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Abstract

Long-term use of aspirin is associated with lower risk of colorectal cancer and other cancers;

however, the mechanism of chemopreventive effect of aspirin is not fully understood. Animal

studies suggest that COX-2, NFκB signaling and Wnt/β-catenin pathways may play a role,

but no clinical trials have systematically evaluated the biological response to aspirin in

healthy humans. Using a high-density antibody array, we assessed the difference in plasma

protein levels after 60 days of regular dose aspirin (325 mg/day) compared to placebo in a

randomized double-blinded crossover trial of 44 healthy non-smoking men and women,

aged 21–45 years. The plasma proteome was analyzed on an antibody microarray with

~3,300 full-length antibodies, printed in triplicate. Moderated paired t-tests were performed

on individual antibodies, and gene-set analyses were performed based on KEGG and GO

pathways. Among the 3,000 antibodies analyzed, statistically significant differences in

plasma protein levels were observed for nine antibodies after adjusting for false discoveries

(FDR adjusted p-value<0.1). The most significant protein was succinate dehydrogenase

subunit C (SDHC), a key enzyme complex of the mitochondrial tricarboxylic acid (TCA)

cycle. The other statistically significant proteins (NR2F1, MSI1, MYH1, FOXO1, KHDRBS3,

NFKBIE, LYZ and IKZF1) are involved in multiple pathways, including DNA base-pair repair,

inflammation and oncogenic pathways. None of the 258 KEGG and 1,139 GO pathways

was found to be statistically significant after FDR adjustment. This study suggests several

chemopreventive mechanisms of aspirin in humans, which have previously been reported

to play a role in anti- or pro-carcinogenesis in cell systems; however, larger, confirmatory

studies are needed.
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Introduction

Low-dose and regular-strength aspirin use is consistently observed to be associated with

reduced long-term risk of colorectal cancer (CRC) risk of adenomatous polyps, pre-cancerous

lesions that increase risk of CRC [1, 2]. Benefit increases with duration of aspirin use and is

associated with 34% reduction in 20-year CRC risk [1, 3]. Evidence consistently suggests that

aspirin plays a role at an early stage or even before tumorigenesis [4]. Therefore, studies of

aspirin involving healthy individuals may help elucidate biological responses related to the

chemopreventive effects of aspirin.

The presumed main mechanism by which aspirin lowers adenomatous polyps and CRC

risk is by reducing inflammatory mediators through the inhibition of cyclooxygenase-2 (COX-

2) activity [5, 6] and subsequent formation of prostaglandin E2 (PGE2) [7]. Aspirin has also

been shown to inhibit the oncogenic Wnt/β-catenin pathway [8] and the extracellular-signal-

regulated kinase (ERK) signaling pathway [9] in colon cancer cell lines. Indirect support for

these pathways from human studies comes from nested case-control studies which suggest

that interactions between the use of non-steroidal anti-inflammatory drugs (NSAIDs) and

polymorphisms in oncogenes in the Wnt/β-catenin signaling pathway [10] and NFкB-signal-

ing pathway [11] modify CRC risk [12]. Recently, a genome-wide investigation of gene-envi-

ronment interactions reported that the association of NSAIDs with CRC risk differed

according to genetic variation at 2 SNPs [13]; these are related to genes involved in activation

of the PI3K signaling pathway. Other pathways related to transcription factors, cell prolifera-

tion and apoptosis have also been suggested [14].

No human intervention trials have yet systematically explored proteomic profiling of aspi-

rin use among human subjects. A randomized controlled trial of diclofenac among overweight

individuals identified a group of inflammation-related modulators [15]; another trial suggested

a variety of pathways, including cytokine activity pathways, in response to glucosamine and

chondroitin supplementation [16]. These studies support the utility of proteomic profiling in

characterizing responses to drugs or supplements with pleiotropic effects. We created a high

density antibody array containing >3,200 different antibodies to ~2,100 different proteins that

we use to interrogate plasma or other biological samples for cellular activation status including

proteins involved in apoptosis, proliferation, angiogenesis, immune cell activity/infiltration,

and metabolism, etc. Many of the antibodies are to secreted proteins such as cytokines and

growth factors including 21 proteins with insulin in their names. We have used these arrays to

find biomarkers of ovarian [17, 18], breast [19], pancreas [20, 21] and colon [22] cancer and

used the values derived to find pathways important in obesity [23], supplement usage [16],

anti-apoptotic cell survival signaling pathways [22], and incisional hernia [24]. The objective

of this study was to explore potential mechanisms relevant to the effects of aspirin through

proteomic analysis in healthy participants in a randomized trial of aspirin, with a focus on pro-

teins that are related to cancer development.

Materials and methods

Study design

The Aspirin and the Biology of the Colon (ABC) study was a randomized, double-blinded, pla-

cebo-controlled, crossover trial [25]. During each intervention period, participants took 325

mg aspirin or a visually identical placebo orally each day for 60 days, with a 3-month washout

period between the treatment periods. Study activities, including participant interviews and

blood draws, were conducted at the Fred Hutchinson Cancer Research Center (Fred Hutch)

Prevention Center Research Clinic. The study procedures were approved by the Fred Hutch
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Institutional Review Board; informed, written consent was obtained from all participants prior

to participation in the study.

Study participants

Details of the study and the study population have been described previously [25, 26] and are

summarized in S1 Fig. Briefly, healthy men and women, aged 21 to 45 years, were recruited

from participants from the greater Seattle area who completed a cross-sectional study of diet

and aspirin metabolism between June 2003 and March 2007 [27]. Individuals were excluded if

they had: a medical history of gastrointestinal, hepatic, or renal disorders; family history of

familial adenomatous polyposis or Lynch syndrome; known intolerance to aspirin or other

NSAIDs; weight change greater than 4.5 kg within the past year; current use of prescription

medication (including oral contraceptives) or over-the-counter medications; alcohol intake

>2 drinks/day; were pregnant or lactating; or were planning to move out of the greater Seattle

area within the 12 months of the study period. Given that an aim of the parent study was to

determine whether genetic variation in UGT1A6 influenced response to aspirin [25], partici-

pants who met these criteria were further selected based on UGT1A6 genotypes (rs2070959

and rs1105879) so that all subjects with a �2/�2 genotype and sex-matched participants with a
�1/�1 genotype were invited to participate. Additionally, two participants with a �2/�4 genotype

were also included and randomized. Clinical measurements were also assessed and partici-

pants with abnormal laboratory values were excluded from participation. A total of 55 healthy

men and women were recruited into the trial, randomly assigned, blocked on sex and

UGT1A6 genotype, to the order of receiving aspirin or placebo. Forty-four participants com-

pleted both intervention periods. The reasons participants dropped out were not related to

either intervention or placebo period.

Data collection

Demographics and medical history were obtained through questionnaires at the time of

recruitment, including age, ethnicity, previous smoking habits, dietary supplement use, alco-

hol intake, history of weight change, and general health. Twelve-hour fasting morning blood

samples were drawn on day -5 and day 55 of the first intervention period, and days 1 and 55 of

the second intervention period. The pre-intervention blood samples were tested for liver and

kidney function, and post-intervention blood samples were used for research purposes. Blood

samples were collected in EDTA-containing vacutainer tubes; plasma was aliquoted into cryo-

vials and stored at -80˚C until analysis.

Proteomics analyses

Plasma samples were analyzed on a customized antibody array populated with ~3,300 full-

length antibodies, printed in triplicate on a single microarray according to published methods

[20–24, 28]. Briefly, each sample (200 μg) was combined with the same amount of a Cy3

labeled “reference” pool (from 5 healthy men and 5 women) of albumin and IgG-depleted

plasma, placed on the array and Cy3 and Cy5 signals determined. The log2-transformed Cy5/

Cy3 ratio, noted as M value, determined the relative concentration of protein compared to ref-

erence. For quality-control purposes, triplicate antibodies with coefficients of variation >10%

were removed, and experimental variation was normalized using within-array print-tip loess

normalization and between-array quartile normalization [29]. The median for each antibody

was taken from triplicates as the summary measure.

The two samples from the same person collected at the termination of the two periods

(aspirin and placebo) were analyzed in the same batch with the order of treatment periods
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randomized. Sex and genotypes were randomly distributed across batches. Additional possible

batch effects were checked by principal component analysis (data not shown).

Previous analyses showed that coefficients of variation, for triplicates, for>85% antibodies

on the array were less than 10% [18, 28, 30, 31]. Intra-class correlation (R1) for triplicates was

also used to evaluate the reliability of triplicates in this study [32]. 92.5% of the antibodies had

at least moderate correlation among triplicates (R1>0.5), and 83.5% antibodies had strong cor-

relations among triplicates (R1>0.7), suggesting reliable measurements of plasma protein lev-

els. Antibodies were also highly correlated between quality-control duplicate samples that

were blinded to the lab analysist.

Statistical analysis

Antibodies with more than 30% missing values across the arrays were excluded from further

analysis. Remaining missing data were imputed using the local least squares imputation

method, which replaces a target protein that has missing values with a linear combination of

10 similar proteins, chosen by k-nearest neighbors based on Pearson correlation coefficients

[33]. Of ~3,300 antibodies on the array, 3,000 proteins were available for statistical analyses

and complete data were available on all 44 participants after imputation. Moderated paired t-

tests [34] were performed for individual proteins to determine statistically significant differ-

ences between aspirin and placebo treatments. Adjustment for potential confounders, includ-

ing batch effect, sample positions, and covariate effects of sex and UGT1A6 genotype was

carried out using a mixed linear regression model. The proteins were then ranked on the basis

of p-values adjusted by Benjamini-Hochberg false discovery rate (FDR) correction, at a signifi-

cance level of 0.1 [34]. Both the moderated t-tests and FDR corrections were performed using

the R LIMMA package [29].

Pathway analyses were also carried out [35], using gene sets in Kyoto Encyclopedia of

Genes and Genomes (KEGG) and the Gene Ontology (GO). KEGG gene sets were obtained

via REST server to KEGG, and GO gene sets were obtained from MSigDB (http://www.

broadinstitute.org/gsea/msigdb/index.jsp). Simulation analyses were performed to compare

several gene-set analytical tools [35–37]. The Significance Analysis of Functional Categories

(SAFE) framework [35] outperformed the other methods in relation to sensitivity and specific-

ity, and was used in further analysis. Gene sets with fewer than 3 genes were excluded from the

analysis. The enriched gene sets were ranked on the basis of adjusted p-values, with an FDR

significance level of 0.1.

Results

The demographic characteristics of the 44 study participants are summarized in Table 1. The

study population was predominantly Caucasian, and approximately half of the participants

were overweight or obese (BMI�25 kg/m2).

Among the 3,000 proteins tested, nine were statistically different between the aspirin and

placebo periods after FDR correction (adjusted p-value<0.1) (Table 2), including energy con-

vertors, hormone receptors, transcriptional factors, and RNA- and DNA-binding proteins.

Among these nine proteins, six (MYH1, FOXO1, KHDRBS3, NFKBIE, LYZ and IKZF1) had a

higher expression level on aspirin than placebo, whereas the other three (SDHC, NR2F1 and

MSI1) had a lower expression level on aspirin than placebo. The most significant protein was

succinate dehydrogenase subunit C (SDHC), with an average 34% lower expression level on

aspirin than placebo (p-value = 4.47×10−05; FDR-adjusted p-value = 0.06). The next most sig-

nificant was myosin-1 (MYH1). The expression level of MYH1 on aspirin treatment was 62%

higher on average than that on placebo (p-value = 6.83×10−05; FDR-adjusted p-value = 0.06).

Proteomic analysis of aspirin trial

PLOS ONE | https://doi.org/10.1371/journal.pone.0178444 May 25, 2017 4 / 12

http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://www.broadinstitute.org/gsea/msigdb/index.jsp
https://doi.org/10.1371/journal.pone.0178444


The largest decrease was observed in a nuclear hormone receptor NR2F1 with 60% lower

expression level on aspirin than placebo. NF-κB inhibitor epsilon (NFKBIE) had one of the

largest increases: the expression level was 63% higher on aspirin than placebo. Because the

study was conducted as a randomized crossover study, each participant served as their own

Table 1. Demographic characteristics of 44 participants.

Characteristics N (%)

Age, Mean(SD) 30.43 (5.97)

Sex

Male 20 (45.5)

Female 24 (54.5)

BMI, kg/m2

Normal (<25) 23 (52.3)

Overweight or obese (�25) 21 (47.7)

Race/Ethnicity

Caucasian 33 (75.0)

African-American 1 (2.3)

Asian 5 (11.4)

Other 5 (11.4)

https://doi.org/10.1371/journal.pone.0178444.t001

Table 2. Proteins that differed significantly between aspirin and placebo periods with false discovery rate (FDR) <0.10.

Symbol Functiona Missing

%b
Average

expressionc
Effect

sized
Fold

changee
p-valuef Adjusted p-

valueg

aspirin placebo

SDHC Conservative effector of mitochondrial Krebs cycle

and respiratory chain

20.5 -0.259 -0.112 -0.594 0.662 4.47×10−05 0.058

MYH1 Energy convertor in base excision repair (BER)

pathway

18.2 -0.262 -0.454 0.698 1.622 6.83×10−05 0.058

NR2F1 Nuclear hormone receptor and transcriptional

regulator

11.4 -0.371 -0.265 -0.755 0.592 6.94×10−05 0.058

FOXO1 Transcription factor in carbohydrates metabolism and

Akt-mTOR signaling pathway

17.0 1.003 0.845 0.520 1.434 7.72×10−05 0.058

KHDRBS3 RNA-binding protein regulating pre-mRNA splicing,

signaling and cell cycle control

27.3 0.096 -0.028 0.400 1.320 2.07×10−04 0.087

NFKBIE NF-κB inhibitor epsilon 23.9 0.530 0.374 0.709 1.634 2.15×10−04 0.087

LYZ Lysozyme, antimicrobial enzyme 26.1 0.004 -0.147 0.689 1.612 2.29×10−04 0.087

MSI1 RNA-binding protein, posttranscriptional regulator of

proliferative activity

26.1 -0.351 -0.176 -0.487 0.714 2.32×10−04 0.087

IKZF1 Transcription factor of zinc-finger DNA-binding and

lymphocyte differentiation regulator

4.5 -0.310 -0.426 0.542 1.456 2.67×10−04 0.089

a Information pertaining to encoded protein function was derived from PubMed Gene unless otherwise noted.
b Missing% is the proportion of samples with missing values on this protein among all 88 samples.
c Average expression level was presented in median M values for each protein.
d Effect size was the mean difference of M values between two treatment periods standardized by standard deviation of average expression in placebo

period.
e Fold-change was the standardized ratio between median M values of aspirin and placebo treatment. A fold change >1 indicated greater antibody

expression after aspirin treatment compared to placebo; a fold change <1 indicated lower expression after aspirin treatment.
f P-values were obtained from mixed linear regression model, adjusted for batch effect, sample position, gender and genotype.
g P-values were adjusted for false discovery rate using Benjamini-Horchberg procedure.

https://doi.org/10.1371/journal.pone.0178444.t002
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control; predictably, adjusting for batch effects, sample positions, order of aspirin and placebo

period, and other covariates did not change test results.

Analyses of differences in individual protein expression levels were also undertaken strati-

fied by sex (S1 Table). For the nine proteins that were statistically different in the overall analy-

sis, the direction of effect (increased or decreased) was consistent across men and women;

however, none of the within-group changes in protein levels was statistically significant after

FDR correction, probably due to reduced sample size in subgroup analyses.

In gene-set analyses using the SAFE framework, a total of 257 KEGG pathways and 1139

GO pathways were tested. Among them, 21 KEGG and 63 GO pathways were statistically sig-

nificantly different on aspirin than placebo (p-value<0.05); however, none of these gene cate-

gories reached statistical significance after FDR correction at significance level of 0.1 (S2

Table).

Discussion

In this placebo-controlled randomized crossover trial among healthy individuals, plasma levels

of nine of the total of ~3,000 antibodies were significantly different between 60-day regular-

dose aspirin and placebo, after adjustment for FDR at 0.1. Among these nine proteins, six had

higher expression levels, and three were lower on aspirin than placebo. These proteins play

important roles in various pathways, including the mitochondrial Kreb’s cycle, DNA base-pair

repair, and inflammation. However, when correcting for multiple comparisons, we did not

identify overall pathways that were statistically significantly different between aspirin and

placebo.

The protein with the most significant difference between treatments was SDHC; plasma

levels were lower after aspirin treatment. SDHC is a subunit of succinate dehydrogenase

(SDH), a key enzyme complex of the mitochondrial tricarboxylic acid (TCA) cycle, which oxi-

dizes succinate to fumarate [38]. As one part of SDH (also called complex II), it also facilitates

transfer of electrons to coenzyme Q (ubiquinone) [39]. Aspirin has been shown to interfere

with mitochondrial function [40], as well as inhibit the activity of SDH in rats [41]. Further,

repeated mild inhibition of oxidative phosphorylation via inhibition of SDH protects against

the decrease in ATP that usually accompanies severe hypoxia and thus can act as neuroprotec-

tion [42]. Treatment with aspirin has also been shown in vivo to slow down the decline of

intracellular ATP by this mechanism of inhibiting SDH [43] and therefore to protect against

hypoxia, a common hallmark of tumors that promotes metabolic adaptations and angiogenesis

[44]. Furthermore, accumulation of succinate, due to reduced efficiency of SDHC, results in

the stabilization of HIF1-α, the degradation of which is promoted by the oncometabolite (R)-

2-hydroxyglutarate [45]. Metabolomic analysis in the present study has shown that plasma

concentrations of 2-hydroxyglutarate decreased after aspirin treatment in both men and

women (p = 0.005) [26]. It is relevant that plasma concentration of HIF1-α was lower after

aspirin treatment among carriers of wild UGT1A6�1/�1 genotype (Data not shown;

p = 6.2×10−05; adjusted p-value = 0.186), but not among carriers of UGT1A6�2/�2 genotype,

suggesting that the genotypes of UGT1A6, which encodes a UDP-glucuronosyltransferase that

participates in glucuronidation of aspirin [46], may modulate the effect of aspirin on down-

stream metabolic functions. In summary, results from our proteomic analyses, as well as those

from metabolomic analyses support a possible additional mechanism for aspirin in cancer

prevention.

The expression level of MYH1 was also statistically significantly higher by 62% on aspirin

than placebo. As a member of the human homologue of the base excision repair (BER) gene,

MYH1 is a DNA glycosylase that removes adenine mispaired with 8-hydroxyguanine from
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DNA and protects against oxidative DNA damage [47, 48]. Inherited variants in MYH that

cause reduced enzyme function have been associated with significantly increased risk of famil-

ial and sporadic CRC in observational studies [49–52]. In addition, the prevalence of low-fre-

quency microsatellite instability (MSI) has been found to be higher among MYH mutation

carriers [51, 53], suggesting possible interaction between the BER and MSI pathways. How-

ever, most previous observational studies assessed the association between germline mutations

of MYH and CRC risk, whereas our study directly measured the plasma level of MYH1. Our

findings suggest that environmental factors, such as aspirin, may also have an effect on enzyme

levels, regardless of genetic background.

Similarly, NFKBIE was 63% higher on average on aspirin than placebo. NFKBIE is involved

in the NF-κB signaling pathway. After cellular stimulation, NFKBIE is highly induced to bind

the NF-κB dimer, and provides negative feedback regulation that inhibits NF-κB DNA-bind-

ing activity and prevents its nuclear accumulation [54]. As the NF-κB pathway plays an impor-

tant role in chronic inflammation and tumor promotion, reduction of NF-κB activity is

critical in inhibiting the production of pro-inflammatory cytokines [55, 56]. In an observa-

tional study among 315 chronic lymphocytic leukemia (CLL) patients, targeted deep sequenc-

ing of 18 core complex genes within the NF-κB pathway found that the most frequently

mutated genes was NFKBIE; further screening revealed that truncated NFKBIE predominated

in patients with poor prognosis [57]. Similarly, exome sequencing has also suggested that

NFKBIE was highly mutated among melanoma patients [58]. Aspirin has been found to inhibit

IκB kinase (IKK) β, which inhibits NF-κB inhibitors by phosphorylation [59]. In a nested case-

control study, polymorphisms in IκBKβ were associated with lower CRC risk and the associa-

tion was stronger among current NSAID users [11]. Findings from our study are among the

first in humans to suggest a biologic interaction between aspirin and NFKBIE, thus providing

further support for the likelihood that the NF-κB signaling pathway is involved in one of the

mechanisms of action of aspirin.

Among the other significant proteins, aspirin treatment was associated with 29% lower

level of Musashi1 (MSI1), a neural RNA-binding protein. A previous study among colon can-

cer patients has shown that overexpression of MSI1 in colon cancer lesions, compared to

paired normal colonic mucosa, was associated with poorer metastasis-free survival and poorer

overall survival [60]. A variety of other potential mechanisms have also been suggested by our

findings, including those involving NR2F1 as a nuclear hormone receptor, Forkhead Box O1

(FOXO1) in Akt-mTOR signaling pathway, and KHDRBS3 in RNA-binding and cell-cycle

control. Several of these have limited evidence for a relationship with aspirin in humans, prob-

ably due to the fact that most previous human studies have focused on candidate genes, pro-

teins, or pathways. Randomized controlled trials of aspirin conducted among patients with

cardiovascular disease found statistically significant reductions in circulating concentrations

of high-sensitivity C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleu-

kin-6 (IL-6), and thromboxane B2 (TXB2) [61–63].

Compared to previous human studies of aspirin or other NSAIDs, our study has the

strength that our antibody microarray has a high coverage of the proteome (2,100 proteins

from 3,000 antibodies), which allowed for more complex proteomic profiling of the impact of

aspirin. Most of the proteins that differed significantly between aspirin and placebo treatment

are involved in various pathways associated with carcinogenesis, illustrating the potential

range of biologic effects of aspirin in vivo. Secondly, most of the previous studies were focused

on mechanisms inhibited by aspirin in tumor cells or in patients with a focus on tumor pro-

gression; ours is among the first to directly evaluate the effects of aspirin among healthy indi-

viduals. Therefore, we had the opportunity to identify, agnostically, proteins and mechanisms

that are promoted by aspirin treatment; this, nonetheless, remains relevant to understanding
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how aspirin prevents tumor progression. In addition, the crossover design allowed participants

to serve as their own control, which minimized unmeasured inter-individual variability.

Because the samples from the same participant were randomly ordered and analyzed within

the same batch, additional adjustment for batch effects and sample positions did not change

the results. There was also a 3-month wash-out period between treatments (longer than the

usual 60-day periods); this minimizes carry-over effects.

There are also some limitations. First, our analysis was primarily designed to examine the

signaling effects of aspirin and has no specific hypothesis or protein to validate. Subsequent

steps would involve testing on another set of subjects who took aspirin or placebo but these

samples are not available to us at this time. Second, the duration of treatment was two months,

and this may not characterize the long-term effects of aspirin use in cancer prevention.

Thirdly, our sample size was relatively small and lacked substantial as plasma protein levels

were not the main outcome of the intervention. Effect sizes were also small which may reflect

the fact that all the participants were generally healthy and therefore would have had relatively

low expression of pro-inflammatory proteins; this, in turn would leave less room for change

with aspirin intervention. Furthermore, the expression levels of proteins are context-specific:

our findings using plasma may differ from those in other tissues, such as colon mucosa. Six of

the nine proteins typically are found in the nucleus, so their presence in plasma might result

from cellular leakage/damage or exosome formation. In support of the latter, aspirin has been

reported to affect the content of platelet-derived exosomes [64]. Lastly, we used a liberal signif-

icance level of 0.1 for FDR adjustment. Although a higher threshold was used to identify more

possible candidates, it might also lead to more false positive results. Therefore, further investi-

gations of these identified proteins are needed.

To our knowledge, this is the first randomized trial to systematically evaluate the effect of

aspirin on plasma protein profiles in healthy men and women. We identified several proteins

that differed significantly between aspirin and placebo, some of which have been previously

reported as playing a role in inflammation and carcinogenesis. The involvement of various

biologic pathways suggests that the chemopreventive mechanisms of aspirin in humans are

complex. Larger, confirmatory studies with a longer period of aspirin exposure are needed.
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