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Abstract: Measuring pavement roughness and detecting pavement surface defects are two
of the most important tasks in pavement management. While existing pavement roughness
measurement approaches are expensive, the primary aim of this paper is to use a cost-effective and
sufficiently accurate RGB-D sensor to estimate the pavement roughness in the outdoor environment.
An algorithm is proposed to process the RGB-D data and autonomously quantify the road roughness.
To this end, the RGB-D sensor is calibrated and primary data for estimating the pavement roughness
are collected. The collected depth frames and RGB images are registered to create the 3D road surfaces.
We found that there is a significant correlation between the estimated International Roughness Index
(IRI) using the RGB-D sensor and the manual measured IRI using rod and level. By considering the
Power Spectral Density (PSD) analysis and the repeatability of measurement, the results show that
the proposed solution can accurately estimate the different pavement roughness.

Keywords: RGB-D sensor; depth data; Microsoft Kinect One (V2), Microsoft Kinect; visual sensing;
time of flight sensor; 3D pavement surface reconstructing; outdoor imaging; pavement roughness;
International Roughness Index (IRI); pavement condition assessment; pavement health monitoring

1. Introduction and Background

A pavement management system is a set of tools and methods that allow the authorities to
determine optimum maintenance actions on pavement sections to enhance the pavement performance
level. The pavement management system consists of different parts, and the most important part
is data collection from pavement to examine its condition. According to Haas and Hudson [1],
four major techniques that can be applied for comprehensive assessment of pavement conditions
include pavement roughness, pavement defects, structural damage, and resistance to sliding (safety).
Among all, pavement roughness is of significance due to ride quality and road safety.

According to an ASTM standard (Academic Society for Testing and Materials standards),
pavement roughness is the vertical surface oscillations in pavement that reduces ride quality [2].
In other words, roughness is a change in the pavement alignment that shakes the vehicle and can be
felt by a road user. Pavement roughness is measured between two points on the road by measuring the
changes in the elevation level on the longitudinal profile (m/km or inch/mile) [2]. Since 1960, different
indices were proposed to measure pavement roughness such as Mean Panel Rating (MPR), Profile
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Index (Ride Number), and International Roughness Index (IRI). The latter one is the most common,
which was introduced initially by the World Bank in 1982, and it has been used widely since then [3].
This index provides an opportunity for obtaining the same values in different situations, from different
vehicles or similar vehicles at different data collection periods. The response type measurement system
is used to compute this index. First, the distance between a vehicle and the road surface, and the
vertical displacement of the vehicle are measured. Then, vehicle motion on the road is modeled by
applying various mathematical filters. Ultimately, the total cumulative displacement of the simulated
spring system (as it is used in the car wheels) is divided by the traveled distance [4]. The IRI is affected
by wavelengths of 1.2 to 30 meters. The index will be less than 0.5 (unit of slope) for the wave numbers
of 0.033 1

m and 0.8 1
m corresponding to the wavelengths of 30 and 1.25 m, respectively.

Devices used in collecting pavement roughness data can be divided into three categories including
profilers, profile graph, and response type systems. Profilers are indicating the precise pavement
profile, which can be divided into three general categories of static, low-speed (inclinometer) and
high-speed (lightweight and heavyweight) profilers. The most common one is a static profiler, such
as a rod and level, which is used for measuring the base profile of a road and calibration of other
devices due to its high accuracy [5]. The low-speed profiler records the slope by moving the profiler
along the road, so this method has a higher data collection speed rather than the rod and level
method. The high-speed profilers compute the roughness using the concept of the high-speed inertial
profiler by creating an inertia baseline to compensate for the vertical displacement of the vehicle body.
An accelerometer measures the vertical acceleration of the vehicle, and it is converted to the distance
by double integration for finding the inertia baseline. Figure 1 illustrates the baseline and the pattern
of a vehicle moving on a road. The distance between the ground and the baseline above can be used
as elevation data for measuring the IRI. This distance is measured by adding the distance between
the accelerometer to the ground (Ds) and the distance between the accelerometer to the baseline (Di).
A contactless sensor, such as ultrasonic, laser beam, or an optical image, measures the vertical distance
between the car and the ground [5].
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The profile graph is used manually at the walking speed by an operator, often to measure
the longitudinal profile of concrete pavement. The last category applies response-type systems.
This method measures the pavement profile by using cell phones or accelerometers mounted on a
vehicle [6].

Due to the recent advances in science and technology, various companies operate in the
competitive market to manufacture new profilers. A common characteristic of these profilers is
the high cost, which is due to using laser technology. Under-developed or developing countries cannot
afford such a device. Hence, it is necessary to search for devices with not only sufficient accuracy and
precision in pavement data collection but also lower costs. RGB-D sensors are cost-effective devices
that have not received enough attention for pavement data collection. The capability of an RGB-D
sensor to capture the depth data and RGB images, as well as the low price of this product, make these
sensors an appropriate device for measuring the pavement roughness. This study investigates the
feasibility of using such a system for autonomous estimating of IRI when a data analysis procedure is
also proposed. Moreover, the developed system is capable of creating a 3D-reconstruction of pavement
surface, which can deliver a continuous longitudinal (as well as transverse) profile of each wheel path.
These recorded data can be used later for assessment of various pavement conditions such as potholes,
patching, and cracks [7].
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2. Literature Review

The relevant studies can be categorized into pavement roughness indices, pavement roughness
data collection methods, and the RGB-D sensors. Regarding the pavement roughness indices,
Queiroz et al. proposed a roughness index for calibration of a quarter-car index [5]. Some studies
developed theoretical indices considering the interactions between vehicles and roads. For instance,
Liu and Herman (1998) examined the interplay between the road and user comfort [8]. In another
study by the same authors, the effect of a jerk (bump) on a road as a response index was investigated [9].
Cantisani et al. showed that the IRI does not express the driving convenience by itself [10].
Other indices should be developed that consider the vertical acceleration and the driving convenience.
Different studies have been performed on the computation of pavement roughness with regard to the
factors affecting the vertical acceleration of a vehicle. Zhang et al. (2014) considered the Root Mean
Square (RMS) of vertical acceleration as a measuring index of ride quality and pavement roughness.
The results of this study were consistent with the ISO 2631 standard, which is a standard regarding
human body exposure to the vibration [11]. Using a quarter-car model and considering 36 sections
of a pavement surface, Sun (2002) associated the IRI to the Power Spectral Density (PSD) roughness
utilizing a linear regression [12].

Researchers applied several pavement roughness data collection devices. Alhasan et al. (2015)
examined the possibility of using a stationary laser for measuring IRI. Pointclouds taken from
the surface via a fixed laser scanner were mapped side-by-side and analyzed with the Fourier
transform [13]. This approach can be used on pavement that cannot tolerate the weight of profilers.
Fernando et al. (2014) validated the measured IRI via Dynatest, which is an automated data collection
vehicle, by using a rod and level on the same paths [14]. In another study, considering the wavelength
of a profile as a roughness index of the pavement surface, the correlation between vehicle vibration
and IRI values were measured by driving in a passenger car. The results show that, by having the
same IRI values, there could be a difference of factor 30 between the best and worst ride, which can
be used in making policy in the pavement management system (PMS) field. However, this method
is not applicable for heavy vehicles [15]. Hesami et al. (2009) used signal processing for measuring
pavement roughness. The profile data at different time intervals were collected and the energy level
in wave bands at different altitude levels of road surface were estimated by using the PSD analysis.
They showed that there is a good correlation of the calculated index with IRI [16]. In another study,
road profile wavelengths were analyzed to measure pavement roughness. The high-frequency defects
such as cracks and potholes were successfully identified. The results of the study showed that the
wavelength analysis method could measure the pavement roughness with better accuracy than other
signal processing methods [17].

The Laser Crack Measurement System (LCMS) that was 3D scans of the pavement profile at
highway speed has made it possible to assess the IRI and other road surface characteristics [18].
Chang et al. (2009) computed the IRI inside a laboratory by using an automated robot equipped with
a Coherent Change Detection (CCD) Laser and a laser range finder from the SICK sensor manufacturer.
The computed IRI was validated by using the ARRB profiler [19]. This study did not consider the
effect of speed or speed change on the proposed algorithm. In a study by Suksawat (2011), a low-cost
measuring tool consists of five connected wheels, accelerometers, variable resistors, an encoder, and an
angle sensor that was made for measuring the pavement roughness [20]. Zhang et al. (2015) computed
the real-time pavement roughness using outputs of the tensile-compressive sensors embedded in
the pavement. This measurement tool requires on-site installation and calibration, and the results
showed that it could measure the IRI with high precision. However, to measure the IRI, the sensors
need to be implemented close to each other (less than one meter distance) [21]. Yi and Ma (2009)
introduced a new range finder with a symmetric but reverse structure. Pavement roughness was
computed based on the non-inertial reference frame transfer by using five laser rangefinders mounted
on a rod. The IRI was measured based on adjusting errors caused by a vehicle vibration, which are
similar to the changes in the height of the longitudinal profile [22]. Recently, a pressure sensor was
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used for measuring pavement roughness [23]. Zhao (2015) measured pavement roughness by using
directional microphone sensors and a dynamic tire pressure sensor with an axial accelerometer. The
proposed method is validated for new pavement surfaces with the IRI of less than two, and it cannot
distinguish the exact IRI greater than two [23].

Because these pavement evaluation methods are expensive and time consuming, smartphones
have emerged as an inexpensive alternative. Smartphones are highly useful in data collection since
they have sensors for recording the profile [24]. Douangphachanh and Oneyama (2013) developed
an index similar to IRI by examining the correlation between speed and acceleration recorded by
smartphones [25]. Using the “Androsensor” smartphone application, they installed two smartphones
in the same direction in two different vehicles that traveled at almost constant (but different) speeds.
The results showed that the type of vehicle affects the outputs, but different smartphones used in
a vehicle did not lead to much difference in the outputs. Alessandroni et al. (2014) examined the
possibility of computing the ride quality using data collected from the three-axis of an accelerometer.
Using Linear Predictive Coding (LPC), they removed the accelerations data, which were not associated
with surface roughness, such as vibrates. This results from gravity acceleration, vehicle acceleration,
eccentricity, rotation, and going downhill [26,27]. However, the proposed method did not consider the
effect of the vehicle suspension.

Another alternative to using smartphones in evaluating pavement conditions is the use of
the Microsoft Kinect. The Kinect sensor was launched in two versions within four years by
the Microsoft Corporation (Xbox 360 (2010) and One (2014)). The Microsoft Kinect One (Kinect
V2) included an infrared laser emitter, an infrared ray absorber sensor, a Red-Green-Blue (RGB)
sensor, a rotating motor on the base, and microphones to detect the external sound in different
directions. The analytical features of Microsoft Kinect 1 and Microsoft Kinect Xbox 360 were
presented in Mahmoudzadeh et al. (2015) [28]. Microsoft Kinect Xbox 360 cannot capture images
in all environments since it provides low quality or incomplete depth images under direct sunlight.
Thus, providing shade on the road surface is necessary when the sensor is used under direct sunlight.
The infrared sensor is not capable of detecting infrared reflective rays from the surface under direct
sunlight [29]. Another study has investigated the effect of different light intensities on the quality of
data. The computed depth maps were compared in different light intensities, which were measured
by an illuminance meter in lux. The results showed that the depth values were highly reliable under
different light intensities and the light intensity did not have a significant impact on the quality of
obtained depth data unless the sensor was exposed to direct sunlight [7]. However, the Microsoft
Kinect Xbox 360 cannot work accurately in outside environments. The Microsoft Kinect One has
better performance than Microsoft Kinect Xbox 360 in the outdoor environment, since it uses ToF
technology [30–32]. A study by Fankhauser et al. confirmed that capturing data up to a one-meter
distance from the surface under shadow is accurate, while errors are caused by increasing the range
or changing the “incident angle of sunlight radiation” [33]. Another study analyzed the depth
measurement accuracy for different illumination levels (measured based on Lux). They declared that
increasing the illuminating intensity degrades the measured depth accuracy of a ToF camera [34].

In addition, a pixel might contain objects in different distances, which usually occur on edges.
The return light from the foreground and background objects might generate another distance for the
corresponding pixel. In other words, the difference in a solid angle causes a false phase shift due to
the false distance information. This shift is called the flying pixel [35]. Some studies show that flying
pixels occur in two situations: when an object is located under direct sunlight radiation and when
there are two reflected pulses for each pixel [31,36]. However, by adding a shelter over the surface and
taking pictures under the shadow, this problem may be solved. Regarding characteristics, Microsoft
Kinect One has a depth image resolution of 512 × 424 pixels with 70.6 and 60 degrees horizontal and
vertical fields of view, respectively. The color sensor resolution in the Kinect One is 1920 × 1080 pixels,
with 84.1 and 53.8 degrees of horizontal and vertical fields of view, respectively. Microsoft Kinect One
uses Time of Flight (ToF) technology, which uses a continuous laser wave in the form of a signal by
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considering radiation and reflection rays as two different phases. By measuring the time between
sending and receiving the wave to/from an object, a 3D image can be reconstructed. By converting
time to distance, the distance matrix is measured. Each cell of the matrix represents the distance
between the object surface and the sensor, and the number of cells depends on the sensor imaging
quality [32,37,38]. A few research studies have recently applied the Kinect sensor for the pavement
condition data collection. Jahanshahi et al. (2012) used the Kinect Xbox 360 for detecting the pothole,
patching, and crack on pavements. Since the collected data from Microsoft Kinect always has some
noise, the measured depth surface is not parallel to the original surface [7,39]. Jahanshahi et al. used
the median filter to reduce the noise and applied the RANSAC algorithm to enhance the measured
depth surface and to make it parallel to the road surface. The accuracy of detection for the pothole,
patching, and crack were 92%, 80%, and 78%, respectively [7]. Moazzam et al. (2013) used Microsoft
Kinect Xbox 360 for capturing potholes. They measured the pothole area on asphalt and concrete
surfaces. The results showed that the sensor has an accuracy of ±15% for measuring the pothole
area [40]. Kamal et al. (2016) used Kinect to measure the depth and volume of potholes. They evaluated
the Kinect performance in measuring the dimensions of potholes in different conditions (water versus
oily water). The results showed that the mean percentage error of Kinect for measuring the depth is
approximately 3% [41]. Chen et al. (2016) used multiple Kinect sensors to evaluate the road surface
condition in a dynamic mode. Having solved the problems related to data collection at high speed,
such as the motion blur problem and the rolling shutter distortion, they detected the surface defects by
running the equipped vehicle at the traffic speed limit [42]. Zhang et al. (2018) detected and classified
the intensity of different kinds of cracks by measuring their widths, lengths, and areas. He found that
the Microsoft Kinect sensor can measure cracks with an acceptable accuracy [43].

In winding up the discussion, the scholars employed only Microsoft Kinect Xbox360 to detect some
pavement surface defects such as potholes, patches, and cracks. However, the pavement roughness
assessment using Microsoft Kinect One (Kinect V2) was not performed.

3. Objective and Scope

This study aims to measure the pavement roughness through the application of an inexpensive
RGB-D sensor with a reasonable level of accuracy and precision. The scope of this research is to utilize
Microsoft Kinect One mounted on a cart to capture images in a static mode. The authors declare
that the static data collection could be time-consuming, while the goal here is the feasibility check.
Asphalt pavements were employed as the case study for pavement roughness data collection.

4. Research Methodology

This research was conducted by collecting the data with a fabricated device (data collection),
performing noise reduction and image matching techniques (data pre-processing), and computing IRI
and validation (data post-processing). The steps are visualized in Figure 2 starting from the top to the
bottom. It should be noted that the subtasks at each step are illustrated in hyphened rectangular shapes.
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4.1. Data Collection

For collecting images from the pavement surface, it was essential to provide a distance between
the sensor and the ground. For this purpose, a cart was designed and fabricated to be able to hold
the sensor, as depicted in Figure 3. The dimensions of the designed cart were selected in such a way
that, by installing two sensors on both sides, it would be possible to capture data over a 3.65 m width
(i.e., a lane width). In addition, to create a suitable viewing angle for the sensor, an arm was added to
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The actual distance (ground truth) between the Kinect sensor and the surface was measured
using a highly accurate laser meter. Then, 22000 depth values, which represent the distance between
the Kinect and the reference surface, were extracted from a sample frame. The results show that the
distance of the sensor from the surface affects the accuracy of the estimated depth data, since it was
mentioned in previous studies [7]. Therefore, by testing different distances (from 0.8 m to 1.5 m), the
results show that, by increasing the distance up to 1000 mm, an acceptable level of accuracy can be
achieved. This distance is the minimum appropriate distance to reach an adequate coverage area
between two consecutive images (according to the sensor field of view). From a different perspective,
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more coverage could be provided by tilting the camera. While the Kinect is capturing the vertical
distances, it can be treated as higher dimension image capturing.

In the process of data collection, two 50 m sections were chosen with different levels of roughness.
Data was collected in the stationary mode by mounting the RGB-D sensor on the cart. The sensor was
kept perpendicular to the ground, and it was controlled by using the engineering level in both vertical
and horizontal directions (Figure 3a). However, it should be mentioned that it is not a necessary step in
data collection. Two straight wheel paths were marked on the pavement, which were used to direct the
wheels. From the beginning of the wheel path, stop points were marked at specified locations along
each wheel path. The distance between each two successive stop points was similar. This distance
satisfied the availability of the common features requirement when collecting successive images for
the matching algorithm. The cart was moved along two marked wheel paths, and it was stopped at
specified marked stations. After collecting 100 frames at a station, the cart was moved to the next
station. Moreover, the wheels were locked in all directions except the straight one, at the current step
of this study to follow the path lines. At each station, the RGB and infrared images were captured
besides computing 100 frames of depth data on the pavement surface.

4.2. Data Pre-Processing

4.2.1. Performing Noise Reduction Techniques

The depth data collected by the Kinect exhibits some noises, which should be reduced. The first
step of this process was to smooth the depth data. Thus, the pixel-wise averages of frames were
obtained to form the final depth matrix. In other words, each cell in the final matrix was computed by
averaging the corresponding cells in the original frames. Moreover, a Gaussian filter was used as a
low-pass filter to minimize the effect of small changes in the dataset. Furthermore, the averaging filter
was used to remove the noise in the final depth matrix.

In this study, to eliminate the noises at corners, the central part of the depth data (i.e., 450 × 350)
was used for a further analysis. In Figure 4, the standard deviation of each pixel over 500 frames taken
from a segment of the asphalt surface is plotted. The figure shows that, by moving toward the central
part of the data matrix, the standard deviation of data is reduced. This is due to lens distortion of the
IR camera that introduces some errors since the region of interest moves toward their borders.
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4.2.2. 3-D Surface Reconstruction

After preprocessing and noise removal, sensor calibration was performed. The sensor provides
RGB image and depth data, which should be used to create the 3D surfaces. Calibration is needed to
map the RGB image on the depth image, which will be used to stitch point clouds of the road surface,
as explained later in this section.

The sensor calibration consisted of two internal and external calibration steps. The “intrinsic
parameters” were found by capturing images from a checkerboard using the Caltech toolbox for
calibration [44]. Moreover, captured depth images were mapped with the RGB images because
two separate sensors took the images. “External calibration” contained rotation and transmission
parameters in the form of a transformation matrix between the RGB and the depth-imaging sensor.
It should be mentioned that, due to the presence of such matrices, there is no need to put the camera
perpendicular to the surface.

Since the IRI presented on a scale of 5, 10, or 100 m in length, it is necessary to match the depth
matrices to create segments in such lengths. To this end, depth images were stitched together, as
explained in this section, by using a feature based stitching algorithm (Figure 5). By using the SURF
algorithm [45], the respective matching points of the two RGB images (Figure 5a,d) from adjacent
sections of road were determined (Figure 5b,e). The white lines refer to Figure 5d and the red lines
refer to Figure 5a. The yellow lines represent the matching features in the overlapping region of the
two adjacent images. The M-estimator Sample Consensus (MSAC) algorithm, which is a subset of the
Random Sample Consensus algorithm (RANSAC) [46], was used to eliminate the noise and error in
detecting the corresponding points [47]. Figure 5c,f show the RGB and IR stitched images, respectively.
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Figure 5. Creating a stitched image using a feature-based algorithm by having multiple images. (a,d)
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Once the transformation matrix between two RGB images is computed, since the transformation
matrix between RGB and the depth sensor is already obtained from camera calibration, the depth
images can be registered and stitched together. Figure 6 shows a 3D point cloud obtained by registering
three consecutive depth images.
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To sum up, this study focuses on developing an index using a longitudinal profile of a road
segment. The most important task is to map/stitch images rather than localizing them on a map.
On the contrary, in a full large-scale simultaneous localization and mapping method, images are
captured with a position tag using GPS to be presented on a map [48]. The camera position is not
important in this study because the aim was developing a road profile rather than presenting the
pavement images on a map. Related literature shows that, by fusing the GPS and IMU data, location
data with a higher frequency can be generated [42]. In addition, since a GPS dataset creates timestamps
on captured images in a sequence, the images can be labeled with time and location [49]. It can also
calculate the distances between images using latitude and longitude of different points, which were
used in overlapping estimation [50,51].

4.3. Data Post-Processing

4.3.1. IRI Calculation and Repeatability Controls

To compute IRI, 3D point clouds that constitute the longitudinal profile of each path were
imported into ProVAL. ProVAL is approved by FHWA and applies the quarter-car method to compute
IRI. The scale was computed by entering the resolution of the image (i.e., the distance of pixels from
each other in the real world). To evaluate the precision of measuring IRI, two different methods are
used. First, data are collected for five times for each of four segments to assess the statistical difference
between replicates regarding calculated IRI values. Then, the cross-correlation analysis is used to
evaluate the spatial dispersion of data over the length of segments. Moreover, the Power Spectral
Density is calculated to analyze the dispersion of wavelength in the dataset, which gives a better sense
of the roughness dispersion over the length of a segment instead of calculating a single number for
defining roughness.

4.3.2. Validation

Lastly, it is necessary to re-calculate the IRI by rod and level to validate the sensor outputs
(Figure 7). For this purpose, the same road sections used for data collection were divided into 30-cm
intervals. The ASTM E1364-95 says that the maximum interval between data points should be less
than 305 mm (1 ft) for the Class 1 resolution [52]. Moreover, the ASTM E 1926-08 allows the researchers
to choose an interval based on their opinion, and it suggests using an interval of 0.3 m (12 in) or less.
However, reducing the interval typically improves the precision [3]. Moreover, the sample interval for
collecting the IRI via rod and level was 30 cm, and the length of 10 m for each path with at least 33
data points were used to calculate an IRI for each path. Twenty paths were considered to evaluate the
validity of this study, which is more than enough data points for evaluation. These were used from
the statistical point of view. Moreover, 20 points of data (20 values for IRI) is enough for a population,
which is not severely skewed.
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Figure 7. Data collection with the rod and level for the validation purpose.

The data collection technique should meet the criteria mentioned in ASTM 1364-95 [52]. According
to ASTM 1364-95, if the rod and level is used to validate the profilers (Kinect sensor), the techniques
examined between two systems should be the same. Thus, in this study, the depth data was analyzed
using ProVAL software.

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation, and the experimental conclusions that can be drawn.

5. Results and Discussions

In this section, the results of computing the IRI of six 10-m road segments are discussed.
As previously mentioned, two sections with the length above 50 m for each, were selected with
one smooth surface (Figure 8a) and one rough surface (Figure 8b). This section follows the order
mentioned in the data post-processing section of the flowchart, by discussing the statistics behind
the IRI values, the repeatability controls, the cross-correlation analysis, the PSD analysis, and the
validation results, respectively.

Sensors 2019, 19, x 10 of 19 

 

techniques examined between two systems should be the same. Thus, in this study, the depth data 
was analyzed using ProVAL software. 

 
Figure 7. Data collection with the rod and level for the validation purpose. 

This section may be divided by subheadings. It should provide a concise and precise description 
of the experimental results, their interpretation, and the experimental conclusions that can be drawn. 

5. Results and Discussions 

In this section, the results of computing the IRI of six 10-m road segments are discussed. As 
previously mentioned, two sections with the length above 50 m for each, were selected with one 
smooth surface (Figure 8(a)) and one rough surface (Figure 8(b)). This section follows the order 
mentioned in the data post-processing section of the flowchart, by discussing the statistics behind the 
IRI values, the repeatability controls, the cross-correlation analysis, the PSD analysis, and the 
validation results, respectively. 

IRI Calculation for Different Pavement Textures 

 
(a) 

 
(b) 

Figure 8. Sample surfaces used for evaluation: (a) smooth surface and (b) rough surface. 

IRI values were categorized into intervals in length of two units [3]. Table 1 shows the number 
of segments investigated at each interval, mean, standard deviation, standard error, confidence 
interval, and minimum and maximum values of data at each interval. This table shows that 48 
segments have an IRI between 2 (m/km) and 4 (m/km), while the average IRI is 3.29 (m/km). In 
addition, it shows that the overall dispersion of the pavement roughness indices is between 2 (m/km) 
and 10 (m/km). In other words, the segments were covering a large range of IRI. Although there have 
been two roadway sections that were evaluated in Table 2, the results are reported in three IRI 

Figure 8. Sample surfaces used for evaluation: (a) smooth surface and (b) rough surface.

5.1. IRI Calculation for Different Pavement Textures

IRI values were categorized into intervals in length of two units [3]. Table 1 shows the number of
segments investigated at each interval, mean, standard deviation, standard error, confidence interval,
and minimum and maximum values of data at each interval. This table shows that 48 segments
have an IRI between 2 (m/km) and 4 (m/km), while the average IRI is 3.29 (m/km). In addition,
it shows that the overall dispersion of the pavement roughness indices is between 2 (m/km) and
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10 (m/km). In other words, the segments were covering a large range of IRI. Although there have
been two roadway sections that were evaluated in Table 2, the results are reported in three IRI intervals
based on Reference [5]. The adjustment is emphasizing the practical assessment of IRI, since the IRI
thresholds in this table are defined based on practitioners’ standpoints.

Table 1. Descriptive statistics of the collected pavement.

IRI Values
(m/km) Frequency Average

(m/km)

Standard
Deviation

(m/km)

Standard
Error

95%
Confidence

Interval

Min IRI
(m/km)

Max IRI
(m/km)

2–4 48 3.29 0.45 0.066 3.15–3.42 2.44 3.98
4–6 23 4.79 0.47 0.097 4.59–4.99 4.02 5.7
6–8 15 6.45 0.39 0.1 6.24–6.67 6.01 7.1
8–10 4 8.63 0.23 0.23 7.89–9.38 8.16 9.23

Table 2. Descriptive statistics of the collected pavement based on the pavement types.

IRI
Values
(m/km)

Pavement
Type Frequency Average

(m/km)

Standard
Deviation
(m/km)

Standard
Error

95%
Confidence
Interval

Min IRI
(m/km)

Max IRI
(m/km)

1.5–3.5 New
pavements 31 3.01 0.31 0.055 2.9–3.13 2.44 3.5

2.5-6 Older
pavement 70 3.79 0.83 0.099 3.59–3.99 2.53 5.70

3.5-10 Maintained
unpaved 60 5.16 1.42 0.183 4.79–5.52 3.5 9.23

The dispersion of the IRI values is shown in Figure 9a for different pavement conditions. In this
study, 90 paths were analyzed, which were collected from two different surfaces. The smooth pavement
had smooth paths, and the other one had rough pavement segments. The reason for selecting different
surfaces was to show that the RGB-D sensor could be used in computing a broad range of pavement
roughness indices. Figure 9a shows that the number of paths used on the rough surface was higher
than the smooth surface. In this study, road sections were divided into 10-m segments and IRI values
were computed in different segments.

Figure 9b shows the IRI values of different segments. Four segments of the rough surface and
two segments of the smooth surface with their corresponding computed IRI indices are shown in this
figure. Each point in this figure indicates a computed IRI value, and each color indicates a segment.
The horizontal axis in Figure 9b indicates the distance between the studied paths, where the reference
was the path on the middle of the depth frame. This figure shows that, for the smooth surface, the
average IRI values in different paths were closer to each other, such that, in 30 paths examined on the
smooth surface, the dispersion of IRI was lower than 0.5 units. The results show that the IRI value of
a segment cannot be found by measuring only two paths on each segment. Figure 9b shows that, in
some segments, the difference between the minimum and maximum amount of IRI is more than two
units. The red points from the rough surface confirm this claim. This difference might be due to the
presence of some external objects on the road, such as nails (Figure 10) and the non-systematic error of
the device. For instance, the presence of the shadow in the occluded areas might be a reason for this
phenomenon [53].
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Figure 9. (a) Frequency of the collected IRI values in different sections and (b) the IRI values of each
10-m segments considering their location on each section.

Sensors 2019, 19, x 12 of 19 

 

 
(a) 

 
(b) 

Figure 9. (a) Frequency of the collected IRI values in different sections and (b) the IRI values of each 
10-m segments considering their location on each section. 

 
Figure 10. Sample external objects on the road: nail. 

5.1. Statistical Repeatability Controls 

The repeatability of measuring the IRI is a requirement for developing an autonomous pavement 
roughness measuring system. Data collection from the rough surface was performed five times to 
examine the repeatability of computing the IRI using the RGB-D sensor. Table 3 expresses the 
descriptive statistics of five replicates on four segments (each one is 10 m). The mean and standard 
deviation of five replicates for each segment are given in Table 3. Additionally, the results of the 
ANOVA test among replicates, which are shown in each line, are given for the segments (df = 4). 
Table 3 shows that there is no significant difference between the replications since the level of 

IRI (m/km)
108642

Fr
eq

ue
nc

y

12

10

8

6

4

2

0

IRI (m/km)
108642

RoughSm ooth

IR
I (

m
/k

m
)

10.00

8.00

6.00

4.00

2.00

Distance (cm)
6040200-20-40-60

IR
I (

m
/k

m
)

10.00

8.00

6.00

4.00

2.00

R
ough

Sm
ooth

Section B (Smooth)
Section A (Smooth)
Section D (Rough)
Section C (Rough)
Section B (Rough)
Section A (Rough)

Figure 10. Sample external objects on the road: nail.

5.2. Statistical Repeatability Controls

The repeatability of measuring the IRI is a requirement for developing an autonomous pavement
roughness measuring system. Data collection from the rough surface was performed five times
to examine the repeatability of computing the IRI using the RGB-D sensor. Table 3 expresses the
descriptive statistics of five replicates on four segments (each one is 10 m). The mean and standard
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deviation of five replicates for each segment are given in Table 3. Additionally, the results of the ANOVA
test among replicates, which are shown in each line, are given for the segments (df = 4). Table 3 shows
that there is no significant difference between the replications since the level of significance of the
ANOVA tests for all of the segments are higher than 0.05. The F test confirms it since the f statistics is
greater than the critical value of F. In addition, it was found that the coefficient of variation in all four
replicates was low (i.e., lower than 0.2), which confirms the precision of replicates on each segment.

Table 3. Repeatability of the records of the same path with ANOVA.

Segments
Average of

IRI (SD)
(m/km)

CoV Sum of
Square

Mean Square
(Between
Groups)

Significance F.

First 3.63 (0.144) 0.040 0.02 0.005 1 0.15
Second 7.12 (0.225) 0.032 0.032 0.008 1 0.007
Third 5.22 (0.203) 0.039 0.02 0.005 1 0.009
Fourth 4.41 (0.235) 0.053 0.520 0.130 0.880 0.295

5.3. Cross-Correlation Analysis

The Cross-Correlation method (CC), as a method for examining the repeatability and verification
of pavement roughness measurement [54], was used in the study since this index is much more
rigorous than when comparing the IRI values [55]. This method considers the spatial distribution of
the roughness. The output of 100% in this method means that two depth data series are completely
correlated, which can be treated as two signal waves. After selecting a replicate as the basis, the
remaining ones were selected as replicates under repeatability testing. Table 4 shows the correlation
between five depth signals, which represents the high similarity among these replicates. The second
row in the table shows the calculated IRI in each replicate, the mean of all which is 3.92 (m/km). In the
third row, the error (in percentage) in measuring the IRI values is shown, which was calculated by
considering the IRI value of each run and the mean IRI value (3.92 m/km). This row shows that there
is little difference between the calculated indices between different replicates. The fourth row shows
the correlation between the basis signal and each replicate signal, which shows that there is a high
correlation between replications, and all the correlations are above 90%.

Table 4. Repeatability of the records of the same path with cross-correlation.

First Run Second Run Third Run Fourth Run Fifth Run Average

IRI (m/km) 3.9 4.08 3.92 3.93 3.77 3.92
Error in measuring the IRI between

each run and the mean (%) 0.51 4.08 0.00 0.26 3.83 1.73

Cross-correlation between each run
and the basis run (%) 92.5 94.2 - 94.2 90.5 92.85

It should be mentioned that the cross-correlation shows how the two profiles are correlated with
each other (i.e., how the roughness values along the two profile are correlated). Based on FHWA, the
cross-correlation can be used to compare the magnitude and the spatial distribution of roughness over
a segment. The overall IRI shows the overall roughness level along each segment [56]. Therefore, these
two indices are two distinct measures, and they do not contradict each other. Therefore, it is possible
that, while the overall IRI values are not close, the cross-correlation between the IRI values would be
high [55].

Figure 11 shows the correlation diagram of the data series by choosing the offset, which illustrates
that the optimal offset is very close to zero (lower than -0.02 in all replicates), which indicates the high
similarity of the collected data series.
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Figure 11. Cross-correlation analysis on depth data of a path for different runs.

5.4. Study of Power Spectral Density (PSD)

It is also possible to measure the pavement roughness based on the wavelengths. The depth data
collected from the road surface can be converted into several waves with different ranges using a
Fourier transform. In the examination of two road paths, each might have the same overall roughness
index, but with different PSD values at different intervals, which are related to the distributions of
wavelength in the dataset. In this study, the PSD on the slope was used, which is more common in
pavement engineering. The wavelengths lower than 3 m represent the abnormal phenomena in the
upper layers of pavement, and wavelengths higher than 10 m are associated with abnormal states
in the lower layers of pavement [57]. The PSD index has better functioning in longer paths, but, in
this study, to evaluate the functionality of the primary design (i.e., using of the RGB-D sensor for
evaluating the pavement roughness), the PSD index was utilized.

Figure 12 shows the PSD values for different wavelengths. A segment from the rough surface with
the highest dispersion and highest average IRI was chosen to determine the most sensitive wavelength
of the collected data for a path. By changing the y-axis of Figure 12a to the logarithmic scale, it
was found that, at a wavelength close to 1 m, there is a different pattern on the pavement surface
(Figure 12b). This pattern is related to the upper layer of the pavement that can be associated with
particles found on the pavement. This pattern might be based on the presence of some external particles
on the pavement. This figure shows that the developed tool is capable of developing meaningful
PSD values.
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evaluating the pavement roughness), the PSD index was utilized.  

Figure 12 shows the PSD values for different wavelengths. A segment from the rough surface 
with the highest dispersion and highest average IRI was chosen to determine the most sensitive 
wavelength of the collected data for a path. By changing the y-axis of Figure 12a to the logarithmic 
scale, it was found that, at a wavelength close to 1 m, there is a different pattern on the pavement 
surface (Figure 12b). This pattern is related to the upper layer of the pavement that can be associated 
with particles found on the pavement. This pattern might be based on the presence of some external 
particles on the pavement. This figure shows that the developed tool is capable of developing 
meaningful PSD values. 
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5.5. Validation

Data was collected for 20 paths from the 90 analyzed paths based on ASTM 1364-95 by using the
rod and level, which is the best tool to find the reference roughness for a limited number of paths [52].
Figure 13 shows that there is a high correlation between the IRI measured by using the rod and level
and the values estimated by using the RGB-D sensor (R2 is above 0.95). Moreover, by computing the
difference between the IRI measured by the proposed approach, and rod and level, the measurement
accuracy of 90% was achieved. The result of the Wilcoxon test shows that there is no significant
difference between the values of IRI calculated by the two devices (Sig = 0.006, Z = -2.72).
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6. Future Work

Multiple directions are defined to continue this research. In terms of the pavement roughness
measurement, since Kinect One can collect RGB-D data at the rate of 30 fps, the feasibility of computing
IRI in motion need to be investigated even though the feasibility and data collection with traffic speed
has been studied recently [42]. Moreover, a commercial automated data collection vehicle should be
used to further evaluate the performance of the proposed approach in this study by comparing the IRI
values obtained from a laser system and the proposed approach.
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In terms of the algorithm, using more than one RGB-D sensor will help create a 3D road surface
that covers the full lane width. From a different approach, using a sensor fusion of RGB-D cameras
and odometry should be investigated [58]. This is proposed to collect the data on segments with more
than 50 meters to check whether the error drift affects the computed pavement roughness.

7. Conclusions

Measuring pavement roughness and detecting pavement surface defects is interesting to pavement
engineers. To accomplish these tasks, managing the data collection as a core of the pavement
management system should be performed. Data collection is very costly for authorities. Hence,
it is important to look into expensive automated or semi-automated data collection approaches.

The main contribution of this study is to investigate the feasibility of using an inexpensive RGB-D
sensor with an appropriate accuracy to measure pavement roughness. Such inexpensive sensors have
not been used to compute the pavement roughness up to this point. RGB, infrared, and depth data
are collected from different surface types (smooth and rough) with the different roughness levels at
10-m sections. By performing pixel-wise averaging over the collected frames at each imaging station, a
single depth frame is calculated for each station. The noise reduction techniques are applied to each
depth frame, the RGB images are mapped onto depth images, and the RGB and depth images are
registered to create a 3D surface on the pavement surface.

The complete 3D surface is divided into 90 paths, which are evaluated as multiple wheel paths.
The paths are evaluated to obtain IRI. Ninety different paths are recorded with IRI values of 2 (m/km)
to 10 (m/km) where 48 paths have an IRI value lower than four. In addition to IRI, PSD is measured
and repeatability of data collection by an RGB-D sensor is assessed via the statistical methods and
Cross-Correlation method. Lastly, by comparing the measured IRI valued via Rod & Level and the
RGB-D sensor for 20 paths, it is found that the RGB-D sensor has a precision of 90%.
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