedure

The proposed deepMTP procedure consisted of two independent

phases for training retrospective MRI and coregistered CT data and

for generating pseudo CTs using a fixed network in the treatment

planning phase. As also shown in Fig. 1, in the training phase, 3D

CT images were first coregistered to MR images using a combined

rigid Euler transformation and nonrigid B‐spline transformation using

the Elastix image registration tool31 following the method described

in Ref. [32]. Specifically, a 4‐level multiple resolution strategy, 32

histogram bin similarity measurement and a total of 1500 iteration

were performed. An optimization metric combining localized mutual

information with the bending energy penalty term was used for

nonrigid registration. For each training dataset, MR and coregistered

CT images were first offset to positive values and then scaled by

pixel intensity of 5000 and 2000 (HU), respectively, to ensure the

similar dynamic range. Then the 3D MR and CT volume data were

input into the encoder network as a stack of 2D axial images. The

network weights were initialized using the scheme described in Ref.

[33] and updated using the ADAM algorithm34 with a fixed learning

rate of 0.001. The network was trained in a mini‐batch manner with

16 images in each batch and with total iteration steps correspond-

ing to 50 epochs for the training data. The changes in training loss

were observed to be less than 0.3% within the last 10 epochs, indi-

cating a training convergence. Once training was finished, the net-

work weights were fixed to the values at the epoch with the lowest

image loss during all training procedure. The fixed network was then

used to generate continuously valued pseudo CT images from newly

acquired MR images and proceeded to simulated treatment

planning.

All training and evaluation were performed on a 64‐bit Linux

workstation. Computing hardware included an Intel Xeon W3520

quad‐core CPU, 32 GB RAM, and two Nvidia GeForce GTX 1080 Ti

graphic cards with a total 7168 cores and 22GB GPU RAM. The

deepMTP framework was implemented in a hybrid computing

environment involving Python (version 2.7, Python Software Foun-

dation, Wilmington, DE, USA) and MATLAB (version 2013a, Math-

Works, Natick, MA, USA). The image pre and postprocessing was

implemented using MATLAB program and the deep learning network

was configured and coded using the Keras package with Tensorflow

as the computing backend.35

2.C | Image datasets for deepMTP

Analysis was performed in compliance with Health Insurance Porta-

bility and Accountability Act regulations and with approval from our

Institutional Review Board (IRB). All subject data were obtained with

a waiver of consent under IRB approval. Training of the proposed

deepMTP network was performed on retrospective head images

from 40 subjects who underwent both a high‐resolution T1‐weighted

postcontrast 3D MR scan and a noncontrast CT scan on the same

day for evaluation of acute stroke. Subjects had a median age of 61

(range: 21–91) with 22 males and 18 females. Gadobenate dimeglu-

mine (MultiHance; Bracco Diagnostics, Princeton, NJ, USA) contrast

was administered at 0.1 mmol/kg. The MR images were acquired on

two 1.5 T scanners (Signa HDxt, MR450w; GE Healthcare, Wauke-

sha, WI, USA) with the following parameters: T1 BRAVO pulse

sequence, 0.46–0.52 mm transaxial voxel dimensions, 1.2 mm slice

thickness, 450 ms inversion time, 8.9–10.4 ms repetition time, 3.5–
3.8 ms echo time, 13° flip angle, with an 8‐channel receive‐only head

coil. There is a total number of 5840 MR image slices for the 40

subjects. Likewise, training CT images in these same subjects were

acquired on three scanners (Optima CT 660, Discovery CT750 HD,

Revolution GSI; GE Healthcare, Waukesha, WI, USA) with the fol-

lowing acquisition/reconstruction settings: 0.43–0.46 mm transaxial

voxel dimensions, 1.25–2.5 mm slice thicknesses, 120 kVp, automatic

exposure control with GE noise index of 2.8–12.4, and 0.53 helical

pitch.

Evaluation of the trained model was performed on 10 randomly

selected patients with brain tumor, treated with Fractionated Stereo-

tactic Radiotherapy. Selected cases had a median age of 62 (range:

47–74) which included three males and seven females. The lesion

location for these patients varied from cerebellar, parietal, and fron-

tal regions of the brain. A high‐resolution T1‐weighted postcontrast

3D MR scan was performed for diagnostic with the above‐men-

tioned protocol on two 1.5 T scanners (Signa HDxt and MR450w;

GE Healthcare, Waukesha, WI, USA). There is a total number of

2720 MR image slices for the 10 patients. The kVCT images for the

clinical treatment plan were acquired on Siemens CT scanner (Soma-

tom Definition Edge; Siemens Healthcare, Erlangen, Germany). To

minimize motion and reproduce the setup for daily treatments

patients were simulated wearing a head mask, holding a o‐ring in

their hand resting on chest and legs resting on cushion. Acquisition/

reconstruction settings: 0.98 mm transaxial voxel dimensions,

2.5 mm slice thicknesses, 120 kVp, effective mAs 425, and 1 helical

pitch. All scans were exported to MIM (version 6.7, MIM Software

Inc., Cleveland, OH, USA) for target and organ at risk (OAR) segmen-

tation by radiation oncologist. Finally, CT scans and segmented
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target and OAR were exported to Pinnacle (Philips, Fitchburg, WI,

USA) for planning.

2.D | Evaluation of Pseudo CTs

Evaluation of pseudo CT accuracy was performed on above men-

tioned 10 subjects who were not involved in training phase. We

used the Dice coefficient, a similarity measure ranging from 0 to 1

that describes the overlap between two labels, to calculate the clas-

sification accuracy for soft tissue, bone, and air, where pseudo CT

generated from deepMTP and the ground truth (kVCT image) were

compared. For calculation of Dice coefficients, the continuously val-

ued pseudo CT and planning kVCT images were discretized by

thresholding as following: bone if HU >300, air if HU <−400, other-

wise soft tissue. Additionally, the mean absolute error (MAE) within

the head region was also evaluated between pseudo CT and kVCT

for each subject to elucidate the overall pixel‐wise image error.

2.E | Treatment planning

Evaluation of the feasibility of treatment planning using pseudo CT

was performed on 10 subjects. The T1‐wegithed postcontrast 3D

MR images were exported to MIM along with kVCT. The CT images

were registered to the MR image (and pseudo CT) in MIM for tumor

delineation. Apart from planning target volume (PTV), brainstem, chi-

asm, lens, optical nerves, cochleas, and spinal cord were also con-

toured for the plan optimization and evaluation. Prescribed dose

varied from 24–32 Gy in 3–8 fractions. A volumetric modulated arc

therapy plans was generated with a 6 MV photon beam using 2–5
arcs with pseudo CT and kVCT (referred to as CTTP thereafter)

respectively. All plans were generated on Pinnacle (Philips, Fitchburg,

WI, USA), keeping the same optimization parameters. The dose was

calculated with an adaptive convolution superposition algorithm with

a dose matrix resolution of 0.2 × 0.2 × 0.2 cm3 or

0.25 × 0.25 × 0.25 cm3. All clinical treatment plans were checked

for the delivery quality assurance (DQA) prior to treatment. Thus,

DQA plans were generated on the treatment planning station for all

study cases on ScandiDos Delta4. It was expected that at least 95%

of all measured points pass the defined gamma criteria (TG 119).

2.F | Evaluation of dose distribution

The calculated dose was exported to MIM for plan comparison using

dose volume histogram (DVH) and isodose distribution. For PTV, the

maximum dose and the PTV receiving 95% of the prescribed dose

(V95) were recorded for dosimetric comparison. Absolute percentage

differences between deepMTP and CTTP in PTV for maximum dose,

and V95 were calculated after normalizing to CTTP parameter val-

ues. Plan quality for the clinical use was evaluated by checking if

95% of the PTV receives 100% of the prescribed dose. Additionally,

nonparametric paired‐sample Wilcoxon signed rank sum tests were

used to perform pairwise comparison for dosimetric parameters

between deepMTP and CTTP. Statistical analysis was performed

using MATLAB (version 2013a, MathWorks, Natick, USA) with statis-

tical significance defined as a P < 0.05.

3 | RESULTS

For the deepMTP procedure, the training phase required approxi-

mately 2.5 hrs of computational time in our dataset, whereas gener-

ating a single pseudo CT image using the trained model and input

MR images required roughly 1 minute.

An example of an acquired 1.5 T MRI, actual CT, and pseudo CT

for a 47‐year‐old female patient with right cerebellar metastasis is

demonstrated in Fig. 2. As shown, deepMTP was able to accurately

transfer MR image contrast into CT images with clearly identified air,

brain soft tissue, and bone highly similar to that of kVCT images.

Evaluation of the Dice coefficient in 10 brain metastases cases com-

paring the output tissue mask from the pseudo CT to the kVCT

mask was high for air: 0.95 ± 0.01, soft tissue: 0.94 ± 0.02, and

bone: 0.85 ± 0.02. The MAE between pseudo CT and kVCT was

75 ± 23 HU for all 10 subjects.

The absolute percentage differences for deepMTP in comparison

to CTTP was 0.24% ± 0.46% for PTV, 1.39% ± 1.31% for maximum

dose, and 0.27% ± 0.79% for V95. There was no significant differ-

ence between CTTP and deepMTP for PTV (P = 0.50), maximum

dose (P = 0.83) as well as V95 (P = 0.19) in the 10 tested subjects

(Table 1). The dose distribution and DVH for three clinical cases

were illustrated in Figs. 3–5 representing small and large lesions at

different location of the brain including soft tissue and bony area.

An example of a 54‐year‐old female patient with right frontal

brain tumor adjacent to chiasm and right optic nerves is shown in

Fig. 3. The MAE between pseudo CT and kVCT was 72 HU for this

subject. deepMTP provided a treatment plan with similar PTV and

isodose lines around the tumor region compared with CTTP in the

fused MR and CT images [Fig. 3(a) and 3(b)]. The plan was designed

to avoid adjacent chiasm and optic nerves. The DVH [Fig. 3(c)]

showed highly similar dose curves for the PTV, chiasm and right

optic nerve between CTTP (solid line) and deepMTP (dashed line).

The other OARs received a clinical relevant low dose as desired for

the clinical treatment plan.

An example of a 74‐year‐old male patient with an inferior brain

tumor near occipital bone is demonstrated in Fig. 4. The MAE

between pseudo CT and kVCT was 95 HU for this subject. Both the

PTV and isodose lines showed a high similarity between CTTP and

deepMTP [Fig. 4(a) and 4(b)] in the tumor region. There was negligi-

ble difference for PTV in DVH dose curve between CTTP and

deepMTP [Fig. 4(c)] and a low dose was received by other OARs as

planned.

Another example of a 74‐year‐old male patient with a large supe-

rior brain tumor is demonstrated in Fig. 5. The MAE between

pseudo CT and kVCT was 69 HU for this subject. The tumor repre-

sented an elongated oval shape for planning. Both CTTP and

deepMTP delivered highly similar PTV and isodose lines covering the

tumor region [Fig. 5(a) and 5(b)]. The PTV dose curves in DVH of
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this subject showed almost identical results between CTTP and

deepMTP [Fig. 5(c)]. The other OARs received considerable low dose

as planned.

All test cases passed the clinical planning dosimetry constraints,

indicating acceptable treatment planning performance for deepMTP

relative to conventional CTTP. Individual set of dosimetric data for

all OARs was reviewed and no reportable dose difference was found

for test cases. The subject shown in Fig. 3 had the worst dosimetric

difference between CTTP and deepMTP, whereas the subjects

shown in Figs. 4 and 5 had typical dosimetric comparison results

between CTTP and deepMTP.

The absolute measurements were compared to the planned using

global 3%/3 mm gamma analysis. Average global 3%/3 mm Gamma

analysis pass rates of 99.2% were recorded when typical clinical

dose calculation parameters were used for all test cases.

4 | DISCUSSION

For the 10 subjects evaluated using deepMTP, there was no signifi-

cant dosimetric difference in dose to OAR and maximum dose, and

V95 for PTV suggesting a high level of performance. All pseudo CT

plans meet clinical planning dose constraints to OAR. In comparison

to other approaches for pseudo CT generation in the brain and

applied to RT planning, the performance of the proposed deepMTP

compares favorably. The measured MAE of pseudo CT generation of

75 ± 23 HU and bone Dice coefficient of 0.85, is similar or better

than previously reported techniques36–40 (with MAE ranging from 85

to 150 HU and bone Dice coefficient ranging from 0.74 to 0.85).

Dosimetrically, results are generally similar and appear to be appro-

priate for clinical use; however, different metrics have been used to

assess dose accuracy across different approaches.

One of the primary advantages of the deepMTP approach is the

use of a clinically relevant MRI acquisition. The postcontrast T1‐
weighted image utilized herein is a standard sequence that is

expected to be utilized clinically. Other proposed approaches utilize

specialized techniques such as ultrashort time echo (UTE) which pro-

vide positive MRI signal contrast in bone. UTE sequences often

F I G . 2 . Example pseudo CT images from deepMTP from a 47‐year‐old female patient with right cerebellar tumor. Multiple slices from (a) the
input 1.5 T T1 BRAVO MR image, (b) the acquired CT, (c) the pseudo CT generated using deepMTP, and (d) the absolute difference map.

TAB L E 1 Mean and standard deviation of dosimetric parameters
and their absolute percentage differences of 10 patients using
deepMTP and CTTP, respectively, and P‐values from nonparametric
paired‐sample Wilcoxon signed rank sum test comparing deepMTP
and CTTP.

Dosimetric
parameters deepMTP CTTP

Difference
(%)

Wilcoxon
P‐value

PTV (cc) 20.76 ± 31.82 20.77 ± 31.86 0.24 ± 0.46 0.50

Maximum

dose (Gy)

30.79 ± 4.29 30.76 ± 4.51 1.39 ± 1.31 0.83

V95 (%) 99.43 ± 1.16 99.65 ± 0.96 0.27 ± 0.79 0.19
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provide limited additional clinical value over conventional acquisi-

tions, and require non‐Cartesian reconstruction algorithms and spe-

cialized system calibration for optimal performance.

An additional advantage of the deep learning approach is the

simplification provided to the RT planning workflow. Specifically,

after training the deep learning network, the acquired MR input

images require minimal preprocessing, and pseudo CT images can be

generated in less than a minute which is highly compatible with clini-

cal workflows. Compared to conventional approaches where the soft

tissue target (provided by MRI) is spatially coregistered to a planning

CT using software tools,41–46 the utilization of deepMTP would

enable planning to occur in the pixel space of the MR imaging data

F I G . 3 . An example of a 54‐year‐old
female patient with right frontal brain
tumor adjacent to chiasm and right optic
nerves shows similar isodose lines (a) and
(b) and DVH (c) between deepMTP and
CTTP.

F I G . 4 . An example of a 74‐year‐old
male patient with inferior brain tumor near
occipital bone shows similar isodose lines
(a) and (b) and DVH (c) between deepMTP
and CTTP.
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without the need for image coregistration. Note that geometric

accuracy for the utilized MR scanners must be properly calibrated to

ensure minimal distortion in the acquired MR images.47–50 In com-

parison to MR‐only approaches that utilize atlas‐based approaches,

deep learning‐based approaches can be computed much more rapidly

and are expected to be capable of including individual subject varia-

tions in properly trained models.

Future study is necessary to determine limitation of deepMTP

approach based on anatomical abnormalities compared to purely

template‐driven MR‐only approaches. However, this remains to be

determined on large cohorts of clinical patients. While deepMTP

provided a high Dice coefficient for classifying air, soft tissue, and

bone in the brain dataset, small amounts of tissue misclassification

was observed in pseudo CTs near complex structures such as the

interface of air and bone in sinus. However, this small misclassifica-

tion seems to only have negligible influence on treatment planning

accuracy for the brain tumors. However, misclassification might have

greater dosimetric impact on other sites such as head and neck, lung

and prostate as indicated in previous studies.39,51,52

Note that deep learning methods likely require anatomy and/or

region‐specific training to maximize performance. In our experience,

the use of a deep learning model trained in the head will not be

applicable to other regions of the body. This should be expected as

different MR imaging sequences are used for diagnostic imaging in

different regions the body (e.g., the T1 BRAVO used for high‐resolu-
tion brain imaging is not acquired in other body regions). Evaluation

elsewhere in the body will require retraining of the model with

high‐quality (i.e., high‐resolution and artifact‐free) images from each

respective region. However, while new input data would be required

to train a model, it is expected that the architecture used herein for

deepMTP would be directly applicable to other regions. This sup-

ports the use of transfer learning,53,54 where a trained model in the

head could be used to reduce the amount of training data in

another body region if similar image contrast (e.g., T1‐weighted) is

obtained.

MRI has been increasingly incorporated into the planning and

delivery of radiation treatment.1,55–57 Given that nearly half of all

cancer patients receive radiation during their treatment, there are a

substantial number of patients likely to benefit from improved

approaches of integrating MRI into RT planning. The further devel-

opment of MR‐only approaches will help to reduce radiation dose

from kVCT. This is advantageous in particular for treatment of pedi-

atric and pregnant cases where radiation dose reduction is the pri-

mary goal. Future applications of MR‐only treatment planning will be

improved if the MR scan can be performed in the radiation treat-

ment position, which will require development of more MR compati-

ble setup equipment and improved capabilities for MR imaging in a

large field of view. Furthermore, recent advances in technology have

resulted in therapy devices that combine MR scanners with RT

devices (e.g., 60Co IGRT58–61 and linear accelerators62–64) which fur-

ther support the use of MRRT and other advanced methods to

improve and augment therapy delivery, such as interfraction assess-

ment of therapy response and inter‐ and intrafraction adaptation of

therapy plans.65,66 These systems also allow real‐time imaging during

treatment, which may prevent geometric tumor miss and allow for a

smaller PTV to be used. This capability is particularly advantageous

in the lung and upper abdominal cancers were respiratory tumor

motion must be taken into account. Therefore, future development

of approaches to extend deepMTP to other regions of the body will

have additional impact.

F I G . 5 . An example of a 74‐year‐old
male patient with a large superior brain
tumor shows similar isodose lines (a) and
(b) and almost identical PTV dose curves in
DVH (c) between deepMTP and CTTP.
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We have shown that deep learning approaches applied to MR‐based
treatment planning in radiation therapy can produce comparable

plans relative to CT‐based methods. The further development and

clinical evaluation of such approaches for MR‐based treatment plan-

ning has potential value for providing accurate dose coverage and

reducing treatment unrelated dose in radiation therapy, improving

workflow for MR‐only treatment planning, combined with the

improved soft tissue contrast and resolution of MR. Our study

demonstrates that deep learning approaches such as deepMTP, as

described herein, will have a substantial impact on future work in

treatment planning in the brain and elsewhere the body.
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