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ABSTRACT
The miR-58 family comprises 6 microRNAs with largely shared functions, and with an overall high
expression, because one of its members, miR-58, is the most abundant microRNA in Caenorhabditis
elegans. We recently found that 2 TGF-b signaling pathways, Sma/Mab and Dauer, responsible for
body size and dauer formation respectively, among other phenotypes, are downregulated by the
miR-58 family. Here, we further explore this family by showing that it also acts through the sta-1
30UTR. sta-1 encodes a transcription factor, homologous to mammalian STATs, that inhibits dauer
formation in association with the TGF-b Dauer pathway. We also observe that mutants with a
constitutively active TGF-b Dauer pathway express higher levels of sta-1mRNA. Our results reinforce
the view of the miR-58 family and STA-1 as regulators of dauer formation in coordination with the
TGF-b Dauer pathway.
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Introduction

Most microRNA-target interactions are merely sug-
gested through genome-wide studies, which involve
the analyses of transcriptomes or proteomes physically
associated to microRNAs.1 These studies are essential
for outlining networks of putative interactions between
miRNAs and their target genes. However, for the con-
firmation of particular miRNA-target pairings, individ-
ual gene-reporter assays are preferred.2-4 The main
reason for this is the greater reliability of such valida-
tions, with well-controlled gene-reporter experiments
instead of large-scale miRNA/30UTR “binding” assays.
Besides, those discrete experiments are usually inter-
preted in the context of particular phenotypes and/or
cell-signaling pathways, thus implying a functional
focus, rather than a more structural one.

We have recently shown through in vivo and in
vitro gene-reporter assays that the miR-58 family
regulates 2 TGF-b signaling pathways, Sma/Mab
(controlling body size, immune response and other
phenotypes) and Dauer (inhibitor of the dauer larval
stage).5 That makes the miR-58 family, miR-58f
hereafter, a potential key regulator of growth and
stress-related responses, which is consistent with the
role of the miR-58f ortholog in Drosophila, bantam.6,7

In C. elegans, miR-58f consists of a set of 6 miRNAs:
miR-58.1 (or simply miR-58), miR-58.2 (or miR-1834),
miR-80, miR-81, miR-82 and miR-2209.1. Although
the expression of these 6 miRNAs is different both
quantitatively and spatiotemporally across the various
tissues or organs, they present a high degree of func-
tional redundancy.5,8-10 Thus, while single mutants
hardly present any phenotypic abnormality, an available
mutant lacking 4 miR-58f members (miR-58.1, miR-80,
miR-81 and miR-82), mir-58f(¡) hereafter, shows
remarkable defects in body size, locomotion, and is
unable to form dauer larvae.11 The unaffected mir-58.2
and mir-2209.1 in mir-58f(¡) are unlikely to compen-
sate at all for the 4 missing miRNAs in mir-58f(¡),
because the expression of mir-58.2 and mir-2209.1 is
“essentially undetectable.”10 In fact, Warf et al. (2011)
were unable to fully validated them as miRNAs.12

Therefore, the quadruple mutant mir-58f(¡) appears to
have, at most, just a residual miR-58f activity.

Here we further investigate how the miR-58f
may regulate dauer formation. In our recent report,
we show that miR-58f directly inhibits the expres-
sion of daf-1 and daf-4, which code for the hetero-
meric cell-membrane receptor of the TGF-b Dauer
pathway.5 Additionally, the dauer defective
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phenotype of mir-58f(¡) was suppressed by the
inactivation of daf-1 in the mir-58f(¡) background,
suggesting that the observed activation of the
TGF-b Dauer signaling in mir-58f(¡) was responsi-
ble for its inability to form dauer larvae.5

However, microRNAs are thought to regulate the
expression of hundred of genes, and therefore, other
genes related to the TGF-b Dauer pathway might be
controlled by miR-58f. In that regard, our computa-
tional predictions of miR-58 targets offered an inter-
esting candidate: sta-1. Mammalian STAT (Signal
Transducer and Activator of Transcription) transcrip-
tion factors regulate many aspects of growth, survival
and cell differentiation.13,14 In C. elegans two STAT
orthologs, sta-1 and sta-2, are present.15 In spite of
their potential relevance, both sta-1 and sta-2 have
been hardly studied. GFP reporter studies suggest that
sta-1 is expressed in a wide range of tissues including
pharynx, intestine, body muscle and neuronal cells.16

Nevertheless, sta-1 absence only shows a Hid (high
temperature induction of dauer) phenotype.17 Double
mutants of sta-1 and TGF-b Dauer genes display a
synthetic dauer phenotype which suggests that STA-1
regulates dauer formation in cooperation with the
TGF-b Dauer pathway.17

Here we show that the miR-58 family also represses
sta-1 expression. Using heterologous assays in HeLa
cells, we observed that this repression is dependent on
3 nucleotides of the sta-1 30UTR that are complemen-
tary to the miR-58f seed region, which strongly suggests
a direct interaction. In agreement with that, we also
found that sta-1 is upregulated in a constitutively active
TGF-b Dauer background. Our results suggest a new
target of miR-58f regulating dauer formation, STA-1,
acting in cooperation with the TGF-b Dauer pathway.

Results and discussion

sta-1, predicted target ofmir-58 family

To address the question of whether other genes related
to the TGF-b Dauer cell-signaling pathway could also
be under the control of miR-58f, we first did a compu-
tational search. We used various software programs to
predict miRNA/30UTR interactions, and most of them
listed sta-1 as a putative target of at least one of the 6
members of miR-58f. In particular, 5 programs pre-
dicted sta-1/miR-58f interactions: TargetScan Worm
6.2,18,19 miRanda-mirSVR,20 MicroCosm Targets,
PITA21 and RNAhybrid.22 TargetScan and

RNAhybrid find binding sites for 5 of the 6 miR-58f
members, miRanda-mirSVR and PITA for 4 mem-
bers, and MicroCosm Targets just for miR-80. These
5 bioinformatic resources use different algorithms
that take into account features such as the quality of

Table 1. Predicted binding positions of miR-58 family members
to sta-1 30UTR.

TargetScan Worm 6.2

sta-1 30UTR (165–187) 50 ..AUCACAAGUGAUUUCUGAUCUCA.. 30
j j j j j j j

cel-miR-80 30 AGCCGAAAGUUGAUUACUAGAGU 50

sta-1 30UTR (165–187) 50 ..AUCACAAGUGAUUUC———UGAUCUCA.. 30
j j j j j j j j j j j

cel-miR-81 30 UGAUCGAAAGUGCUACUAGAGU 50

sta-1 30UTR (165–187) 50 ..AUCACAAGUGAUUUC———UGAUCUCA.. 30
j j j j j j j j j j j

cel-miR-82 30 UGACCGAAAGUGCUACUAGAGU 50

sta-1 30UTR (165–187) 50 ..AUCACAAGUGAUUUCUGAUCUCA.. 30
j j j j j j j

cel-miR-1834 (mir-58.2) 30 AACCUAGAGUUACCAACUAGAGA 50

sta-1 30UTR (165–187) 50 ..AUCACAAGUGAUUUCUGAUCUCA.. 30
j j j j j j j

cel-miR-2209.1 30 ACAUCACAUUGGCGACUAGAGA 50

miRanda-mirSVR

sta-1 30UTR (165–187) 50 ..AUCACAAGUGAUUUCUGAUCUCA.. 30
j j : j : j j j j j j

cel-miR-58.1 30 UAACGGCAUGACUUGCUAGAGU 50

sta-1 30UTR (165–187) 50 ..AUCACAAGUGAUUUCUGAUCUCA.. 30
: : j : j j j j j j j j

cel-miR-80 30 AGCCGAAAGUUGAUUACUAGAGU 50

sta-1 30UTR (165–187) 50 ..AUCACAAGUGAUUUC———UGAUCUCA.. 30
j j j j j j j j j j j j

cel-miR-81 30 UGAUCGAAAGUGCUACUAGAGU 50

sta-1 30UTR (165–187) 50 ..AUCACAAGUGAUUUC———UGAUCUCA.. 30
j j j j j j j j j j j j

cel-miR-82 30 UGACCGAAAGUGCUACUAGAGU 50

Microcosm Targets

sta-1 30UTR (165–187) 50 ..AUCACAAGUGAUUUCUGAUCUCA.. 30
: : j : j j j j j j j j j

cel-miR-80 30 AGCCGAAAGUUGAUUACUAGAGU 50

RNAhybrid

sta-1 30UTR (171–187) 50…——AGUGAUUUCUGAUCUCA.. 30
j j : j : : j j j j j j j j

cel-miR-2209.1 30 ACAUCACAUUGGCGACUAGAGA 50

sta-1 30UTR (168–187) 50————ACAAGUGAUUUCUGAUCUCA..30
j j j j : j j j j j j j j j

cel-miR-80 30AGCCGAAAGUUGAUU——ACUAGAGU 50

sta-1 30UTR (165–187) 50….CACAAGUGAUUUC———UGAUCUCA. 30
j j j j : j j j j j j j j j j j j

cel-miR-81 30 UGAUCG–-–AAAGUGCUACUAGAGU 50

sta-1 30UTR (165–187) 50………….AUCACAAGUGAUUUCUGAUCUCA. 30
j j j j j j j j j j j j j j

cel-miR-82 30UGACCGAAAGUG————CU———ACUAGAGU 50

sta-1 30UTR (171–187) 50…AGUGAUUUC————UGAUCUCA.. 30
j j j j : j j j j j j j j j

cel-miR-1834 (mir-58.2) 30 AAC–CUAGAGUUACCAACUAGAGA 50

Note. In gray, positions mutated for the luciferase-reporter assays.
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match at seed regions, outside of them, conservation
across species, thermodynamic parameters, site acces-
sibility, etc. Importantly, all these software programs
identified the same region at sta-1 30UTR, regardless
of the miR-58f member recognized in the match.
Table 1 shows the predicted binding sites in sta-1
30UTR found in all these programs, with the excep-
tion of PITA, which does not render such detailed
information.

sta-1 is upregulated in themir-58fmutant

To test the hypothesis that miR-58f represses sta-1
transcripts, we began by comparing the mRNA levels
of sta-1 between the quadruple mutant mir-58f(¡)
(missing miR-58.1, miR-80, miR-81 and miR-82) and
the wild-type N2. We found that the expression of
sta-1 was significantly higher in mir-58f(¡)
(Fig. 1; P < 0.001). In particular, we observed a
4.3-fold increment in mixed-stage populations. In
close agreement with our results, Subasic et al.10 have
recently analyzed the transcriptome of mir-58f(¡)
worms at stage L4 and found a 2-fold increase of sta-1
mRNA compared to N2 (P D 0.002).

sta-1 30UTR mediates repression bymir-58
family members

Our qPCR results (Fig. 1) are consistent with sta-1
expression being under the control of miR-58f, but
qPCR analyses cannot discriminate between direct or
indirect interactions between any microRNA and a
putative target gene. Therefore, we used a heterolo-
gous luciferase-reporter assay in human HeLa cells to
investigate whether sta-1 is a direct target of miR-58f.
To that end we cloned the 30UTR sequence of sta-1
downstream of the renilla luciferase gene and trans-
fected this construct together with each of the
members of miR-58f (except miR-2209.1; and
miR-82, because this one only differs from miR-81 in
one nucleotide out of the seed region) into HeLa
cells.

We observed strong decreases in luciferase activity
when comparing co-transfections of wild-type sta-1
30UTRs with each of the miR-58f members, to the co-
transfections of the same 30UTRs but with a standard
control miRNA, miR-67 (which was absent from the
lists of predicted miRNAs binding sta-1 30UTR).
Thus, luciferase activity was between 48% (miR-58.1)
and 65% (miR-58.2) lower with miR-58f members
than with miR-67 (P < 0.005; white columns in
Fig. 2). Furthermore, this repression is dependent on
the predicted miR-58f binding sites on sta-1 30UTR,
because when those sites were mutated luciferase
repression was largely abolished (Fig. 2, gray columns;
P < 0.005). In particular, we show that the miR-58f-
mediated luciferase repression was dependent on just
3 nucleotide positions of sta-1 30UTR (CUC mutated
to GAG), complementary to sites 2–4 of miR-58f
seed-region (Table 1). We conclude that sta-1 is
directly repressed by miR-58f (or at least by the 4
tested miRNAs of the family) through its 30UTR in a
heterologous system, suggesting an equivalent in vivo
action.

Zisoulis et al.23 and Grosswendt et al.24 sequenced
thousands of mRNA fragments associated to Argo-
naute (ALG-1), and therefore likely targets of miRNA
regulation. Consistently with our results, both groups
found 3 different regions of sta-1 bound to ALG-1.
One of these regions (chromosome IV: 16671301-
16671432) contained the 30UTR fragment that we
have shown to be a target for miR-58f (Table 1 and
Fig. 2). In summary, sta-1 appears a bona fidemiR-58f
target gene.

Figure 1. sta-1 mRNA levels are upregulated in the mir-58 family
mutant and in worms with a constitutively active TGF-b Dauer
pathway. mRNA levels of sta-1 were measured in mixed-staged
populations of wild-type strain N2, the quadruple mutantmir-58f(¡)
(MT15563) and 3 additional strains with constitutively active TGF-b
Dauer signaling: daf-3(ok3610) (RB2589), daf-4(CC) (pwIs922), and
daf-8(CC) (DR2490). Measurements were carried out by quantita-
tive Real-Time PCR with a specific TaqMan probe for sta-1. mRNA
levels of mutant strains (color bars) were normalized to those of N2
(white bars). Each value represents the average from 4 independent
biological replicates. Error bars indicate standard deviations. Signifi-
cant statistical differences between each mutant and N2 are indi-
cated as �(P< 0.001).
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The activity of the TGF-b Dauer pathway
upregulates sta-1 expression

As already explained, STA-1 is known to inhibit dauer
formation because of the higher percentage of dauers
at 27�C of sta-1(¡), compared to N2. Moreover, it is
thought to interact with at least DAF-1 and DAF-8, 2
proteins of the TGF-b Dauer pathway. However, in
apparent contradiction to the above, dauer-inhibitory
TGF-b Dauer signaling appears to repress STA-1 acti-
vation in a particular set of sensory neurons, some of
which are known to be key in the dauer decision.17

Trying to shed some light on this matter, we then
studied whether TGF-b Dauer activation would
indeed downregulate sta-1 expression, or more in
accordance with sta-1 inhibitory role on dauer entry,
activation of TGF-b Dauer could instead promote
sta-1 expression.

Accordingly, we compared sta-1 mRNA levels
between N2 and 3 mutants where the TGF-b Dauer
pathway is constitutively upregulated.5,25 We used
worms overexpressing daf-4 (whose protein product is
part of the TGF-b Dauer receptor) or daf-8 (coding
for a Smad transcription factor of TGF-b Dauer), as
well as a daf-3 null mutant (DAF-3 is a Co-Smad
antagonizing TGF-b Dauer).26 We found that in all
these backgrounds, sta-1 transcripts were significantly
more abundant than in wild-type worms (Fig. 1). We

conclude that, in at least mixed-staged populations,
TGF-b Dauer signaling appears to stimulate the
expression of sta-1. This fits well with the role of both,
TGF-b Dauer and STA-1, as facilitators of the repro-
ductive developmental program. In our view, however,
2 fundamental questions deserve further work in rela-
tion to STA-1/TGF-b Dauer. First, how to reconcile
the inhibitory role of STA-1 on dauer formation with
its deactivation by TGF-b Dauer in discrete sensory
neurons (perhaps its role in those neurons is unrelated
to dauer); and second, what is the precise molecular
role of STA-1 in relation to the components of TGF-b
Dauer.

We summarize our results in Fig. 3 by which the
sta-1 upregulation observed in mir-58f(¡) (Fig. 1)
seems to derive from 2 sources. First, from the
impairment of miR-58f to act directly on sta-1 30UTR
(Fig. 2), and second, from the activation of TGF-b
Dauer caused by the miR-58f null mutations5 – because
that activation, in turn, would upregulate the expres-
sion of sta-1 (Fig. 1). On the other hand, the over-
expression of sta-1 in daf-3(¡), daf-4(CC) or daf-8
(CC) are only due to the activation of TGF-b Dauer.
That may explain why sta-1mRNA levels are consider-
ably higher in mir-58f(¡) compared to daf-3(¡), daf-4
(CC) or daf-8(CC) mutants (Fig. 1). Finally, we sug-
gest that perhaps the double control of mir-58f on
dauer, through the TGF-b Dauer pathway and sta-1,

Figure 2. Luciferase-reporter assays show that miR-58 family members repress gene expression through the sta-1 30UTR. Human HeLa
cells were transiently transfected with psiCHECK-2 vector containing either the wild-type (white) or mutated (gray) 30UTR from sta-1,
along with miR-58 family mimics of miR-58.1, miR-80, miR-81 and miR-58.2 (i.e. miR-1834), or the unrelated miR-67 as negative control.
The luciferase activity for each mimic was normalized to the value obtained with miR-67 using the same sta-1 30UTR. Data shown are
representative from 2 independent experiments. Error bars indicate standard deviations. �(P < 0.005), comparing luciferase activities for
each inhibitory miRNA to miR-67s (white bars), and between wild-type and mutated sta-1 30UTRs for each microRNA (pairs of white and
gray bars).
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outlined in Fig. 3, may serve as a system to
strengthen the critical decision to go either into
reproductive development or dauer, and hence con-
tribute to avoid intermediate phenotypes.5,27

Materials and methods

C elegans strains and culture conditions

The following mutant strains were obtained from
Caenorhabditis Genetics Center (CGC): Wild-type
Caenorhabditis elegansN2 strain (Bristol), RB2589 daf-
3(ok3610) X, and the mir-58-family mutant MT15563,
which is the available strain with more mir-58f mem-
bers mutated (mir-80(nDf53) III;mir-58.1(n4640) IV;
mir-81 and mir-82(nDf54)X). DR2490 mIs27 [Pdaf-8::
daf-8::gfp, rol-6(su1006)] and pwIs922 [pvha-6::DAF-4::
gfp] were kindly provided by Drs. D. Riddle and R.
Padgett, respectively. We cultured worms on nematode
growth medium plates (NGM: 17 g/L of agar, 3 g/L of
NaCl, 2.5 g/L of peptone, 1 mM CaCl2, 1 mM MgSO4,
25 mM KPO4 buffer pH 6, 5 mg/L of cholesterol)
seeded with E. coli OP50 at 20�C according to standard
procedures.28 For RNA isolation, we cultured worms in
agarose plates (10 g/L of agarose, 3 g/L of NaCl, 10 g/L
of peptone, 1 mM CaCl2, 1 mM MgSO4, 25 mM KPO4

buffer pH 6, 5 mg/L of cholesterol) instead of NGM
agar plates.

Quantitative real-time PCR assays (qPCRs)

We grew worms in agarose plates until we got a mixed
stage population. We sampled worms by washing the
plates in M9 buffer, allowing them to settle by centri-
fugation and aspirating off the supernatant. We
washed the worm pellet with M9 and repeated the
process 2 additional times. Total RNA was extracted
with miRNeasy Kit (Qiagen). We collected 4 (mixed
stage) biological replicates for each tested strain.

For quantification of mRNAs, we first synthesized
cDNAs with SuperScript III First-Strand Synthesis
System (Invitrogen). qPCR of cDNAs was run on an
Applied Biosystems 7500 Fast thermocycle, using Taq-
Man Assays (Applied Biosystems). We tested each
sample in triplicate. crn-1 and cey-1 transcript levels
were used as controls, as CRN-1 and CEY-1 protein
levels did not change in mir-58.1(n4640) mutant
strain.29 To obtain the sta-1-fold induction rates in
our sample strains versus N2, we analyzed qPCR data
with REST-2009 software.30 For normalization among
biological replicates, automatic Ct threshold values in
each run (assigned by software 7500 v2.0.6) are
referred to the corresponding means across runs, and
re-analyzed by program 7500. Recalculated Ct data
were then analyzed by REST-2009 that calculate rela-
tive changes of transcripts following the 2–DDCT
method.31 P-values were also obtained with
REST-2009, which performs a pair-wise fixed realloca-
tion randomization test to assess the significance
between control strain N2 and samples.

Luciferase assays

Wild-type 30UTRs of sta-1 were amplified with for-
ward primer 50AACACTATTTAAATGTTAAAA
CAGTC and reverse primer 50TTTACAGT
AAAATAATTTATTGGATGAG. For the mutated
30UTR, the same forward primer was used together
with reverse primer 50TTTACAGTAAAATAA
TTTATTGGATCTC, with underlined nucleotides
corresponding to the sites mutated (positions 2 to 4 of
the predicted miR-58f binding sites). Both amplified
fragments were cloned downstream of the renilla-
reporter gene in psiCHECK-2 plasmid (Promega).

We grew HeLa cells in DMEM (Lonza) with 10%
FBS in 5% CO2 at 37�C and seeded them at a density
of 1 £ 104 cells per well into 96-well plates. Cells
were transfected in triplicate 24/48 h later with
Lipofectamine 2000 (Invitrogen), 150 ng of the

Figure 3. Model of genetic interactions between the family of
miR-58, TGF-b Dauer, sta-1 and the dauer phenotype. Based
on our results (this work and reference 5), and on the sta-1 and
TGF-b Dauer literature.17,26 The thin line between sta-1 and dauer
illustrates the weaker inhibitory role of sta-1 on dauer compared
to the stronger effect from the TGF-b Dauer pathway.17
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modified psiCHECK-2 plasmid (see above), and
50 nmol of test miRNA mimic (miR-58.1, miR-58.2,
miR-80 and miR-81; miRIDIAN, Dharmacon) or the
standard control miRNA mimic miR-67 provided by
the manufacturer. Dual-luciferase reporter assays were
performed 48 h after transfection using Dual-Lucifer-
ase Reporter Assay System (Promega), to detect firefly
and renilla luciferase activity. Luminescence was mea-
sured with an Infinite M200 TECAN luminometer
(TECAN Group Ltd, M€annedorf, Switzerland). Renilla
luciferase activity was first normalized using the firefly
luciferase activity as intraplasmid transfection reporter.
Resulting values for miRNA-30UTR co-expression
were further normalized to those incubated with con-
trol mimic miRNA (miR-67).

Statistical pairwise comparisons were performed
with a Welch Two Sample t-test, run on R software
version 2.15.1.
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