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TumorMet: A repository of tumor 
metabolic networks derived from 
context-specific Genome-Scale 
Metabolic Models
Ilaria Granata   1 ✉, Ichcha Manipur   1, Maurizio Giordano   1, Lucia Maddalena   1 & 
Mario Rosario Guarracino   2

Studies about the metabolic alterations during tumorigenesis have increased our knowledge of 
the underlying mechanisms and consequences, which are important for diagnostic and therapeutic 
investigations. In this scenario and in the era of systems biology, metabolic networks have become 
a powerful tool to unravel the complexity of the cancer metabolic machinery and the heterogeneity 
of this disease. Here, we present TumorMet, a repository of tumor metabolic networks extracted 
from context-specific Genome-Scale Metabolic Models, as a benchmark for graph machine learning 
algorithms and network analyses. This repository has an extended scope for use in graph classification, 
clustering, community detection, and graph embedding studies. Along with the data, we developed 
and provided Met2Graph, an R package for creating three different types of metabolic graphs, 
depending on the desired nodes and edges: Metabolites-, Enzymes-, and Reactions-based graphs. This 
package allows the easy generation of datasets for downstream analysis.

Background & Summary
Cancer is a complex disease caused by a myriad of factors and characterized by an astonishing complexity of 
phenotypes and traits, which determine its wide heterogeneity, even among cells of a single tissue. Nonetheless, 
three key processes are shared by all cancer cells: proliferation, invasion, and metastasis. To fulfill these tasks, 
cancer cells need to reprogram their metabolic activities and cross-talk with their neighborhood1,2. This evidence 
gives the metabolism and its players a crucial role in cancer progression and, consequently, cancer research.

Among all the biological networks, the metabolic ones are particularly complex and highly interconnected. 
Still, they probably are the best characterized in terms of connections and those that better represent the 
genotype-phenotype associations3. According to this, the reconstruction of comprehensive networks through 
the integration of omics data into metabolic scaffolds is one of the tools preferred by the systems biology 
approach for investigating biological phenomena from a holistic point of view. The metabolic scaffolds are given 
by the Genome-Scale Metabolic Models (GSMs), built from multi-omics data integration, and carrying infor-
mation concerning the genes/proteins with enzymatic activity, how they interact with bioactive compounds in 
the context of biochemical reactions, and how the metabolic interconnections change in different cells, tissues 
or specific conditions4. There is a great interest in exploiting these models to generate condition-specific graphs 
at the service of machine learning approaches. In the era of precision medicine, the main goal is to develop 
approaches and tools to face the well-known heterogeneity of physiological and pathological manifestations and 
provide focused solutions for specific conditions. Considering the disease cohort as a single group, including 
all the diagnosed patients, is a simplistic approach that does not contemplate any inter-samples heterogeneity 
due to genetic and environmental factors. While modern biology has accepted the intra-sample heterogeneity of 
single cells, it seems anachronistic to talk about disease- instead of patient-specific conditions. There are several 
studies that address the problem of heterogeneity by exploiting network-structured approaches5–7.

Metabolic networks are complex and can involve different metabolic players (i.e., metabolites, enzymes, 
reactions). Machine and deep learning frameworks allow extracting knowledge from the metabolic networks 
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while dealing with their structural and relational complexity4. In the context of findability, accessibility, inter-
operability, and reusability (FAIR) principles8, providing benchmark datasets for comparing novel approaches 
and for the general advancement of a specific research domain is extremely important. Graph-structured data 
coupled with machine learning approaches are receiving growing interest9–13, and many benchmark datasets 
have been proposed in the context of biomedical graphs, especially derived from protein-protein interac-
tion, chemical, imaging data14–18. To the best of our knowledge, metabolic networks based on context- and 
patient-specific metabolic models have not been provided so far. To fill this gap, here, we provide the TumorMet 
repository. TumorMet contains two main sets of networks depending on the models from which they derive: 
Tissue-derived networks generated starting from tissue-specific models and PDGSMMs-derived networks 
obtained using Patient-Derived Genome-Scale Metabolic Models (PDGSMMs). The interesting implications 
of using the metabolic networks are twofold, from both a computational and biological perspective. Their com-
plexity in terms of nodes and connections, and the plasticity given by the multiple ways in which they can be 
generated, make them appealing for the proposal and validation of novel approaches in the context of compu-
tational graph-based research. In this work, we presented three alternatives, each focused on a specific set of 
metabolic players (i.e., metabolites, enzymes, and reactions). As demonstrated by19, reconstruction algorithms 
used to generate context-specific models present a bug which determines an underestimation of the molecular 
context. The model’s conversion into a network allows further contextualization by integrating context-specific 
data. Being aware that the networks we generated for TumorMet are just a portion of the possibilities, we pro-
vided the Met2Graph package to give the user the freedom to build the networks depending on specific needs. 
Met2Graph indeed implements a flexible process flow to build the metabolic graphs, can be easily integrated 
with user-customized functions, and provides several arguments to personalize the networks. Some of the net-
works in this dataset were used for assessing graphs classification, clustering, and embedding20–23, as well as 
for multimodal data analysis24,25, demonstrating their benefits. An exciting field of biological network usage is 
also represented by the application of node classification approaches aimed at predicting the essential genes, 
namely those genes crucial for an organism’s viability. Usually, the Protein-Protein Interaction (PPI) networks 
are exploited to this extent, based on the assumption that the topological centrality is correlated to a functional 
centrality. As hypothesized in26, one of the reasons why the PPI are the most used networks for this purpose 
could be their abundance compared to the other types, such as Metabolic networks, highlighting the importance 
of providing network datasets. Still, only physical interactions, additionally not contextualized, are insufficient 
to represent the genetic connections’ complexity27. Modern biology extensively uses networks to integrate and 
analyze data in a way in which organisms, tissues, or cells are considered systems. This perspective gives a cru-
cial role to the connections among biological components, and the network-based analyses are exploited for 
making relevant biological inferences. The central role of metabolism in different aspects of pathophysiological 
mechanisms and their tune regulation make these networks particularly interesting for extracting knowledge 
and making predictions. For example, the analysis of hub nodes28 and the comparison of topological proper-
ties between different context-specific networks29 are valuable resources in diagnostic and prognostic markers 
investigation for precision medicine. Along with the data, we also provide an R package, Met2Graph, to create 
metabolic graphs starting from GSMs and gene expression data. The package can generate three types of graphs, 
depending on the desired nodes and edges: Metabolites-based graphs, where metabolites are nodes connected 
by reactant-product relationships and the edges can be weighted by expression values of the enzymes catalyzing 
the corresponding reactions; Enzymes-based graphs, where enzymes are nodes that are connected if they cata-
lyze two reactions, each producing and consuming a specific metabolite; and Reactions-based graphs, with reac-
tions as nodes connected if the metabolite produced by one is consumed by the other. TumorMet is deposited  
at figshare repository30 and the Met2Graph package used to generate it is available at the Met2Graph Github 
repository (https://github.com/cds-group/Met2Graph).

Methods
The metabolism involves several players, and focusing on one or another influences the type of analysis and the 
knowledge that can be extracted. The metabolites and the enzymes represent the main molecular components. 
A biochemical reaction is a transformation process that uses/consumes some metabolites (reactants) to produce 
new ones (products). The enzymes can facilitate these transformations as they are particular proteins having cat-
alytic activity and the ability to speed up the rate of a reaction binding the substrate by a lock-key or induced-fit 
model. Not all the reactions are catalyzed by enzymes, as some of them can occur spontaneously. The enzymes 
are selective; this means that one binds specifically one or few substrates and, consequently, can catalyze one or 
more reactions, while the same reaction can be catalyzed by more enzymes acting as complex or as mutually 
exclusive catalyzers. This information is crucial in defining the rules to design a metabolic network since the 
connections between the metabolic players can be multiple and of different nature when involving the enzymes. 
In order to manage this issue, we defined some simplification strategies when enzymes represent edges and give 
rise to multiple connections (as in the case of Metabolites-based networks) and a different consideration of com-
plex and mutually exclusive relationships when enzymes represent the nodes (as in the case of Enzymes-based 
networks). Further details are provided below in the network construction sections. The repository we provide 
contains different types of metabolic networks, depending on the nodes and the rules behind the connections: 
Metabolites-, Enzymes- and Reactions-based networks. A graphical overview of the metabolic networks con-
struction is provided in Fig. 1.

Metabolic models.  Tissue-specific GSMs for 5 of the different origin sites of cancer (lung, kidney, brain, 
ovary, prostate)31 and breast cancer INIT model32 were downloaded from the Metabolic Atlas repository (http://
www.metabolicatlas.org) in the compressed Systems Biology Markup Language (SBML) format33 to create the 
Metabolites-based graphs. PDGSMMs from the Biomodels repository (https://www.ebi.ac.uk/biomodels/
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pdgsmm/) have been downloaded to generate Metabolites-, Enzymes- and Reactions-based_PDGSMMs graphs 
for each patient. The Gene-Protein-Reaction (GPR) relationships were extracted from version 1.4.1 of the human 
generic GSM (https://github.com/SysBioChalmers/Human-GEM/tree/master/model).

Gene expression data.  Gene expression data from 6 different tumor primary sites were used to create 
context-specific Metabolites-based metabolic networks. FPKM (fragments per kilobase per million reads 
mapped) normalized and log-transformed read counts from RNA sequencing experiments of the breast 
(TCGA-BRCA), lung (TCGA-LUAD and TCGA-LUSC), kidney (TCGA-KIRC and TCGA-KIRP), brain 
(TCGA-GBM and TCGA-LGG), ovary (TCGA-OV), and prostate (TCGA-PRAD) cancers were obtained from 
the Genomic Data Commons (GDC) data portal (https://portal.gdc.cancer.gov). GDC includes several cancer 
projects, among which The Cancer Genome Atlas (TCGA), which we selected to download the data. Each of them 
represents a dataset of the repository. Clinical annotations of the samples were also extracted from the database 
and included in each dataset as sample-sheets.

Metabolites-based_tissue networks construction.  The metabolites are the nodes of the network, labe-
led by the corresponding ID, connected if they are involved in the same reaction, one as a reactant and one as a 
product. The connections have been created using the information from the relative context-specific metabolic 
model. Recurrent metabolites (e.g, ATP, CO2, H2O) have been removed to avoid redundant connections and 
unrealistic definition of paths34. The small molecules such as H2O, NH3, O2, CO2, phosphate, and cofactors are 
generally considered recurrent metabolites. The recurrent metabolites list we used is provided as external data 
of the package Met2Graph; the argument rmMets can be set to FALSE to avoid removal, or the list can obviously 
be personalized by the user. The GPR associations have been derived from the generic human GSM. Each edge 
is labeled by the Ensembl stable ID (in the form of ENS[species prefix][feature type prefix][a unique eleven-digit 
number]) of the enzyme/s catalyzing the reaction, when present, and weighted by the expression value/s of the 
corresponding gene/s obtained by the GDC Portal. Each resulting graph corresponds to a specific sample of 

Fig. 1  Overview of the Metabolic networks construction. The context-specific GSMs used in this study derive 
from the human generic GSM through the integration of tissue-specific multi-omics data (tissue-specific GSMs 
from Human Metabolic Atlas) or by integration of TCGA transcriptomics data (PDGSMMs from Biomodels). 
The context-specific GSMs carrying information about biochemical reactions are the input to create the 
context-specific metabolic networks of the TumorMet repository. Metabolites-based_tissue networks are 
generated by integrating TCGA gene/enzyme-expression data into the tissue-specific GSMs to weight the edges 
represented by enzymes connecting two metabolites. Networks of different patients have the same structure 
with different edge weights depending on patient expression profile. Enzymes-, Reactions and Metabolites-
based_PDGSMMs networks are created from PDGSMMs and have enzymes/reactions as nodes connected 
by metabolites or metabolites as nodes connected by enzymes. Networks of different patients have different 
structures and no weights.
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the GDC tumor dataset considered. These rules create graphs where a couple of nodes can have multiple edges 
since multiple enzymes are involved in the same reaction and/or because the same nodes pair can be present in 
different reactions. Multiple edges have been simplified by averaging the expression values of enzymes acting in 
the same reaction and then summing up these averages corresponding to different reactions with the same nodes 
pair. Thus, all the graphs resulting from the same metabolic model have the same number of nodes and edges but 
different edge weights. The networks are then personalized for each patient by using the expression values and as 
a consequence, the gene context mentioned by19 is met. Based on the rules defining the edges, these networks are 
directed. The properties of these networks are summarized in Table 1.

Metabolites-based_PDGSMMs networks construction.  The logic behind the generation of 
Metabolites-based_PDGSMMs networks is the same as that of the networks derived from tissue models described 
in the previous paragraph, with the only difference that here each patient-specific network is derived from the 
corresponding PDGSMM downloaded from the BioModels repository. The edges are weighted using the patient’s 
gene expression data from the GDC repository. Therefore, each patient-specific network has a different structure 
and different edge weights. These graphs are directed and weighted. The properties of these networks are sum-
marized in Table 2a.

Enzymes-based_PDGSMMs networks construction.  These networks have enzymes as nodes con-
nected if one catalyzes a reaction producing a metabolite consumed in a reaction catalyzed by the other. The 
recurring metabolites have also here been removed. According to the GPR, the enzymes involved in each reaction 
are associated by AND or OR logical relationship, indicating an enzymatic complex or an alternative activity, 
respectively. Based on this, enzymes related by AND have been considered as a single node, while OR relation-
ships have been split into different nodes. To create patient-specific networks, PDGSMMs have been used as 
starting models for Metabolites-, Enzymes-, and Reactions-based_PDGSMMs datasets and downloaded from the 
BioModels repository. Each sample graph has then a different structure deriving from a different model. These 
graphs are directed and not weighted. The properties of these networks are summarized in Table 2b.

Reactions-based_PDGSMMs networks construction.  The rules behind these networks are similar to 
those of Enzymes-based networks, with the difference of having reactions as nodes, connected if one produces 
a metabolite consumed by the other. Recurring metabolites have been removed as well. To have sample-specific 
graphs also in this case we used the PDGSMMs from Biomodels. The resulting graphs are unweighted and 
directed, and each sample has a different structure determined by the different starting models. The properties of 
these networks are summarized in Table 2c.

Simplified networks construction.  Given the complexity and the size of these networks, we also pro-
vided a set of Metabolites-based sub-networks of a subset of kidney and lung samples, simplified according to the 
approach described in21. Briefly, central nodes have been selected by the Eigen centrality score, a measure describ-
ing the importance of a node in a graph that depends on that of its neighbors. The classification tests performed 
to demonstrate the reliability of these sub-networks compared to the whole networks gave comparable accuracy 
results (see Tables 3 and 4 in21). For each tissue, two sets of networks with a different number (#) of resulting 
nodes are provided. The properties of these networks, forming the Simpl-Kidney-# and Simpl-Lung-# datasets, 
are summarized in Tables 3 and 4.

Classification.  Metabolites-based_tissue datasets.  In previous works, we have demonstrated the utility of 
the network datasets in classification and clustering tasks using subsets of some of the Metabolites-based graph 

Kidney Lung Brain Breast Ovary Prostate

# Graphs 928 1135 702 1217 379 551

# Vertices 4034 3990 3922 3394 3827 3939

# Edges 9210 9058 8914 6548 8533 8747

Edge density 0.000566 0.00056 0.00058 0.00057 0.00058 0.00056

Avg. network degree 4.56 4.54 4.54 3.86 4.46 4.44

Edge weights √ √ √ √ √ √

Assortativity degree −0.038 −0.035 −0.034 −0.049 −0.027 −0.03

Global transitivity 0.12 0.13 0.13 0.053 0.135 0.132

Avg. local transitivity 0.14 0.14 0.15 0.13 0.14 0.15

Minimum diameter 134.75 134.15 143.41 141.43 131.15 146.73

Maximum diameter 243.08 206.47 200.47 236.41 188.13 225.4

Table 1.  Properties of the Metabolites-based networks derived from tissue models. For each tissue dataset 
(along the columns), we report the number of graphs (first row) and the corresponding networks topological 
properties, such as the number of vertices and edges, edge density, average network degree, eventual presence 
of edge weights, assortativity degree, global transitivity, average local transitivity, minimum and maximum 
diameter (second through and eleventh rows). Observe that, for each tissue dataset, Metabolites-based networks 
share the same network structure, and thus topological properties, for all the samples since they derive from the 
same tissue metabolic model personalized with gene expression values.
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datasets now included in the TumorMet repository20,21,35–37. Here, we extend to the entire repository the usage 
validation introduced in20, wherein we classify whole graphs sharing the same set of nodes. The basic idea is to 
1) represent each graph of a dataset using probability distributions describing the topological properties of each 
node; 2) extract the distance matrix (Gram matrix), i.e., the symmetric square matrix containing the distances, 
taken pairwise, between the networks of the dataset; and 3) classify the networks based on the obtained distance 
vectors.

	 1.	 Based on the performance results achieved in20,21,35–37, here we selected the Transition Matrix of order one 
rT  for representing each graph rG , whose generic element Ti j

r
,  is the probability of a node i to be reached 

in one step by a random walker located in node j. Each row Ti
r of this matrix includes local information on 

the connectivity of node i.
	 2.	 For computing the distance between two networks Gp and Gq, we selected the network distance:

Kidney Lung Brain Breast Ovary Prostate

(a) Properties of the Metabolites-based networks from PDGSMMs

# Graphs 737 829 138 920 295 470

# Vertices 2679.05 ± 316.11 2619.5 ± 310.49 2634.49 ± 277.2 2576 ± 303.92 2576.93 ± 307.47 2676.14 ± 300.88

# Edges 6121.64 ± 839.57 6008.53 ± 908.15 6074.34 ± 783.77 5870.26 ± 841.16 5729.2 ± 837.64 5799.38 ± 769.08

Edge density 0.00086 ± 0.000009 0.0009 ± 0.0000009 0.0009 ± 0.0000009 0.0009 ± 0.0001 0.00087 ± 0.0001 0.0008 ± 0.000009

Avg. network degree 4.56 ± 0.23 4.57 ± 0.3 4.6 ± 0.28 4.54 ± 0.28 4.44 ± 0.29 4.33 ± 0.27

Edge weights ✓ ✓ ✓ ✓ ✓ ✓

Assortativity degree −0.01 ± 0.02 0.006 ± 0.029 −0.004 ± 0.033 0.012 ± 0.031 −0.008 ± 0.034 −0.018 ± 0.03

Global transitivity 0.16 ± 0.02 0.17 ± 0.026 0.16 ± 0.03 0.17 ± 0.029 0.14 ± 0.035 0.12 ± 0.035

Avg. local transitivity 0.12 ± 0.02 0.12 ± 0.02 0.12 ± 0.02 0.12 ± 0.02 0.11 ± 0.021 0.11 ± 0.02

Minimum diameter 134.8 134.01 140.76 118.44 120.84 145.97

Maximum diameter 302.7 241.72 217.06 255.8 211.24 282.75

(b) Properties of the Enzymes-based networks from PDGSMMs

# Graphs 737 829 138 920 295 470

# Vertices 1941.256 ± 300.92 1859.76 ± 317.84 1911.35 ± 274.35 1846.58 ± 305.48 1859.98 ± 309.68 1934.25 ± 266.7

# Edges 63906.79 ± 18916.49 59341.79 ± 20947.88 63485.08 ± 17933.19 59530.08 ± 19744.67 59316.15 ± 202888.06 63922 ± 16898.25

Edge density 0.016 ± 0.002 0.016 ± 0.002 0.07 ± 0.002 0.016 ± 0.002 0.016 ± 0.002 0.016 ± 0.002

Avg. network degree 63.8 ± 14.16 61.23 ± 16.3 64.63 ± 14.07 62.15 ± 15.67 61.39 ± 15.86 64.49 ± 13.05

Edge weights x x x x x x

Assortativity degree 0.25 ± 0.04 0.25 ± 0.04 0.25 ± 0.04 0.26 ± 0.04 0.24 ± 0.046 0.25 ± 0.038

Global transitivity 0.18 ± 0.04 0.19 ± 0.046 0.18 ± 0.039 0.19 ± 0.046 0.19 ± 0.047 0.18 ± 0.035

Avg. local transitivity 0.29 ± 0.018 0.3 ± 0.02 0.03 ± 0.018 0.3 ± 0.02 0.298 ± 0.02 0.29 ± 0.015

Minimum diameter 14 13 13 14 13 14

Maximum diameter 34 36 28 33 35 30

(c) Properties of the Reactions-based networks from PDGSMMs

# Graphs 737 829 138 920 295 470

# Vertices 3578.24 ± 595.037 3511.46 ± 637.32 3560.4 ± 543.41 3431.28 ± 591.12 3327.51 ± 582.49 3398 ± 527.44

# Edges 54823.89 ± 16130.9 60808.68 ± 19146.22 60137 ± 17749 59467 ± 18330 49776.08 ± 17158.5 46345.11 ± 14345.88

Edge density 0.0043 ± 0.0008 0.0048 ± 0.0007 0.004 ± 0.00085 0.0049 ± 0.00086 0.004 ± 0.00092 0.004 ± 0.0008

Avg. network degree 30.2 ± 6.13 33.74 ± 7.05 33.17 ± 7.1 33.9 ± 7.17 29.3 ± 6.96 26.91 ± 5.79

Edge weights x x x x x x

Assortativity degree 0.027 ± 0.016 0.052 ± 0.18 0.023 ± 0.15 0.048 ± 0.17 0.065 ± 0.2 0.06 ± 0.17

Global transitivity 0.028 ± 0.015 0.038 ± 0.017 0.037 ± 0.016 0.038 ± 0.017 0.028 ± 0.016 0.024 ± 0.013

Avg. local transitivity 0.038 ± 0.006 0.04 ± 0.006 0.043 ± 0.0059 0.04 ± 0.006 0.04 ± 0.006 0.04 ± 0.006

Minimum diameter 48 48 48 48 48 49

Maximum diameter 103 113 97 104 102 101

Table 2.  For each tissue dataset of the Metabolites- (a), Enzymes- (b), and Reactions-based_PDGSMMs (c) 
networks (along the columns), we report the number of graphs (first row) and the corresponding networks 
topological properties, such as the number of vertices and edges, edge density, average network degree, eventual 
presence of edge weights, assortativity degree, global transitivity, average local transitivity, minimum and 
maximum diameter (second through and eleventh rows). Observe that each network derived from PDGSMMs 
and corresponding to each patient sample has a different structure since the starting models are patient-specific 
(see Paragraphs on Metabolites-, Enzymes-, and Reactions-based PDGSMM networks). Therefore, values for 
network properties are reported as average ± standard deviation across all the networks of each dataset.
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obtained by averaging over all the l graph nodes the Jensen-Shannon distances dJS of the probability distri-
butions of their nodes38.

	 3.	 For classification, we considered the primary tumor classes described in Table 6. In particular, for Kidney, 
Lung, and Brain, the Primary-Tumor diagnoses indicated in the GDC sample metadata file, downloaded 
along with the gene expression files, have been used to label the samples and fulfill the classification task. 
For Breast, the 5 subtypes have been derived from the PAM50 classification39. As the Normal-like subtype 
has only 40 samples and is very similar to the Luminal A subtype, we performed the tests both including 
(Breast_5cl) and excluding (Breast_4cl) this class. For Prostate, as having only one class of diagnosis, the 
Gleason pattern score, an indicator of different grades of malignancy, has been used. Among the possible 
four classes (Pattern from 2 to 5), we excluded the Pattern 2 class (not shown in Table 6), as it is made of 
only one sample. Moreover, we considered two different classification problems: the Prostate1 case, that 
aims at discriminating the Pattern 3 samples (199) from the Pattern 4 ones (249); and the Prostate2 case, 
that consists in discriminating the Pattern 3 samples from the samples being assigned to Pattern either 4 
or 5 (289). For Ovary, the subtype assignment of High-Grade Serous Ovarian Cancer (HGSOC) has been 
taken from40.

Metabolites-, Enzymes-, and Reactions-based_PDGSMMs datasets.  The graph2vec framework41 is a neural 
method for learning graph-level embeddings in an unsupervised manner. It describes nodes through a recursive 
node relabeling algorithm assigning to each node a label uniquely representing its rooted subgraph (neighbor-
hood). These labels form a vocabulary of words, and graphs are represented in the form of documents. Then, the 
Distributed Bag of Words doc2vec approach42 is used to learn the graph (document) embeddings. The perfor-
mance has been evaluated by means of a stratified 10-fold Cross-Validation (CV) in which a SVM classifier, with 

Simpl-
Kidney-441

Simpl-
Kidney-1034

Simpl-
Lung-312

Simpl-
Lung-1017

# Graphs 299 299 337 337

# Vertices 441 1034 312 1017

# Edges 1585 3226 1090 3102

Edge density 0.0163 0.006 0.022 0.006

Avg. network degree 7.18 6.24 6.98 6.1

Edge weights ✓ ✓ ✓ ✓

Assortativity degree −0.22 −0.13 −0.11 −0.12

Global transitivity 0.3 0.21 0.45 0.23

Avg. local transitivity 0.23 0.22 0.29 0.22

Minimum diameter 15.52 125.99 16.88 79.7

Maximum diameter 39.37 455.36 32.14 267.6

Table 3.  Properties of the Simplified Networks. See the caption of Table 1 for details.

Kidney Lung Brain

Cases 822 Cases 1025 Cases 666

Kidney Renal Papillary 
cell carcinoma (KIRP) 288 Adenocarcinoma (LUAD) 524

Glioblastoma 
multiforme 
(GBM)

155

Kidney Renal Clear 
cell carcinoma (KIRC) 534 Squamous cell carcinoma (LUSC) 501 Lower grade 

glioma (LGG) 511

Breast Ovary Prostate

Cases 1085 Cases 290 Cases 497

High-grade serous ovarian 
cancers subtypes40 Gleason score

Basal-like 192 Differentiated 75 Pattern 3 199

HER2-enriched 82 Mesenchymal 75 Pattern 4 249

Luminal A 564 Proliferative 75 Pattern 5 49

Luminal B 207 Immunoreactive 65

Normal-like 40

Table 4.  Classes per dataset for usage validation of Metabolites-based networks through classification. Only 
primary tumors have been selected.
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a linear kernel, was applied to train and make predictions on 64-sized vectorizations of graphs (embeddings) 
produced by graph2vec with a recursive depth of 3 and a training duration of 200 epochs. The class labels used 
for the classification task are specified in Table 5.

Data Records
The network files and associated metadata composing the repository TumorMet are available at figshare repos-
itory30. The file TumorMet-repository.pdf summarizes the content of the repository. For easy access 
to the files, the repository is organized into seven datasets, each in a separate folder, representing the six tumor 
tissues and the simplified networks (i.e., Prostate, Lung, Kidney, Breast, Ovary, Brain, and Simplified networks). 
In each main tissue dataset folder, the sample-sheet file reporting the sample metadata as downloaded from 
GDC (i.e. Sample sheet.tsv) and an excel file reporting the correspondences between PDGSMM ids 
and TCGA ids (Dictionary_ids.xlsx) are provided. Each tissue dataset folder contains subfolders 
for the different types of networks, namely Metabolites-, Enzymes-, and Reactions-based, compressed in.zip 
format. The Metabolites-based folder is further subdivided into folders containing the Metabolites-based 
networks deriving from tissue models (Metabolites-based_tissue) and BioModels PDGSMMs 
(Metabolites-based_PDGSMMs). Enzymes- and Reactions-based networks are only derived from 
PDGSMMs. Simplified networks are provided for Kidney and Lung tissues. Each tissue folder contains the 
sample-sheet file reporting the sample metadata as downloaded from GDC (i.e., Sample sheet.tsv) and 
two subfolders for the networks files based on the number of nodes retained after the simplification process (for 
Kidney eigen_simplified_441_nodes and eigen_simplified_1034_nodes; for Lung eigen_
simplified_312_nodes and eigen_simplified_1017_nodes). All the network files are provided in 
GraphML format. GraphML is a flexible and convenient XML format for storing network information. It sup-
ports unweighted, weighted, undirected, and directed networks and allows for the definition of node and edge 
attributes (http://graphml.graphdrawing.org/). A scheme of the repository content is illustrated in Fig. 2, while 
a summary of the networks features in terms of starting material and number of networks is provided in Table 6.

Technical Validation
Our validation process consisted of data-type and structural validation, as well as usage validation through 
downstream applications.

Data-type and structural validation.  The quality of the original data used to generate the networks is 
given by the reliability of the data sources repositories, i.e., GDC, Human Metabolic Atlas, and BioModels. Node 
IDs were verified to be of the same type. All edges were verified to be between nodes in the node list. All attribute 
data were verified to correspond to an existing node or edge. The structural integrity of the networks has been 

Kidney Lung

Cases 737 829

Classes
KIRC 484 LUAD 429

KIRP 253 LUSC 400

Table 5.  Classes of PDGSMMs used to accomplish the classification task of Kidney and Lung PDGSMMs 
derived networks.

Fig. 2  Scheme of the content of the TumorMet repository.
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assessed by removing self-loops. Any duplicate edges were also removed. We further checked that nodes with no 
edges were not present in the networks.

Usage validation.  The tumor metabolic networks can be exploited in several downstream applications, 
ranging from pure network analysis to multi-level integration with other biological networks or data, to machine 
and deep learning approaches for unraveling the complex metabolic machinery and its role in precision medicine. 
In this section, we show the usage of TumorMet networks in classification of tumor samples, thus giving an idea 
of one of their potential applications. To furnish a baseline for comparing methods and approaches, we give sev-
eral details of the two different workflows used for Metabolites-based networks derived from tissue models and 
Metabolites-, Enzymes-, Reactions-based networks derived from PDGSMMs.

Metabolites-based_tissue datasets.  For the evaluation of classification performance, i) each of the 
Metabolites-based datasets was subdivided into a training and a test set; ii) a statistical validation was obtained 
on the training sets using a 10-fold CV, to ensure that the results were not biased to a specific training subset; iii) 
finally, the classification performance on the test datasets was evaluated using the models built on the training 
datasets.

	 i).	 In the case of Kidney, Lung, Breast, and Brain tissue datasets, the choice of the training sets was driven 
by our previous work36, where subsets of these datasets were already adopted for classification. Therefore, 
those subsets have been adopted here as training sets, while the newly added samples were assigned to the 
test sets. For the tissues not used previously (Ovary and Prostate), we obtained the training and test sets by 
using a 70:30 split ratio. The sample partitioning for each tissue is reported in Supplementary Table 1, while 
Figs. 3–4 provide the t-distributed Stochastic Neighbor Embedding (t-SNE) plots for the test sets.

	ii).	 For the statistical validation on the training sets, the data were min-max normalized and a Support Vector 
Machine (SVM) classifier with linear kernel was adopted using the libsvm implementation43 available in 
scikit-learn44. The one-vs.-rest strategy was used to classify the multi-class datasets. To account for unbal-
anced datasets, the “balanced” mode in sklearn was used to set the class weights; this parameter penalizes 
the wrong prediction of the classes having a number of instances lower than the others. The 10-fold CV on 

Type of network Data used to build the networks Number of networks

Kidney

Metabolites-based_tissue • Tissue-Specific Model - Kidney
• TCGA-KIRC & TCGA-KIRP GE

928:
607 TCGA-KIRC
321 TCGA-KIRP

Metabolites-, Enzymes-, 
Reactions-based_PDGSMMs

• PDGSMMs from TCGA-KIRC & TCGA-KIRP
• TCGA-KIRC & TCGA-KIRP GE (only for Metabolites-based)

737:
484 TCGA-KIRC
253 TCGA-KIRP

Simplified • Tissue-Specific Model - Kidney
• TCGA-KIRC & TCGA-KIRP GE

299 for each simplification:
193 TCGA-KIRC
106 TCGA-KIRP

Lung

Metabolites-based_tissue • Tissue-Specific Model - Lung
• TCGA-LUAD & TCGA-LUSC GE

1135:
585 TCGA-KIRC
550 TCGA-KIRP

Metabolites-, Enzymes-, 
Reactions-based_PDGSMMs

• PDGSMMs from TCGA-LUAD & TCGA-LUSC
• TCGA-LUAD & TCGA-LUSC GE (only for Metabolites-based)

829:
429 TCGA-LUAD
400 TCGA-LUSC

Simplified • Tissue-Specific Model - Lung
• TCGA-LUAD & TCGA-LUSC GE

337 for each simplification:
174 TCGA-LUAD
163-TCGA-LUSC

Brain
Metabolites-based_tissue • Tissue-Specific Model - Brain

• TCGA-GBM & TCGA-LGG GE
702:
173 TCGA-GBM
529 TCGA-LGG

Metabolites-, Enzymes-, 
Reactions-based_PDGSMMs

• PDGSMMs from TCGA-GBM
• TCGA-GBM GE (only for Metabolites-based) 138 TCGA-GBM

Breast
Metabolites-based_tissue • INIT Cancer Model - Breast TCGA-BRCA GE 1217 TCGA-BRCA

Metabolites-, Enzymes-, 
Reactions-based_PDGSMMs

• PDGSMMs from TCGA-BRCA
• TCGA-BRCA GE (only for Metabolites-based) 920 TCGA-BRCA

Ovary
Metabolites-based_tissue

• Tissue-Specific Model - Ovary
379 TCGA-OV

• TCGA-OV GE

Metabolites-, Enzymes-, 
Reactions-based_PDGSMMs

• PDGSMMs from TCGA-OV
• TCGA-OV GE (only for Metabolites-based) 295 TCGA-OV

Prostate
Metabolites-based_tissue • Tissue-Specific Model - Prostate

• TCGA-PRAD GE 551 TCGA-PRAD

Metabolites-, Enzymes-, 
Reactions-based_PDGSMMs

• PDGSMMs from TCGA-PRAD
• TCGA-PRAD GE (only for Metabolites-based) 470 TCGA-PRAD

Table 6.  Networks provided in the TumorMet repository. For each tumor tissue: the type of networks, the 
data used to generate the networks in terms of metabolic models and Gene Expression (GE) data from TCGA 
projects, and the number of networks, eventually subdivided by TCGA project ID. Observe that in the case of 
PDGSMMs derived networks, only for Metabolites-based_PDGSMM networks the GE data have been used to 
weight the edges.
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the training datasets was repeated 10 times, and the average of the CV scores are reported in Table 9 (top); 
these scores are also shown in the form of box plots in Fig. 5.

	iii).	 The classification performance on the test sets was computed using the same SVM classifier learned on the 
training sets. The obtained results are reported in Table 9 (bottom). Kidney, Lung and Brain graphs are well 
classified, as shown by accuracy scores both in CV on training sets and using new samples as testing data 
(Table 9 and Figs. 3, 5). More challenging tasks are instead given by the classification of Breast, Ovary and 
Prostate samples.

Regarding Breast, the inclusion of the Normal-like subtype into the classification does not dramatically 
change the results; however, compared to the tissues mentioned above, the results are worse, having an accuracy 
of around 80%. Looking at the t-SNE plots (Fig. 4a,b), it is evident how the Basal is the best discriminated and 
most homogeneous subtype, while some samples of Luminal A, Luminal B, and Her2 are overlapped, especially 
the latter two. Normal-like samples, as expected, are difficult to separate from Luminal A ones. Ovary samples 
are completely overlapping (Fig. 3d) and lead to poor accuracy percentage (around 70%, as reported in Table 9). 
Finally, the CV scores reported in Table 9 (top) and plotted in Fig. 5c, as well as the test samples validation results 
reported in Table 9 (bottom), indicate that Prostate samples are generally poorly discriminated and the results 
are slightly better for the Prostate2 classification task (when the Gleason Pattern 5 is assimilated to Pattern 4). 
Prostate cancer is characterized by a high molecular heterogeneity45 which is evidently not caught considering 
only the Gleason score, as also highlighted by the t-SNE plots reported in Fig. 4c,d.

Fig. 3  t-SNE representations of the Gram matrices of the test sets of the Kidney (a), Lung (b), Brain (c), and 
Ovary (d) Metabolites-based_tissue datasets. The TSNE function of the sklearn.manifold library has been used 
to generate the plots.
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Metabolites-, Enzymes-, Reactions-based_PDGSMMs datasets.  As detailed in the Section on Metabolic net-
works construction, these PDGSMMs derived graphs differ from the Metabolites-based graphs in that they do 
not share a common set of nodes across all patients. Therefore, we decided to accomplish the classification task 
on these datasets through a whole-graph embedding framework. Classification results based on these embed-
dings using the class labels specified in Table 5 for the Kidney and Lung PDGSMMs derived network datasets 
are reported in Table 8.

It is evident that the performance for these types of networks is not as good as the one obtained with 
Metabolites-based graphs, but it is worth pointing out that the two approaches to the classification task are com-
pletely different due to the different nature of the networks. Enzymes- and Reactions-based networks are indeed 
not weighted and have different structures being generated from different models. The complexity and density 
of these networks surely require a deeper investigation of the best suitable approach and parameters tuning to 
discriminate the differences among the samples, which is not the aim of this paper. As mentioned previously, 
one of the interesting aspects of the metabolic networks is their plasticity since different types of graphs can be 
generated depending on the desired nodes and connections. In future work, we will consider generating unique 
tri-partite graph for each patient to investigate the possibility to reduce classification performance differences. 
As for the networks extracted from tissue-specific models, the Metabolites-based_PDGSMMs networks are 
weighted by gene expression values. Comparing weighted vs. non-weighted networks in terms of classification 
performance, it is evident that the weights do not add any crucial information for discriminating the classes 
(Table 9). These networks derive from PDGSMMs reconstructed through the tINIT algorithm integrating 
TCGA gene expression data. Adding expression values to edges is therefore redundant and likely the models 
are already well contextualized. Instead, the weights have a different role in Metabolites-based_tissue networks, 

Fig. 4  t-SNE representations of the Gram matrices of the test sets of the Breast_4cl (a), Breast_5cl (b), Prostate1 
(c), and Prostate2 (d) Metabolites-based_tissue datasets. The TSNE function of the sklearn.manifold library has 
been used to generate the plots.
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where are crucial for personalizing the networks in terms of patients. Furthermore, even if tested with different 
methods, the patients-specific Metabolites-based networks derived from tissue models seem to well contextual-
ize the tissue models in terms of patients resulting as more representative of the tumor classes and with a higher 
discriminative power, as highlighted by classification performances (Table 7).

Fig. 5  Classification scores on the Metabolites-based_tissue datasets. The box-plots show the classification 
scores obtained from the 10 iterations of the evaluation procedure on the training sets of the six Metabolites-
based_tissue datasets. (a–c) report Accuracy, Precision, Recall, and F1 as percentages; (d) reports MCC values.

# Classes

Kidney Lung Brain Breast_4cl Breast_5cl Ovary Prostate1 Prostate2

2 2 2 4 5 4 2 2

Cross-validation on training sets

# Samples 
per class 159/90 158/150 109/358 135/58/395/145 135/58/395/145/28 53/46/53/53 140/172 140/209

Accuracy 
avg % 92.80 ± 4.87 94.87 ± 3.68 95.83 ± 2.65 84.91 ± 4.15 81.02 ± 4.29 79.78 ± 7.79 71.83 ± 8.17 75.086.17

Precision 
avg % 91.97 ± 5.5 94.94 ± 3.85 93.63 ± 4.69 81.60 ± 4.99 72.30 ± 6.6 79.83 ± 8.57 72.23 ± 8.32 74.84 ± 6.11

Recall avg % 92.99 ± 5.1 94.95 ± 3.54 95.23 ± 3.57 85.93 ± 5.36 78.55 ± 7.3 79.93 ± 8.86 72.25 ± 8.22 75.99 ± 6.39

F1 avg % 92.12 ± 5.3 94.74 ± 3.83 94.15 ± 3.76 82.66 ± 4.76 73.36 ± 6.11 78.09 ± 8.83 71.14 ± 8.41 74.31 ± 6.35

MCC avg 0.85 ± 0.1 0.90 ± 0.07 0.89 ± 0.07 0.77 ± 0.06 0.73 ± 0.06 0.73 ± 0.1 0.44 ± 0.16 0.51 ± 0.12

Test samples validation

# Samples 
per class 375/198 366/351 46/511 57/24/169/62 57/24/169/62/12 22/19/22/22 59/77 59/89

Accuracy % 97.03 93.72 91.00 85.26 83.64 70.59 73.53 73.00

Precision % 96.40 93.72 85.92 80.62 74.46 73.49 73.63 72.60

Recall % 97.13 93.72 93.36 83.99 81.83 70.33 74.05 73.53

F1% 96.75 93.72 88.56 82.02 77.48 71.05 73.44 72.57

MCC 0.94 0.87 0.79 0.77 0.76 0.61 0.48 0.46

Table 7.  Classification scores on Metabolites-based_tissue datasets. Top: CV on training sets; Bottom: 
Validation on test sets.
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Usage Notes
The networks presented here have been generated using the Met2Graph R package we developed (see the par-
agraph on “Code availability”). The model in SBML format is imported and read by the Met2Graph package 
through the function readSBMLmod from the sybilSBML46 package. Several checkpoints are included in 
the function to validate the model object before importing it, such as check of upper and lower bounds, GPR 
mapping, reactions’ ids, and presence of list of reactants and products. The code snippets of Listings 1–4 show 
Met2Graph functions and arguments used to obtain the different networks:

Listing 1 Metabolites-based_tissue networks.

Listing 2 Metabolites-based_PDGSMMs networks.

Listing 3 Enzymes-based_PDGSMMs networks.

Kidney Lung

Enzymes-based_
PDGSMMs

Reactions-based_
PDGSMMs

Enzymes-based_
PDGSMMs

Reactions-based_
PDGSMMs

# Classes 2 2 2 2

# Samples per class 484/253 484/253 429/400 429/400

Accuracy avg % 78.97 ± 5.15 83.44 ± 4.32 78.17 ± 2.89 77.93 ± 2.62

Precision avg % 77.35 ± 6.00 81.99 ± 4.91 78.57 ± 2.69 78.36 ± 2.44

Recall avg % 75.72 ± 5.36 81.16 ± 5.00 78.00 ± 3.04 77.83 ± 2.75

F1 avg % 76.18 ± 5.42 81.39 ± 4.94 78.05 ± 3.04 77.76 ± 2.75

MCC avg 0.53 ± 0.11 0.63 ± 0.10 0.57 ± 0.06 0.56 ± 0.05

Table 8.  Classification scores on Enzymes- and Reactions-based_PDGSMMs Kidney and Lung datasets.

Metabolites-based_PDGSMMs Kidney

# Classes 2

# Samples per class 484/253

weighted unweighted

Accuracy avg % 83.45 ± 4.58 85.48 ± 3.12

Precision avg % 82.28 ± 5.13 84.43 ± 3.71

Recall avg % 80.87 ± 4.82 82.99 ± 3.36

F1 avg % 81.32 ± 5.08 83.59 ± 3.47

MCC avg 0.63 ± 0.10 0.67 ± 0.07

Table 9.  Classification scores on weighted and unweighted Metabolites-based_PDGSMMs networks of Kidney 
samples.
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Listing 4 Reactions-based_PDGSMMs networks.

There are several open-source network libraries that can be used to analyze and visualize the networks pro-
vided in GraphML format. Examples of network analysis and visualization software include NetworkX, igraph, 
Cytoscape, yEd and Gephi.

Code availability
The R package Met2Graph developed and used to generate the TumorMet datasets is publicly available at the 
Met2Graph Github repository (https://github.com/cds-group/Met2Graph). The package has a detailed tutorial to 
generate the networks. Met2Graph implements a flexible process flow to build graphs starting from a GSM and 
can be easily integrated with user-customized functions. It allows the creation of the three different types of graphs 
described, based on the selection of nodes, edges, and attributes: Metabolites-, Enzymes- and Reactions-based 
graphs. It allows integrating gene expression data into Metabolites-based graphs. It provides several options and 
parameters to customize the resulting graphs. To name a few: to create multiple or simplified edges (simplification 
is possible using three different methods), to remove recurring metabolites, to consider the double direction in 
case of reversible reactions, to generate graphs as directed or not, and to plot the networks. All the details and the 
different arguments are described in the package manual and “help” section of the related functions.

The code to compute the distribution based distance measures and to obtain the simplified networks is also 
available at the GraphDistances Github repository (https://github.com/cds-group/GraphDistances).
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