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Abstract
Reactome is a database of human biological pathways manually curated from the primary literature and peer-reviewed by experts. To evaluate
the utility of Reactome pathways for predicting functional consequences of genetic perturbations, we compared predictions of perturbation
effects based on Reactome pathways against published empirical observations. Ten cancer-relevant Reactome pathways, representing diverse
biological processes such as signal transduction, cell division, DNA repair and transcriptional regulation, were selected for testing. For each
pathway, root input nodes and key pathway outputs were defined. We then used pathway-diagram-derived logic graphs to predict, either by
inspection by biocurators or using a novel algorithm MP-BioPath, the effects of bidirectional perturbations (upregulation/activation or downreg-
ulation/inhibition) of single root inputs on the status of key outputs. These predictions were then compared to published empirical tests. In
total, 4968 test cases were analyzed across 10 pathways, of which 847 were supported by published empirical findings. Out of the 847 test
cases, curators’ predictions agreed with the experimental evidence in 670 and disagreed in 177 cases, resulting in ∼81% overall accuracy.
MP-BioPath predictions agreed with experimental evidence for 625 and disagreed for 222 test cases, resulting in ∼75% overall accuracy. The
expected accuracy of random guessing was 33%. Per-pathway accuracy did not correlate with the number of pathway edges nor the number
of pathway nodes but varied across pathways, ranging from 56% (curator)/44% (MP-BioPath) for ‘Mitotic G1 phase and G1/S transition’ to
100% (curator)/94% (MP-BioPath) for ‘RAF/MAP kinase cascade’. This study highlights the potential of pathway databases such as Reactome in
modeling genetic perturbations, promoting standardization of experimental pathway activity readout and supporting hypothesis-driven research
by revealing relationships between pathway inputs and outputs that have not yet been directly experimentally tested.

Database URL: www.reactome.org

Introduction
Reactome is a manually curated and peer-reviewed open-
source database of human biological pathways (1). The path-
way annotation process follows a deliberative procedure of
human curation, internal review and external peer review
steps to create accurate, unambiguous and auditable asser-
tions. Reactome curators and editors are PhD-level biologists
and biochemists with substantial wet lab experience. There-
fore, they are highly skilled in the critical assessment of
published experimental evidence and synthesis of scattered,
experimentally-derived knowledge into coherent biological
pathways. The process of manual curation is enhanced by
the participation of scientists who volunteer to add addi-
tional annotations to the pathways based on their domain
of expertise. Reactome’s internal review steps involve inde-
pendent checking of annotations for comprehensiveness and
consistency by curators and editors who were not involved in

the annotation process. Finally, Reactome’s peer review pro-
cess involves checking the pathway content for completeness,
accuracy and the absence of obvious bias by scientific domain
experts (2, 3). Reactome is updated and released quarterly.
Long-term curation goals and yearly curation priorities aim
to set a balance between adding new and updating existing
annotations (4).

In line with other manually curated biological databases
(5), the accuracy of Reactome’s annotations at the reaction
level is expected to be high due to manual expert curation,
peer review, and several manual and automated quality assur-
ance steps. However, despite heavy usage of Reactome by
the international research community for gene set enrich-
ment analysis and pathway/network analysis, the utility of
Reactome for predicting the functional effects of perturb-
ing pathway components has never been formally evalu-
ated. Here we present a study that compares Reactome
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Table 1. Ten cancer-relevant Reactome pathways from version 66 (V66) selected for evaluation of the predictive accuracy of Reactome pathways

Reactome
pathway
identifier Reactome pathway name

Selected root
inputs

Selected key
outputs

Test
cases

Test cases with
available published
evidence

Total number
of nodes

Total number
of edges

68875 Mitotic Prophase 12 11 264 26 262 273
69242 S Phase 11 9 198 25 409 437
69620 Cell Cycle Checkpoints 7 14 196 55 511 552
195721 Signaling by WNT 7 37 518 49 817 953
453279 Mitotic G1 phase and G1/S

transition
17 26 884 89 431 556

1227 986 Signaling by ERBB2 10 9 180 49 212 246
1257 604 PIP3 activates AKT signaling 16 14 448 200 781 1066
3700 989 Transcriptional Regulation by

TP53
18 51 1836 257 1106 1276

5673 001 RAF MAP kinase cascade 7 6 84 49 641 834
5693 567 HDR through Homologous

Recombination (HRR) or
Single Strand Annealing (SSA)

18 10 360 48 279 310

pathway diagram-based predictions of the effects of bidirec-
tional perturbations (upregulation/activation or downregula-
tion/inhibition) of pathway inputs on the activation state of
key pathway outputs against published empirical results using
a novel algorithm, MP-BioPath. For comparison, we also look
at the accuracy of curators’ perturbation effect predictions
using the same reference pathway diagrams applied to
MP-BioPath.

Materials and Methods
Reactome pathway selection
The central unit of annotation in Reactome is a reaction, a
biological event defined by a unique combination of inputs,
outputs, catalysts and regulators. A reaction in Reactome is
always supported by direct experimental evidence in a human
research model or inferred from an orthologous reaction
that is supported by direct experimental evidence in a model
organism (6). Reactions connected by shared inputs and out-
puts are grouped into causal chains to form biological path-
ways (2). These pathways are stored in a machine-readable
data structure and converted in an automated fashion into
human-readable pathway diagrams for display on the Reac-
tome website and associated tools.

To evaluate the predictive power of Reactome pathways,
we selected 10 cancer-relevant Reactome pathways from ver-
sion 66 (V66, June 29, 2018), representing an array of
biological processes such as signal transduction, cell divi-
sion, DNA repair and transcriptional regulation (Table 1).
These 10 pathways were selected because of their enrichment
for genes frequently mutated in large public breast, colorec-
tal and pancreatic genomic datasets (7), their curation status
(first published or revised within 20 Reactome release cycles
before V66) and the diversity of pathway structures, par-
ticipants and outcomes. Seventy-three additional pathways,
containing over 3500 unique genes, that were similarly
enriched for cancer driver genes were selected to optimize the
MP-BioPath tool, as described below.

Converting reactome pathways to logical networks
The 10 selected Reactome pathways were converted to logic
graph formats (from now on called Logical Networks) to
facilitate semi-automated pathway analysis (Supplementary

Figure S1 and Supplementary Table S2). The script used to
convert pathways stored in the Reactome database into Log-
ical Networks is available in GitHub (https://github.com/re
actome/Release/blob/master/scripts/reaction_logic_table.pl).
A detailed description of the conversion process is available
in the Supplementary Methods.

Logical Networks consist of input (I) and output (O) node
pairs and their connecting directed edges (described in Supple-
mentary Methods). Root inputs (RI) in Logical Networks are
input nodes (I) that never became outputs (O) in a pathway
(RI= I—O), while terminal outputs (TO) are output nodes
that never came to be inputs (TO=O—I). Curators used
Cytoscape (8) to visualize generated Logical Networks.

Selection of root input nodes and key pathway
outputs
We selected RI nodes to use for perturbation predictions by
intersecting the pathway gene set with the COSMIC database
Cancer Gene Census (CGC) list (9) to findwell-studied cancer-
related genes. On several occasions, we selected as RIs rel-
evant genes that were not part of the CGC (Supplementary
Table S1). If several CGC genes belonging to one protein
family were annotated as functionally interchangeable in a
Reactome pathway, the best experimentally characterized
gene was selected as the RI. Exceptions were made in the
case of the well-studied genes AKT2 and MDM4, which were
included alongside AKT1 and MDM2, respectively, and in
the case of KRAS, NRAS and HRAS, and BRAF and RAF1.
The category of molecules that RIs belonged to depended on
the pathway—they could be either proteins, mRNAs or genes
or some combination.

The selection of key outputs for each pathway was accom-
plished by finding all TO nodes indicative of pathway acti-
vation. TO nodes involved in negative feedback loops were
excluded. Occasionally, nonterminal output nodes commonly
used in biological assays to determine pathway activity were
included in the testing. Key outputs could be individual pro-
teins, mRNAs, small molecules, protein complexes, polymers,
sets or, rarely, reaction nodes, when a TO was a part of
a feedback loop. An example of RIs and key outputs is
shown in Fig. 1. All selected RIs and key outputs are listed
in Supplementary Table S1.

https://github.com/reactome/Release/blob/master/scripts/reaction_logic_table.pl
https://github.com/reactome/Release/blob/master/scripts/reaction_logic_table.pl
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Figure 1. Root inputs and key outputs selected for Reactome pathway ‘Signaling by ERBB2’. Root inputs are circled orange, with double border if they
are in Cancer Gene Census list. Key outputs are circled purple. If root inputs are not directly shown in the diagram they have been redrawn and
connected with the root complex/set.

Literature search
A manual search of the PubMed database was conducted
for each test case, using RI name, key output name and
perturbation type as keywords. Gene name synonyms were
included in the search. Search results were manually filtered
based on the abstract content, and full text and figures of
selected original research articles were inspected for relevant
experimental findings and author statements. Various exper-
imental designs and readouts were taken into account, as
listed in Supplementary Table S1. In total, 531 papers (one
paper was retracted after this study was completed, as indi-
cated in the table) contained citable experimental evidence
relevant for 847 test cases (the evidence from the retracted
paper was excluded) (Supplementary Table S1). Of these,
158 papers were previously cited by the Reactome database
in the context of the 10 selected pathways (Supplementary
Table S1). Reactome-cited papers were not excluded from
this study since these papers frequently contained the best
available mechanistic evidence, were approved as relevant by
external experts during Reactome peer review, and some-
times represented the only published experimental evidence
of perturbation effects available.

Curator-based prediction of perturbation effects
and inter-curator agreement
Inter-curator prediction agreement was determined between
three curators on 100 randomly selected test cases by calculat-
ing percent agreement and the Fleiss Kappa statistic. Random
selection of 100 test cases for inter-curator agreement deter-
mination was completed using Excel’s RAND function on 847
test cases with available literature evidence. Curators were
trained on a pathway that was not used in the study to nav-
igate Logical Networks in Cytoscape, apply the PathLinker
tool to identify paths between RI and key outputs in Reactome
Logical Networks, and predict effects of root input pertur-
bations on key outputs (upregulation, downregulation and
no change) as depicted in Supplementary Figure S2. Curators

were blinded to each other’s predictions. Percent agreement
and Fleiss’ Kappa were calculatedmanually in Excel and using
ReCal, an online tool (10, 11).

Each test case consisted of a unique combination of an
RI, RI perturbation (upregulation or downregulation), a key
output and the predicted change in the activity of the key
output node (upregulated activity, downregulated activity or
no change) based on the Logical Network relationships. To
predict the effects of a perturbation of the RI on the key out-
put state, three Reactome curators applied the following rules
(1): If an RI was connected with a key output through the
edges of exclusively positive polarity or an even number of
edges of negative polarity, the RI perturbation was predicted
to result in the key output perturbation of the same direction-
ality (Supplementary Figure S2A) (2); If a path from an RI to
a key output contained an odd number of edges of negative
polarity, the RI perturbation was predicted to result in the key
output perturbation in the opposite direction (Supplementary
Figure S2B) (3); If there was no path from an RI to a key out-
put, or if an RI was connected to a key output through two
paths of opposing polarity, the RI perturbation was predicted
to cause no perturbation in the key output (Supplementary
Figure S2C) (4). When an RI and a key output were connected
through more than two paths, the polarity of each individ-
ual path was determined and the polarity of the majority of
connecting paths was assigned as the combined polarity of
the RI-key output relationship (not shown). The PathLinker
Cytoscape app (12) was used to facilitate identification of all
paths between RI and key outputs in Logic Networks.

Predicting effects of root input perturbations
computationally
In order to computationally simulate the impact of perturba-
tions to RIs we developed a new computational algorithm,
MP-BioPath (https://github.com/OICR/mp-biopath), to auto-
mate predicting the impact of RI perturbations on key outputs
in Reactome pathways. This algorithm uses the Logical Net-
works to develop a non-linear mathematical model for each

https://github.com/OICR/mp-biopath
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of the pathways. A high-level description of the MP-BioPath
software can be found in the Supplementary Methods.

MP-BioPath’s mathematical model uses continuous values
instead of discrete states, which is applicable to a diverse set of
biological use cases. Values for each node can range between
0.01 and 100, where 1 represents an unperturbed (normal)
activity of the node, 0.01 represents a 100 times decreased
activity compared to normal and 100 represents 100 times
increase of the normal activity amount.

Input nodes are related to output nodes via non-linear
equations that take into account the logic and polarity of
connecting edges. When inputs are connected to the output
with positive polarity edges of AND logic, input node values
are multiplied to determine the output node value. When an
input is connected to the output with a negative polarity edge,
a reciprocal value of the input is used in the multiplication
equation. When inputs are connected to the output with edges
of OR logic, the value of the output node is calculated as an
arithmetic average of the values of input nodes. In this way,
the value of each input node is considered when computing
the value of the output node.

The resulting system of equations is aggregated into a sin-
gle optimization model for each pathway in order to calculate
the magnitude and direction of the change of all nodes in
the pathway that result from fixing the values for the known
input perturbations. As it is possible for circumstances to arise
where there is no solution to the system of equations based on
the known inputs, flexibility is built into the model by hav-
ing two values for each node: x̄ and x. In general, x̄ is used
as the input value to the equations and x is used as the out-
put value. The optimization model minimizes the difference
between these two values. Although minimizing the square
distance would spread the remaining disagreement across all
nodes involved, the algorithm does not do this in the interest
of reducing run time (Figure 2).

MP-BioPath emits continuous values for the activity level
of key outputs. In order to compare these values to literature-
based perturbation experiments we needed to discretize these
values to upregulation, downregulation, and no change. To
establish appropriate cutoffs, we evaluated a range of cut-
off values against curator-generated predictions across 18 539
test cases from 73 Reactome pathways (Supplementary Table
S4).

Treating the curator predictions as the ground truth, we
evaluated cutoffs between 1% and 99% in 5% increments
in order to construct an ROC curve and determine the accu-
racy, sensitivity, specificity, precision, false discovery rate
(FDR) and F1 score at each cutoff (Figure 3). The F1 value
was maximal for the cutoff of 15%. Therefore, upregula-
tion/downregulation of 15% or more was used as the cutoff
when converting MP-BioPath-computed change levels to dis-
crete values for 847 test cases with published experimental
evidence.

Comparison of curator and computational
predictions with published results
In total, 4968 test cases were analyzed over 10 pathways.
Results of test cases for which experimental evidence was
available were recorded and organized into a confusion
matrix. Concordant test cases were scored either as true pos-
itives (TP) or true negatives (TN). A TP value was assigned

when both Logical Networks and experimental evidence sup-
ported upregulation or downregulation of a key output as
a consequence of an input perturbation. A TN value was
assigned when the Logical Networks and experimental evi-
dence supported no effect of an input perturbation on a key
output. Discordant test cases were scored as either false neg-
atives (FN) or false positives (FP). An FN value was assigned
when, based on the Logical Networks, an input perturba-
tion was predicted to not affect an output, but experimental
evidence demonstrated that the output was affected. An FP
value was assigned when, based on the Logical Networks,
an input perturbation was predicted to affect the output,
but experimental evidence showed that the output was not
affected.

As perturbations were bidirectional, a special case of
FP was a false positive-wrong direction (FP-WD). An FP-
WD value was assigned when, from the Logical Net-
works, an input perturbation was predicted to affect the
output in the opposite direction from the experimental
evidence (e.g. the pathway Logical Network-based predic-
tion was that the output would be downregulated, while
experimental evidence demonstrated upregulation of the
output).

The resulting confusion matrix was used to calculate the
average sensitivity and accuracy of Reactome pathway anno-
tations. The comparison of accuracy, sensitivity, and speci-
ficity between curator-based vs. MP-BioPath based predic-
tions on 847 test cases with published experimental results
was done by running the Mann–Whitney test using the online
tool Social Science Statistics (13).

Results
Characteristics of selected pathways and test cases
The 10 selected pathways, representing more than 1000
unique genes, ranged in size from 212 nodes and 246 edges
(Signaling by ERBB2) to 1106 nodes and 1276 edges (Tran-
scriptional Regulation by TP53), while the number of test
cases per pathway ranged from 84 to 1836 (Table 1). Some
nodes and edges appear in more than one pathway (Supple-
mentary Table S2) for a total of 4136 unique nodes, 5308
unique edges and 4968 test cases spanning 10 pathways. The
number of edges between RIs and key outputs (path length)
ranged from 1 to 46, with the majority of test cases falling
into the distance range of 4–17 edges (Supplementary Figure
S3). Published experimental evidence was available for 847 of
these test cases. Long paths (>20 edges) between RIs and key
outputs were significantly more prevalent among test cases
for which published experimental evidence was not available
(Supplementary Figure S4). The availability of experimental
evidence for test cases in different pathways varied, ranging
from 10 to 60%. This range is explained in part by the type of
key outputs used as a readout of pathway activity and by the
interconnectedness of the pathway with other biological pro-
cesses. For example, key pathway outputs representing gene
expression or protein phosphorylation are more amenable
to experimental testing than the formation of large protein
complexes or supramolecular structures, while pathways such
as PI3K/AKT signaling and RAS/RAF/MAP kinase signaling,
which lie downstream of many growth factor signaling path-
ways, are subject to more extensive experimental exploration
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Figure 2. Optimization Model for inferring perturbation impact on pathway nodes. The top is the parameters available in the model, followed by the
non-linear model itself and then by the fixed parameter values.

as they are used as readouts for the activity of upstream
pathways.

Of the 4968 test cases, one-half of perturbations (2484)
represented upregulation and the remainder represented
downregulation. Among the 847 test cases supported by pub-
lished experimental evidence, 54% of RI perturbations repre-
sented downregulation, while 46% represented upregulation.
In contrast, RI upregulation was slightly more frequent than
downregulation among 4121 test cases with no supporting
experimental evidence (51% and 49%, respectively). This
is consistent with the observation that experimental studies
preferentially use a loss-of-function approach to determine
the roles of genes and their protein products, as previously
reviewed (14).

With respect to the status of key pathway outputs in 4968
test cases, perturbations of RIs were predicted to result in
the upregulation of key pathway outputs in 1332 test cases
(27%), downregulation in 1334 cases (27%), and to have no
effect in 2302 cases (46%). No effect of RI perturbation on
the key output status was expected when there was no path
between an RI and a key output in Logical Networks (90%
of cases) or when a negative feedback loop existed between
an RI and a key output (10% of curator-predicted no-effect

cases). While a plurality (46%) of the total test cases were
predicted to have no effect on key outputs, just 161 (19%)
of the 847 test cases with experimental evidence were ones
predicted to have no effect, presumably reflecting the well-
documented bias towards positive results in the published
literature (15, 16).

Inter-curator agreement
Tomeasure inter-curator agreement on predicted perturbation
effects, we randomly selected 100 test cases covering all 10
pathways as listed in Supplementary Table S3. Complete
agreement was achieved on 81/100 predictions and there were
no cases in which all three curators disagreed (Supplemen-
tary Table S3). The average pairwise percent agreement was
87.3%, with the Fleiss’ Kappa of 0.8 and the average pair-
wise Cohen’s Kappa of 0.801 (Table 2). The Kappa value of
0.8 is in the range of substantial agreement (0.61–0.8) and
is approaching the range of almost perfect agreement (0.81–
1.00). When comparing three curator pairs, the highest agree-
ment (97%, Cohen’s Kappa of 0.952) was achieved between
the two curators who had a more extensive experience with
the Logical Networks and the pathway content, as they were
involved in the selection of key pathway outputs and in
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Figure 3. The relationship between MP-BioPath sensitivity (true positive rate, TPR) and false positive rate (FPR) at different cutoffs.

researching literature for relevant experimental evidence for
the 4968 test cases.

As the inter-curator agreement was substantial, we divided
the workload of predicting the outcome of RI perturba-
tions across the remaining 747 test cases among cura-
tors. We similarly divided the workload for prediction of
effects for the 18 539 test cases across 73 pathways used
to evaluate MP-BioPath cutoffs as described in the next
section.

Concordance of Reactome pathway-based
perturbation effect predictions with published
experimental evidence
Of the 847 test cases with experimental evidence, curator pre-
dictions based on Logical Networks agreed with published
evidence in 670 cases (81% concordance), while MP-BioPath
predictions were concordant with the published evidence in
625 test cases (75% concordance) (Table 3; Supplementary
Table S1). The average sensitivity of curator-generated and
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Table 2. Summary of inter-curator agreement results

Number of testers Number of cases Number of decisions

3 100 300

Percent agreement
Testers 1&3 pairwise
agreement

Testers 1&2 pairwise
agreement

Testers 2&3 pairwise
agreement

81% 84% 97%
Average pairwise
percent agreement

87.333%

Fleiss’ Kappa
Observed agreement Expected agreement Fleiss’ Kappa
0.873 0.367 0.8

Cohen’s Kappa (CK)
Testers 1&3 pairwise
CK

Testers 1&2
pairwise CK

Testers 2&3
pairwise CK

0.703 0.749 0.952
Average pairwise CK 0.801

MP-BioPath-generated predictions was 85% and 78%, the
average specificity 70% and 62% and the average preci-
sion 92% and 88%, respectively. However, these values
varied considerably across pathways. The prediction accu-
racy for the 10 selected pathways ranged from 56% to
100% for curators and from 44% to 94% for MP-BioPath.
The most accurate predictions were for the 49 test cases with
experimental evidence derived from the ‘RAF/MAP kinase
cascade’, which had no false positives or negatives among
curator-based predictions, and had three false positives and no
false negatives among MP-BioPath-based predictions, achiev-
ing 100% and 94% accuracy respectively. The worst per-
formance was observed in ‘Mitotic G1-G1/S Phases’, which
had an accuracy of just 56% and 44% for curator-based and
MP-BioPath-based predictions, respectively. Results for each
pathway are summarized in Table 3.

The predictive accuracy of either curators or MP-BioPath
was unaffected by the size of the pathway, measured either by
its total number of edges or nodes (Supplementary Table S8),
nor by the number of citations per pathway or node.

We noted a modest positive correlation trend between the
prediction accuracy and the number of citations per reaction-
like event, but this effect did not achieve statistical significance
(Supplementary Figure S6). No significant correlation was
found between prediction accuracy and the proportion of
Reactome pathway citations that were also used as published
evidence for effect of RI perturbations on the status of key
outputs (Supplementary Figure S6A-D).

When considering the types of reaction-like events present
in different pathways, e.g. association, dissociation, conver-
sion, posttranslational modification (PTM) and gene expres-
sion regulation (GER) (17), for the 10 pathways of interest
(Supplementary Table S7), we examined whether the over-
all proportion and ratio of PTM and GER events affected
prediction accuracy as these event types frequently intro-
duce a more complex pathway topology, such as feedback
loops and a multitude of paths between a pathway input
and a pathway output. We found that the accuracies of
curator-based and MP-BioPath-based predictions were posi-
tively correlated with the proportion of PTM events, reach-
ing significance for curator-based predictions. In contrast,
the accuracies of curator-based and MP-BioPath-based pre-
dictions were significantly negatively correlated with the

proportion of GER events, and even more significantly with
the ratio of GER to PTM events in a pathway (Supplemen-
tary Figure S6E-G). This implies that the annotations of GER
events relative to PTM events may be less complete and/or
less supported by the Reactome data model, as discussed
below.

In addition to analyzing the overall accuracy of
curator-based and MP-BioPath-based predictions, we took a
deeper dive into the ability of curators andMP-BioPath to pre-
dict the response to perturbations. In this analysis, we strati-
fied test cases by their effect type (up, down and no change) as
shown in Supplementary Table S5. Curators were 88%, 90%
and 84%accurate in predicting upregulation, downregulation
and no change respectively. The respective accuracies of MP-
BioPath were 84%, 86% and 79%. There was no significant
difference in the accuracy, sensitivity and specificity between
curators and MP-BioPath when predicting either upregula-
tion, downregulation or no change (Supplementary Table S6;
Mann–Whitney test).

Analysis of discordant test cases
The distribution of confusion matrix categories with respect
to the existence of a directed path between RI and key out-
puts in Reactome pathway diagrams is shown in Fig. 4.
For curator-based predictions, TP and FP values were exclu-
sively assigned to test cases where a path could be established
between a root input and a key output, while TN and FN val-
ues were generally assigned to test cases where no path could
be established between a root input and a key output. This
implies that all FP cases and a small number of FN cases are
caused by incomplete or inaccurate annotations—for exam-
ple, missing participants and regulators in an existing path, or
wrongly assigned edge polarity in an existing path. FN cases,
however, mainly result from missing annotations, when the
knowledgebase does not include an established path between
participating nodes. A more detailed analysis of erroneous
curator predictions (Figure 5) shows that FP-WD cases were
attributable to incomplete Reactome paths (19/30, 63%),
errors in existing Reactome annotations (7/30, 23%) and
curators’ reasoning errors during prediction (4/30, 13%). FP
predictions in the strict sense were due to incomplete Reac-
tome paths (35/36, 97%), and reasoning errors (1/36; 3%).
FN predictions could be explained by non-existing directed
paths between RI and key outputs (95/111; 85%), incomplete
existing paths (11/111; 10%), and reasoning errors during
prediction making (5/100; 5%). Only 5% of discordant cases
(7 tests total) could be attributed to database annotation
errors.

For MP-BioPath-based predictions, all FP and FP-WD
cases were due to calculated changes above the activity value
cutoff. The plurality of FN cases were due to calculated
changes in the right direction, but below the cutoff (67/149;
45%), followed by test cases with no directed path (63/149;
42%), calculated changes below the cutoff but in the wrong
direction (17/149; 11%), and, lastly test cases with no change
(2/149; 1%; Figure 6).

The overlap between curator-derived and MP-BioPath-
derived predictions shows a high degree of correlation among
TP, TN and FN classes, consistent with most FN errors result-
ing from incomplete pathway coverage in the knowledgebase,
and lower correlation for FP and FP-WD cases consistent
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Figure 4. Distribution of true positives, true negatives, false positives and
false negatives with respect to existence of directed path between a root
input and a key output in Reactome pathway diagrams RI= root input;
KO= key output.

Figure 5. Reasons for discordance between curator-based predictions
and published evidence.

Figure 6. Reasons for discordance between MP-BioPath-based
predictions and published evidence.

with different sources of error for these cases (Supplementary
Figure S7).

The distribution of path lengths did not differ signifi-
cantly between the concordant and discordant test cases for
either curator-based or MP-BioPath-based predictions (Sup-
plementary Figure S4). When comparing path lengths between
different confusion matrix categories, a significantly differ-
ent distribution was detected between curator-derived TP
and TN, TP and FN, FP and TN, and FP and FN cases.
For MP-BioPath-derived confusion matrix categories, a sig-
nificantly different distribution of path lengths was found
between TP and FN, FP and FN, and FN and TN cases. The
median and average path lengths for all confusion matrix cat-
egories, however, were similar, irrespective of whether they
were curator- or MP-BioPath-derived (Supplementary Figure
S5). It should be noted that the number of test cases in the TP
category surpassed the number of test cases in other categories
on the order of 10–30-fold.

Discussion
Manual curation of the biological literature has long been
considered to be the gold standard for pathway knowledge-
bases, and these curated knowledgebases are popular for data
interpretation, analysis and hypothesis generation (18). Mul-
tiple studies have attested to the accuracy of manual curation
(5, 19–21), and pathway analysis is widely used to interpret
the results of ‘omic-scale studies.
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While it is assumed that the knowledge gathered in
curated pathway databases has utility for predicting the
effect of naturally occurring and experimental perturba-
tions, it is somewhat surprising that this assumption has
never been empirically tested. In this study, we directly
assessed the ability of Reactome, a large open access knowl-
edgebase of curated human biological pathways, to pre-
dict the empirically-ascertained consequences of biological
perturbations, by comparing Reactome pathway-based con-
clusions against published literature observations. Using a
semi-automated process, we generated pathway Logical Net-
works for 10 cancer-related pathways covering∼1200 unique
genes and, from these graphs, we made nearly 5000 predic-
tions of the downstream consequences of either increasing or
decreasing the activities of pathway RI. The predictions were
generated both manually, by curators, and computationally,
using the novel pathway modeling tool MP-BioPath. We then
mined the published literature to identify empirical studies
that directly examined the effects of 847 of these perturba-
tions and compared the empirical perturbation results to the
predicted ones.

Existing perturbation inference algorithms can be divided
into two major classes: (i) algorithms that assume binary
states for molecular participants in the pathway (e.g. affected
vs. not affected) (22) and (ii) algorithms that apply multiple
discrete states to the participants (e.g. upregulated, downreg-
ulated and no change) (23). One of the most widely used
pathway inference tools in cancer genomics that relies on
binary states is HotNet (24), which uses a thermal diffu-
sion model to identify regions of influence of affected and
unaffected genes. While effective for identifying mutations in
different patients with similar pathway-level effects, HotNet
has difficulty predicting the combined effect of co-occurring
mutations or producing testable predictions on downstream
pathway activity. The most popular pathway inference tool
that relies on multiple discrete states is PARADIGM (25).
PARADIGM allows the users to supply the state (downreg-
ulated, unchanged, and upregulated) of known genes, RNAs
or proteins to protein-protein interaction (PPI) networks.
The core mathematical algorithm used by PARADIGM is
the loopy-belief-propagation (26), which is provided by
the C++ library libDAI (https://github.com/dbtsai/libDAI)
(27). PARADIGM is capable of inferring the output nodes
which have been affected by upstream perturbations. It takes
into consideration the combined effect from multiple per-
turbed sources on a single output by increasing the con-
fidence of the output being perturbed when multiple con-
verging input nodes are perturbed. By relying on the PPI
networks, however, PARADIGM does not consider the elab-
orate biochemical relationships between PPI participants,
nor does it provide a direct way to evaluate perturbation
intensity.

MP-BioPath applies a non-linear optimization model to a
directed chain of reactions in a pathway, from root path-
way inputs to terminal pathway outputs, through interme-
diary products. Thus, MP-BioPath algorithm represents an
improvement over both a two-state or discrete state algo-
rithm and provides a setup for the application of dynamic
biochemical parameters.

We found a high degree of concordance between the
empirical and predicted perturbation effects. The concor-
dance ranged from 56% (curator)/44% (MP-BioPath) to

100% (curator) /94% (MP-BioPath), with a mean accuracy
of 81% (curator)/75% (MP-BioPath). There was no sta-
tistically significant difference in accuracy, sensitivity, and
specificity between curator-based and MP-BioPath-based pre-
dictions (Table 3 and Supplementary Table S6). When we
examined discrepant curator-based predictions, we found that
the great majority (95%) of discrepant predictions were due
to gaps in the knowledgebase, i.e. molecules and relationships
that had not yet been curated, and only 5% of discordant
cases (7 tests total) could be attributed to incorrect annota-
tions in the knowledgebase (Figure 5). Our examination of
discrepant predictions by MP-BioPath reached similar con-
clusions, except that a modest number of additional dis-
crepancies were generated when the algorithm predicted a
change in the correct direction which fell below the threshold
we used for discretizing its continuous output activity val-
ues. This latter issue was exacerbated among pathways that
contained ‘entity sets’ which represent multiple molecules or
complexes that play equivalent roles in a reaction, such as
tissue-specific isozymes. In such cases, MP-BioPath applies the
same effect weights to all members of the set, thereby dilut-
ing the effect of any individual member and diminishing the
output effect value. This issue will be addressed in future itera-
tions of the algorithm by allowing the weights of set members
to be adjusted based on their relative expression in the tissue
of interest.

Besides the knowledge gaps that are intrinsic to any bio-
logical database and the disadvantage of comparing empirical
data, which is usually generated in a small number of cell
types, with in silico simulations in a generic cell, it should
be noted that the methods used in this study have addi-
tional limitations. First, literature search itself is limited by
the inconsistent use of gene and protein names, dependency
on author-specified keywords, default settings of the search
engine, and researcher bias, which increases the propensity for
human-introduced errors when creating the ground truth for
comparison. A more fundamental challenge arises from the
arbitrary boundaries of biological pathways (28, 29). In the
context of a pathway database such as Reactome, a biological
process is often not shown within a single pathway diagram
but is spread over several sub-pathway diagrams connected
via flow links. For example, the ‘RAF/MAP kinase cascade’ is
composed of many upstream feeder pathways. These feeder
pathways usually show the formation of the active RAS:GTP
complex, and then direct users to the ‘RAF/MAP kinase cas-
cade’ diagram. Experimentally, however, activation of RAS
signaling is usually detected not by measuring the amount
of GTP-bound RAS, but by checking the phosphorylation
status of downstream MAP kinases MAPK1 (ERK2) and
MAPK3 (ERK1). For this reason, some of the false nega-
tives we encountered may have arisen from test cases in which
the biological path crossed sub-pathway boundaries and a
key connection was omitted from the logic diagram. This
problem could be mitigated with a more robust algorithm
to generate logic diagrams that include downstream events
defined in the Reactome knowledgebase but not visually dis-
played in a single diagram, potentially coupled with curation
to improve the alignment of pathway boundaries with the
standard experimental readouts used to test the pathway’s
activity.

For both curator andMP-BioPath predictions, we observed
a significant increase in accuracy for the prediction of

https://github.com/dbtsai/libDAI
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posttranslational modification events relative to prediction of
GER events. We interpret this observation as reflecting Reac-
tome’s better coverage of posttranslational modifications than
transcriptional regulation. One factor explaining this is that
GER is dependent on dosage of transcription factors and other
quantitative parameters, such as the affinity of transcription
factors for their different target sites (30), that Reactome
currently does not capture. Another factor is that the various
modes of regulation of a particular gene may be assigned to
different pathways due to the assignment of arbitrary pathway
boundaries described earlier.

In addition, the fact that some of the literature refer-
ences providing evidence of perturbation effects had been
cited by Reactome during pathway curation did positively
affect the accuracy of both curator and MP-BioPath predic-
tions. Namely, 298/847 cases were supported by at least
one of the 158 publications cited by Reactome. Although
the fraction of published perturbation effect studies cited
by Reactome does not significantly correlate with the pre-
dictive accuracy of individual pathways (Supplementary
Figure S6E), when looking at these 298 test cases in iso-
lation, their predictive accuracy calculated from the Sup-
plementary Table S1, was 95% for curators and 91% for
MP-BioPath. The future use of high-throughput perturba-
tion datasets as experimental readouts will provide a more
detailed evaluation of Reactome pathway-based predictive
accuracy, removing some of the bias introduced by literature
search.

In summary, these results add to our confidence in the util-
ity of pathway knowledgebases for predicting the effects of
pathway perturbations and should be encouraging to ongoing
efforts to create effective fully automated pathway-based pre-
dictive models for use in drug target discovery, mutation effect
prediction, and synthetic lethality discovery (25, 31, 32). In
addition, the study shows that pathway databases such as
Reactome, by grouping biochemical reactions into causal
chains (pathways), reveal distant relationships between genes,
proteins, and small molecules that may not have been experi-
mentally explored, which has the potential to fuel hypothesis-
driven research.

Supplementary data
Supplementary data are available at Database Online.
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OICR/mp-biopath-reactome-ten-pathway-tests/releases/tag/
1.0.0. The Logical Networks themselves can be found within
the ‘pathways’ folder in this repository.

Supplementary tables can be downloaded as an xlsx file
from the GitHub repository (each spreadsheet in the file rep-
resents one supplementary table): https://github.com/OICR/
mp-biopath-reactome-ten-pathway-tests/blob/main/Predicti
veAccuracyOfBiologicalPathways_SupplementaryTables.
xlsx.

The script used for generating the Logical Networks from
ReactomeV66 Pathways can be found inGitHub here: https://
github.com/reactome/Release/blob/master/scripts/reaction_
logic_table.pl.

The version of MP-BioPath that was used to perform
the analysis is 1.0.4 and can be found in the following
GitHub repository: https://github.com/OICR/mp-biopath/
releases/tag/1.0.4.
This version of MP-BioPath can also be accessed through pre-
provisioned Docker containers in the following DockerHub
repository: https://hub.docker.com/r/oicr/mpbiopath.
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