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Abstract: Statistical features extraction from bearing fault signals requires a substantial level of
knowledge and domain expertise. Furthermore, existing feature extraction techniques are mostly
confined to selective feature extraction methods namely, time-domain, frequency-domain, or time-
frequency domain statistical parameters. Vibration signals of bearing fault are highly non-linear
and non-stationary making it cumbersome to extract relevant information for existing methodolo-
gies. This process even became more complicated when the bearing operates at variable speeds
and load conditions. To address these challenges, this study develops an autonomous diagnostic
system that combines signal-to-image transformation techniques for multi-domain information with
convolutional neural network (CNN)-aided multitask learning (MTL). To address variable operating
conditions, a composite color image is created by fusing information from multi-domains, such as
the raw time-domain signal, the spectrum of the time-domain signal, and the envelope spectrum of
the time-frequency analysis. This 2-D composite image, named multi-domain fusion-based vibration
imaging (MDFVI), is highly effective in generating a unique pattern even with variable speeds and
loads. Following that, these MDFVI images are fed to the proposed MTL-based CNN architecture to
identify faults in variable speed and health conditions concurrently. The proposed method is tested
on two benchmark datasets from the bearing experiment. The experimental results suggested that
the proposed method outperformed state-of-the-arts in both datasets.

Keywords: bearing; deep learning; fault diagnosis; multi-task learning; variable operating conditions;
vibration imaging

1. Introduction

Rotating machinery has become faster and more intelligent in recent years due to
rapid innovation, and plays an increasingly vital role in many industries [1,2]. With this
growth in popularity, maintenance procedures are necessary due to the critical nature of
several vulnerabilities [3,4]. Rolling element bearings are the most critical components
of rotating machinery. Severe working environments, alternative load conditions, and
several other factors contribute to the failure of rolling element components of bearing
which resulted in massive economic losses and fatalities [5]. Therefore, during the past
few decades, industries have acknowledged the significance of establishing practical and
dependable condition monitoring systems to address these concerns [6]. However, the
acquired vibration signals from these bearings are non-stationary and non-linear in nature
due to differences in clearance, friction, loads, and speed. Therefore, directly extracting
significant feature information from those signals, or employing time and/or frequency
domain-based analysis, is difficult [7]. As a result, developing a novel and effective
method for monitoring the condition of bearings has become a difficult and worthwhile
challenge [8,9].
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Vibration technologies have become an increasingly popular approach in the devel-
opment of a diagnostic framework for rolling bearings over the past few years [10,11].
Therefore, a tremendous amount of effort has been put into analyzing vibration signals
to identify the health characteristics of rolling bearings. For instance, Zheng et al. [12]
proposed a diagnostic feature formation technique by ensemble empirical mode decom-
position, with dispersion entropy. After that, the Gath-Geva clustering method was used
to perform the diagnostic task. In [13], Ali et al. presented a feature extraction method
based on empirical mode and energy entropy using an artificial neural network (ANN).
Thus, the features information is extracted from the signals by statistical analysis, and
then those features are classified with the help of machine-learning-based frameworks.
However, most of the existing literature considers automated feature extraction procedures
to augment the manual statistical analysis. Shao et al. [14] analyzed the frequency domain
using Fourier transforms. After that, the Boltzmann machine was used to extract the feature
information automatically. Likewise, Wang et al. [15] constructed a deep belief network
(DBN)-based diagnostic model by incorporating spectrum-based features. Most researchers
in this literature attempted to explore the health features of bearings by analyzing the time
domain or frequency domain, making it extremely difficult to obtain invariant feature
information such as the speed and load conditions varied [16]. However, numerous time-
frequency based analyses have been proposed to address these issues. In [17], Sohaib et al.
proposed a hybrid feature model with machine learning to automate the diagnostic process.
However, for automatic feature extraction, this method is primarily focused on the analysis
of one-dimensional acceleration signals [18]. Even though these methods have a bigger
impact on the diagnostic framework, they can miss much of the crucial information [19].
Additionally, the above-discussed preprocessing methods are sometimes complex to build
due to the necessity of proper domain expertise and may not be able to generalize the prob-
lem statement for various working conditions [20]. Fortunately, these deep learning-based
diagnostic approaches improved previously prominent statistical feature-based diagnostic
approaches [20]. As a result, several studies have been conducted to develop automatic
feature extractor-based deep algorithms, which is a newly recognized research direction.
The primary goal of these domain-dependent autonomous diagnostic systems is to create a
trustworthy feature extractor that can extract different features from input data [21]. In [1],
Mao et al. proposed a deep auto-encoder method based on fusing discriminant information
for imbalanced data. Likewise, in [22] Xingqiu et al. introduced an optimal ensemble deep
transfer network to automate the diagnosis process. Zhang et al. [23] proposed an attention
mechanism to extract the features in a more reliable way by using deep learning. However,
these methods have two key deficiencies: (a) They do not combine complete invariant
domain knowledge with deep structures to construct a diagnostic framework that can be
explained; and (b) they do not recognize numerous scenarios (e.g., fault types, bearing
speed) at the same time.

To address the aforementioned shortcomings, an automatic diagnostic framework has
been developed by considering knowledge from the time, frequency, and time-frequency
domains, which can identify multiple health conditions (i.e., health types and bearing speed)
at the same time in this paper. For preprocessing, the consideration of the time-, frequency-,
and time-frequency- domains in parallel allows a multi-domain input to be built that
confirmed reducing the possibility of information missing obtained from the non-stationary
and non-linear vibration signals [16]. Thus, in this study, the raw time-domain signals,
FFT-based frequency domain signals, and envelope analysis from the time-frequency
signal are fused to generate a two-dimensional multi-domain fusion-based vibration image
(MDFVI). Following that, a multi-task learning (MTL)-based deep architecture is developed
for automatic diagnostic, which aids in the learning of many tasks simultaneously. MTL
saves storage space and training time by using a shared model rather than a distinct model
for each task [24]. The main objective of this special type of transfer learning (TL)-based
diagnostic framework [25] is to increase the performance of all the involved tasks with
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the same input at the same time [25]. The contributions of this study are summarized
as follows:

(1) To address variable operating conditions, a composite color image is created by fusing
information from multi-domains, such as the raw time-domain signal, the spectrum of
time-domain signal, and the envelope spectrum of the time-frequency analysis. This
2-D composite image, named multi-domain fusion-based vibration imaging (MDFVI),
is highly effective to generate a unique pattern even with variable speeds and loads.

(2) The developed MDFVI images are further applied as inputs to the CNN-aided MTL
network for automatic feature extraction and classification. The proposed network is
capable of extracting features in parallel from the time-domain, the frequency-domain,
and the time-frequency domain. Additionally, it is capable of predicting variable
operating conditions simultaneously: (a) rotating speed and (b) fault types. As a
result, multitasking capabilities for bearing fault diagnosis architecture are enabled.

(3) The proposed method is tested on two benchmark datasets from the bearing experi-
ment. The experimental results suggested that the proposed method outperformed
state-of-the-arts in both datasets.

The rest of the manuscript is organized as follows: Section 2 discusses the technical
basis of FFT, envelope analysis, CNN, and MTL networks while Section 3 presents the pro-
posed methodology, Section 4 discusses the experimental analysis, and Section 5 provides
the concluding remarks of the paper.

2. Technical Background

This section presents the technical background of signal processing techniques, convo-
lutional neural networks, and the basics of multi-task learning.

2.1. Fast-Fourier Transform (FFT)

The signals of the rolling element bearings are non-linear and non-stationary in na-
ture [26]. For this observed phenomenon, there are hidden periodicities in the signal
structure, which carry additional information. FFT is an algorithm for computing the N
point discrete Fourier transform (DFT). The N-point DFT can be expressed as:
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∑

n=0
xne

−i2πpn
N

=

N
2 −1
∑
g

x(2g)e
−i2πpg

N
2 + e

−i2πp
N

N
2 −1
∑
h

x(2h+1)e
−i2πkh

N
2

= X( N
2 )

0 (p) + e
−i2πp

N X1
( N

2 )(p)

(1)

where p = 0, 1, 2, . . . , N − 1 and g, h = 0, 1, 2, . . . , N
2 − 1. In addition to that, X( N

2 )
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Here, p = 0, 1, 2, . . . , N
2 − 1. Thus, instead of N complex multiplication, we can

derive the frequency domain information from signal with N
2 multiplications. So, the
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computational complexity becomes O(N log N). Therefore, by preserving the original
amplitude and phase information, a fast Fourier transform (FFT) can process these vibration
signals, severing them into their single sinusoidal oscillations at specific frequencies [27].

2.2. Envelope Analysis

When a localized fault in a rolling element bearing occurs, it interacts with another sur-
face in the bearing each time it is loaded [28]. Vibrations are emitted as a result. Therefore,
the generated periodic impulses excite many bearing resonances as well as the neighboring
structure [29]. Consequently, extracting incipient information just from the frequency do-
main of a signal can be quite challenging. Therefore, an amplitude demodulation technique
called envelope analysis is considered for extracting useful feature information from the
vibration signals. To perform this analysis, it is necessary to extract the diagnostic informa-
tion from the sample signal. Fortunately, the Hilbert transform demodulation technique
can fabricate the analytic signal from the given sample signal to extract that information.
The Hilbert transform of the real component is the imaginary factor of this analytic signal,
which is a complex temporal signal. According to the following equation, the envelope e(t)
of a signal x(t) is defined mathematically as the magnitude of the analytic signal.

e(t) =
√

x(t)2 + x̂(t)2 (5)

In Equation (5), x̂(t) refers to the Hilbert transformation of the signal [28,29]. Because
the bearing vibration signal is non-stationary and non-linear, Hilbert transform-based
envelope analysis is used in this study to extract relevant information from the time-
frequency domain.

2.3. Convolution Neural Network (CNN)

A convolutional neural architecture with an input layer, several convolutions and
pooling layers, multiple fully connected layers, and one output layer is a feedforward
network with the benefit of automatic feature information learning and overfitting problem
handling [30,31]. Furthermore, several optimization techniques, such as global pooling,
dropout, and batch normalization, are frequently incorporated with the fundamental
architecture of a CNN to improve the diagnostic performance [32–34]. Deep architectures
are often trained using two main principles, as shown in Figure 1, namely (1) forward
propagation and (2) backward propagation. The design usually seeks to extract spatial
information from the input across the anticipated layers during the forward propagation
step. During the backward propagation stage, the network attempts to alter internal
parameters based on the determined objective function [35]. The main goal of these
architectures is to minimize the objective function [36]. It is also worth mentioning that
when it comes to deep learning-based designs, there is no hard and fast rule for establishing
the optimal number of layers. The overall number of layers is determined using a train-test
process that is dependent on the input data type.

2.3.1. Forward Propagation

The convolution layers try to learn abstract features from the input in this step. By
learning input properties with varied sizes of convolution kernels, this layer maintains the
association between pixels in the input data [37]. An activation function is used in general
to improve these convolved features, in addition to the added weights and bias factors [35].
The following equation can be used to describe the entire procedure:

xm
n = f

(
∑

i∈Kn

xm−1
i ∗ wm

in + bm
n

)
(6)
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Figure 1. The basic design of a convolutional neural network.

In Equation (6), xm
n is the mth component of layer n, kn is the nth convolution region

of the m− 1 layer feature map, wm
in is the weight matrix, and bm

n is the added bias. After
calculating the overall operation’s sum, as described in Equation (6), a non-linear activation
function f called a Leaky RELU is used on it.

A pooling layer is used directly after the convolution layer to (a) remove redundancy
from the retrieved features of the previous layer and (b) to reduce the number of training
parameters. In this study, maxpooling is used as the pooling layer [38], which can achieve
the maximum value of the convolutional output xm

n as follows:

xm
n = f

(
wm

n ∗max(xm−1
n ) + bm

n

)
(7)

This layer is placed right after the convolution layer discussed in the previous por-
tion. Here, the output xm

n of the convolution layer is down sampled. wm
in and bm

n are the
weights and bias matrices respectively. In Equation (7), max

(
xm−1

n
)

denotes the described
maxpooling function to reduce the dimensions of the attained convoluted feature maps.

Finally, numerous convolutions and pooling layers are stacked together to boost the
depth of the network design. As a result, the final completely connected layer can extract
the output category from the input. Typically, numerous fully connected layers are added
one after another until the final one, which changes the output matrix in the filter to a
column or row [39]. The final fully connected layer can be expressed by the following
Equation (8):

yz = f
(

wzxz−1 + bz
)

(8)

Here, f is the activation function that produces the probabilistic output from the input
in Equation (8). w and b denote the weights and bias respectively. SoftMax is used as the
final activation function in this study [39].
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2.3.2. Backward Propagation

The objective function is determined when the forward propagation is complete to
obtain the input sample’s target. This objective function is commonly referred to as a loss
function. The entire procedure’s main goal is to lower the loss function between the target
and actual output. The cross-entropy loss function is used in this work [35] and can be
expressed as follows:

E =
1
n

n

∑
z=1

[yz ln yz + (1− yz) ln(1− yz)] (9)

Here, yz and yz are the actual target and predictive value of the zth sample, respectively.
During the training procedure, the stochastic gradient descent approach is used to minimize
the loss function. Due to the high computational cost of the dataset, it is not possible to train
the neural network with the entire dataset at the same time [40]. Therefore, the entire dataset
is divided into several smaller chunks, which are known as batches. Thus, to feed the
complete dataset one-time, multiple batches are required. This process is called an epoch.
To minimize the loss function by avoiding overfitting and underfitting problems, several
epochs are fed to the network architecture to complete the total training process [31,40].

2.4. Multi-Task Learning with CNN

Multi-task learning (MTL) is a special case of transfer learning (TL) [25,41]. TL refers
to the idea of transferrable knowledge. The key idea behind TL is to share the knowl-
edge learned from a specific task with a different but relevant task. According to this
principle, the main tasks in TL are generally very similar in nature, enabling the perfor-
mance of the targeted tasks to be improved by sharing the trained model architecture and
parameters [31,42]. Inductive learning and fine-tuned-based learning are the most suitable
examples of TL [37]. Instead of sharing the model architecture separately, MTL network
allows one single shared model for all the relevant tasks. Thus, MTL shares the model ar-
chitecture with the trainable parameters among the relevant tasks and tries to minimize one
objective function finally to generalize the model architecture [24]. Additionally, it helps to
decrease the training times and reduce the storage space [43]. In this study, CNN-based
MTL is used to develop the proposed diagnostic framework. This CNN-based framework
simulates manifold tasks by communally learning transferable representations and task
relationships [24]. The following equations express the idea of MTL:

{xt, yt}T
t=1, where

 xt =
{

xt
1, . . . , xt

p

}
yt =

{
yt

1, . . . , yt
p

} (10)

yt
n = ft

(
xt

n
)

(11)

In Equation (10), {xt, yt}T
t=1 refers to the pair of training samples from the original

task T, where xt refers to the individual training input, and yt refers to the corresponding
output. p is the total number of samples present in the training dataset. The goal is to
provide a diagnostic framework based on CNN for a variety of tasks yt

n for understanding
and exchanging transferable factors in order to connect various tasks competently and
actively. The essential principle of MTL is depicted in Figure 2 for visual comprehension.
MTL-CNN is proposed in this paper for diagnostic purposes.
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3. Proposed Methodology

The main purpose of this study is to determine the health statuses of rolling element
bearings under changing speed settings. The suggested framework is depicted in Figure 3.
As depicted in Figure 3, in the proposed framework, there are two main steps, i.e., (1) multi-
domain fusion-based vibration imaging as the preprocessing step (MDFVI), and (2) multi-
task based neural architecture (MTL-CNN) for performing the diagnostic analysis.
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3.1. Multi-Domain Fusion Based Vibration Imaging (MDFVI)

Data preprocessing is a significant stage in a neural network-based diagnostic frame-
work [44,45]. This process is challenging mainly for the following reasons: (a) the large
volume of samples in the considered dataset, and (b) multiple features associated with the
data. As a result, a lot of time is spent creating training samples that are highly dependent
on the various operating conditions.

In this study, an efficient and speedy data preprocessing strategy based on increas-
ing the characteristics of vibration signals under variable speed conditions is devised for
signal-to-image conversion. The feature information is addressed in three domains in
this suggested approach: (a) time domain, (b) frequency domain, and (c) time-frequency
domain. Because the signal is non-stationary, neither the time domain nor the frequency do-
main can capture the signal’s changes [46]. Though the time-frequency domain can depict
the changing of frequencies over time from non-stationary signals, it is dependent on ideal
window selection procedures to find the appropriate time and frequency resolution [47].
To handle these issues, in this framework, the feature information is captured from three
domains for generalizing the feature space of an individual health condition. Figure 4
illustrates the whole process. The raw vibration signals are first split into smaller por-
tions, as seen in Figure 4 with a length 16,384 based on an overlapping window technique.
Following that, (a) the time-domain information is extracted directly from the vibration
signal, (b) the frequency information is extracted by FFT, and (c) the time-frequency in-
formation is extracted via envelope analysis. Later, each type of information from the
considered domains (time, frequency, and time-frequency) is converted into a 2D image
with a length of 128× 128. Furthermore, these 2D images are converted into grayscale
images. Finally, the gray-scale photos are combined to create the final MDFVI image, which
has dimensions of 128× 128× 3. If 2D, time-domain grayscale image is represented as
v(t), 2D frequency-domain grayscale image as v f , and 2D grayscale envelop information to
capture time-frequency information as v̂(t), the MDFVI image can be expressed as follows:

MDFVI = v(t) + v f + v̂(t) (12)

where, v(t), v f , and v̂(t) are considered as red, green, and blue channel respectively. There
are no significant reasons for these types of RGB sequences. As we have considered
information from 3 domains, therefore, 3 information are considered as a color channel to
form the final MDFVI image to get the distinguished health patterns.

3.2. Multi-Task Learning-Based Diagnostic Framework

For evaluating the health states of rolling element bearings under variable speed
settings, the suggested MTL mechanism is based on CNN architecture. As depicted in
Figure 5, the MTL-CNN architecture has two portions, (1) the common feature extractor,
and (2) the task branches.

In the first portion, after the input is fed to the network, the spatial feature attributes
from MDFVI are extracted from the subsequent layers. This portion is composed of two
convolution layers and two max-pooling layers. Until this part, the network is learning the
common attributes from the provided input. After that, the task branches are introduced to
the proposed framework. The details of the layered architecture are depicted in Figure 5.
Moreover, Leaky ReLU is considered as the activation function of the fully connected layers
of both branches. On layers before the output layers for both tasks, L2 regularization of
0.05 is applied to prevent overfitting issues. There are no universally accepted guidelines
for determining the overall number of layers in a model architecture. As a result, for
the considered dataset, a generalized model has been constructed based on train-test
methodologies and existing literature surveys [31,48].
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3.3. Performance Evaluation Metrics

Several evaluation metrics are examined for each task for performance evaluation of
the proposed framework, i.e., (1) F1 score (F1), (2) average F1 score (aF1), (3) confusion
matrices [49], and (4) graph of loss functions. F1 and aF1 [50] can be obtained from the
following equations:

F1 =
2TP

2TP + FN + FP
(13)

aF1 =
∑ F1

Total_classes
(14)

The initials TP, FP, and FN in these equations stand for true positive, false positive,
and false negative, respectively. Total classes indicate the total number of health types
presented in the considered dataset. Furthermore, the entire loss of the model is recorded
up to the defined epoch to observe the network’s bias-variance trade-off. Furthermore,
the final feature space derived from the task branch is shown using t-stochastic neighbor
embedding to visualize the class separation for each task (t-SNE) [51]. Subsequently, to
remove the bias from the evaluation matrices, four-fold cross-validation [52] is performed
to obtain the results.
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4. Experimental Setup and Performance Analysis

The proposed framework is tested on two bearing datasets: (1) a self-designed testbed
and (2) a publicly accessible repository called the Case Western Reserve University (CWRU)
bearing data center [53]. Variable shaft speed and load conditions are evaluated for both
datasets to validate the superiority of our suggested technique.

4.1. Case Study 1: Self-Designed Test Rig
4.1.1. Experimental Setup and Dataset Description

Testing is conducted on a self-designed test rig. This rig is run at 300, 400, and
500 RPMs to obtain the vibration signal. The entire setup, as shown in Figures 6 and 7, is
made up of two shafts: a drive end shaft and a non-drive end shaft. To connect these two
shafts, a gearbox with a reduction ratio of 1.52:1 is used. A three-phase induction motor is
installed in the driving end shaft to collect data at three distinct motor speeds [54,55]. At
both shaft ends of the experimental testbed, a cylindrical bearing (type FAG-NJ206-E-TVP2)
is employed. A wide-band vibration sensor [56] with a sampling rate of 65536 Hz [54]
is used to collect vibration signals from the non-drive end shaft. Four types of health
conditions are used for conducting the experiments: normal type (NT), inner raceway type
(IRT), outer raceway type (ORT), and roller type (RT). The dataset’s specifics are presented
in Table 1.
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Table 1. Details about the working environment for case study 1.

Health Type Shaft Speed (rpm) Crack Size

Length (mm)

Dataset 1

NT

300

-

IRT 6

ORT 6

RT 6

Dataset 2

NT

400

-

IRT 6

ORT 6

RT 6

Dataset 3

NT

500

-

IRT 6

ORT 6

RT 6

4.1.2. Results and Performance Comparison

The obtained MDFVI images from the considered four working conditions are shown
in Figure 8. As can be seen in this diagram, each of the health kinds has its own set of
color differences. Thus, without the necessity of any noise reduction techniques, it helps
the proposed deep architecture to classify the health types. In these converted MDFVI
images, the subtle differences are very small and difficult to identify with the bare eye.
However, due to the color differences, visible distinctions can be observed. Fortunately, due
to the powerful capabilities of capturing smaller changes from images, deep learning-based
algorithms can help in these types of scenarios [31,57].
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Additionally, from the depicted Figure 8, the consistency of color components is
present in different speed conditions, which helps to establish the invariant scenarios
visually. As a result, the proposed MTL-CNN is fed these MDFVI images for final multi-
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class classification. The MTL-CNN architecture’s parameters are depicted in Figure 5. The
datasets considered are separated in the following ways to train and test the network.

As discussed in the previous section, on each dataset, the total number of recorded
signals is 800. Therefore, as listed in Table 2, a total of 1152 samples from all three datasets
are used for training the network with 288 samples used for validation purposes. The re-
maining 960 samples are used for testing the diagnostic performance for two task branches.
Furthermore, to eliminate bias, the above-mentioned data division is performed using an
equal number of samples from each health class. The model is trained for 3000 epochs to
validate the diagnostic performance. Besides, from Figure 9, the loss function graph can be
observed for the whole model. Figure 9a highlights the loss function for speed detection,
and Figure 9b shows the loss function for health type detection. Therefore, Figure 9c shows
the total loss of the model. Besides, for evaluating the diagnostic performance, initially, the
F1 and aF1 scores are considered from Equations (13) and (14). The diagnostic performance
of the two considered work tasks are listed in Table 3. The proposed technique was 100%
correct in almost every case, as shown in the table. Additionally, to make a better analysis
of the obtained results, the confusion matrix (Figure 10) and the last layer of the feature
space of each task are visualized by t-SNE (Figure 11). The diagnostic performance is
represented in the form of actual vs. projected deviation in the confusion matrix. The
proposed framework’s diagnostic performance will indeed be improved as a result of
these observations.

Table 2. The train, test, and validation dataset ratios.

Dataset
Train (60%)

Test (40%) Total Samples Sample/Health Type
Training (80%) Validation (20%)

1 384 96 320 800 200

2 384 96 320 800 200

3 384 96 320 800 200

Total 1152 288 960
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Table 3. Diagnostic performance of the dataset.

Tasks Conditions F1 (%) aF1 (%)

Task 1:
Speed detection

300 RPM 100

99.99400 RPM 99.99

500 RPM 100

Task 2:
Health type detection

NT 100

100
IRT 100

ORT 100

RT 100
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The planned MTL-CNN is compared to different deep learning-based methodologies
to determine the robustness of the proposed MTL-CNN-based diagnostic framework. These
approaches draw from several sources [37,58,59], and are adapted according to the similar
experimental setup as this case study. To compare the results of these methods, the af1
accuracy is employed. These techniques include the following:

(1) WC + MTL: Data are first converted into the 2D matrices of wavelet coefficient. Thus,
the identification of certain frequencies is captured both in the temporal, and spatial
domain [58]. Therefore, these preprocessed signals are fed into MTL-based deep
architectures [59].

(2) TFI + CNN: To construct the multi-fusion input, the input is converted into many
time-frequency images (TFI), which are then transferred to the MTL-CNN architecture,
which is based on the proposed CNN model taken from [37].

(3) GI + CNN: The input is transformed to 2D greyscale pictures (GI), which are then fed
into the MTL-CNN, which is based on the proposed CNN from [60].
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(4) VMD + MTL-CNN: To generate the multifusion input, each signal is decomposed
into a sequence of intrinsic mode functions using variational mode decomposition
and then channel wise joined [61]. Then, using the suggested MTL-CNN architecture,
those series of intrinsic mode functions are fusioned channel wise for classification.

The comparisons among these methods with the improvement details are listed in
Table 4. The results show that the suggested framework (MDFVI + MTL-CNN) outper-
formed three state-of-the-art approaches, with average performance improvements of
6.58–12.51% and 6.55–13.02% for Task 1 and Task 2, respectively. In addition to that, from
these results, we can claim that, for multidomain information fusion, the model can extract
more meaningful information automatically. Thus, it enables the simultaneous prediction
for speed and health type with a 99.99% accuracy.

Table 4. Comparison analysis for case study 1.

Methods Tasks aF1 (%) Improvement
(Proposed − Current)

WC + MTL
Task 1 91.21 99.99 − 91.21 = 8.78

Task 2 93.45 100 − 93.45 = 6.55

TFI + CNN
Task 1 93.41 99.99 − 93.41 = 6.58

Task 2 93.95 100 − 93.95 = 6.05

GI + CNN
Task 1 87.48 99.99 − 87.48 = 12.51

Task 2 86.92 100 − 86.92 = 13.08

VMD + MTL-CNN
Task 1 81.38 100 − 81.38 = 18.62

Task 2 80.52 100 − 80.52 = 19.48

Proposed Task 1 99.99 -

Task 2 100 -

The multi-domain fusion-based preprocessing approach examined in this work is con-
fined to single sensor data. However, multiple approaches have effectively demonstrated
multisensory data fusion in recent investigations. For instance, based on the belief diver-
gence of shreds of evidence and the belief entropy, Xiao et al. [62] presented a successful
fusion technique that is both practicable and effective in resolving conflicting evidence,
increasing the target’s belief value to 99.05%. Similarly, Shao et al. developed a defect
diagnostic technique based on multisensory fusion in [63]. For multisensory fusion, this ap-
proach proposes a stacked wavelet auto-encoder (SAE) with a Morlet wavelet. Additionally,
a variable weighted assignment technique for decision fusion is devised. On the gearbox
dataset, our approach displays state-of-the-art performance. These findings, however,
demonstrate the critical nature of multisensory fusion for condition-based monitoring.
As a result, we aim to use multisensory fusion technology for our next investigation in
order to collect all relevant data from all sensor locations. Therefore, the model becomes
more resilient and dependable. Additionally, several research have demonstrated effec-
tive attempts to enhance the pattern from multivariate time series. For example, Zhang
et al. [64] demonstrated the use of a tri-partition state alphabet-based sequential pattern
to generate a compact, understandable, and scalable pattern for multivariate time series.
As a result, these findings will be beneficial for future research in order to improve the
MDFVI’s conciseness. Furthermore, to extend the proposed MTL-CNN detection algorithm
in a unsupervised one, k-means clustering techniques [65] can be useful for identifying the
health cluster automatically as well.
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4.2. Case Study 2: Case Western Reserve University Dataset
4.2.1. Experimental Setup and Dataset Description

The vibration signals of the bearing are gathered from a public available reposi-
tory, provided by Case Western Reserve University [66]. The experimental testbed is
shown in Figure 12. The experimental setup consists of a 2-horsepower induction mo-
tor, a dynamometer, and a transducer, as shown in this diagram. With the help of the
housing-mounted accelerometer, the desired signals are acquired by the induction motor.
In addition, the dynamometer simulation considers a variety of motor loads. As a result,
there is a difference in the motor shaft speeds. An electro-discharge machine is also used
to manufacture the intentionally seeded defects on the driving end bearing. A sampling
frequency of 12 kilohertz is used to collect the signals (kHz). As in the last case study, four
types of health circumstances are used for conducting the experiments: NT, IRT, ORT, and
RT. The dataset’s details are listed in Table 5.
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4.2.2. Verification and Performance Comparison

After the signal segmentation, to analyze the diagnostic performance from four types
of health conditions, a total of 1000 signals (250 from each health type) are considered at
each RPM (1797, 1772, and 1750). Then, from every sample, the MDFVI images are attained
to feed to the proposed network. In a very similar way to the previous case study, 60% of
the dataset is used for training, and the remaining 40% is used for testing. Furthermore,
the MTL-CNN architecture’s parameters are kept the same as in the prior case study. The
following Table 6 shows the details of the data split. According to the previous explanation,
the model is also trained for 3000 epochs with four-fold cross-validation.

Table 6. The training, testing, and validation dataset ratios.

Dataset
Training (60%)

Testing (40%) Total Samples Sample/Health Type
Training (80%) Validation (20%)

1 480 120 400 1000 250

2 480 120 400 1000 250

3 480 120 400 1000 250

Total 1440 360 1200

For calculating the diagnostic performance, the F1 and aF1 scores are calculated from
Equations (13) and (14). The analytical performances are given in Table 7.

Table 7. Diagnostic performance of the CWRU dataset.

Tasks Conditions F1 (%) aF1 (%)

Task 1:
Speed detection

1797 RPM 100

1001772 RPM 100

1750 RPM 100

Task 2:
Health type detection

NT 100

100
IRT 100

ORT 100

RT 100

From these analyses, it can be ensured and validated that the proposed approach can
provide a reasonable state-of-the-art diagnostic performance. Furthermore, the achieved
100% accuracy in the entire considered scenario indicates the generalization ability of
the proposed approach. Similarly, as in the previous case study, to establish the gen-
eralization ability of this MTL-CNN-based diagnostic framework, the designed frame-
work is compared with these previously mentioned approaches, i.e., (1) WC + MTL [59],
(2) TFI + CNN [37], and (3) GI + CNN [60]. For these diagnostic frameworks, the prepro-
cessing details and the parameters are kept similar to those used in the previous case study.
The details of the comparisons are listed in Table 8.

For the CWRU dataset, the suggested framework (MDFVI + MTL-CNN) beat three
state-of-the-art approaches, delivering an average performance enhancement of 1.21–6.59%
and 1.87–6.45% for Task 1 and Task 2, respectively. Furthermore, the effects of noise on
diagnostic performance have been examined for easy replication using this freely available
dataset. Gaussian white noise with a signal-to-noise ratio (SNR) of 6 dB is introduced to
the testing samples to replicate data with additional background noise. Before being tested
on the simulated noisy data, all similar techniques, including the proposed one, are trained
on the original preprocessed input data. Figure 13 shows the diagnostic results. Due to the
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noisy dataset, the diagnostic performances of all the evaluated approaches have gone off,
according to this analysis. However, the proposed model outperforms the alternatives.

Table 8. Comparison of the diagnostic performance for case study 2.

Methods Tasks aF1 (%) Improvement
(Proposed − Reference Model)

WC + MTL
Task 1 96.21 100 − 96.21 = 3.79

Task 2 97.43 100 − 97.43 = 2.57

TFI + CNN
Task 1 98.79 100 − 98.79 = 1.21

Task 2 98.13 100 − 93.13 = 1.87

GI + CNN
Task 1 93.41 100 − 93.41 = 6.59

Task 2 93.55 100 − 93.55 = 6.45

Proposed Task 1 100 -

Task 2 100 -
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5. Conclusions

This study demonstrated an autonomous diagnostic system that combines signal-
to-image translation techniques for multi-domain information with convolutional neural
network-assisted multitask learning. One of primary objectives of this study is to manage
variable operating conditions such as varying loads and speeds. As a result, to accommo-
date changing operating conditions, a composite color image is created by fusing data from
many domains, including the raw time-domain signal, the time-domain signal’s spectrum,
and the time-frequency analysis’s envelope spectrum. This two-dimensional composite
picture technique, called multi-domain fusion-based vibration imaging (MDFVI), is partic-
ularly effective at creating a unique pattern independent of speed or load. Following that,
these MDFVI images are fed into the proposed MTL-based CNN architecture, which is
capable of accurately detecting flaws in changing speed and health conditions concurrently.
However, the proposed preprocessing method studied in this work is currently limited
to data from a single sensor. Additionally, the proposed framework is now constrained
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to the fixed resolution of MDFVI. As a result, we want to conduct our next experiment
using multisensory fusion technology in order to capture all essential data from all sensor
locations. Furthermore, future work will incorporate an adaptive time, frequency, and
time-frequency resolution when constructing a robust MDFVI as an input. As a result, the
model becomes more robust and reliable.
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