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A B S T R A C T

The appropriate acquisition and processing of water quality data are crucial for water resource management. As
such, published articles on water quality monitoring and assessment are meant to convey essential and reliable
information to water quality experts, decision-makers, researchers, students, and the public. The implication is
that such information must emanate from data obtained and analysed in an up-to-date, scientifically sound
manner. Thus, inappropriate data analysis and reporting techniques could yield misleading results and mar the
endeavours of achieving error-free conclusions. This study utilises the findings on water quality assessment in
Nigeria over the last 20 years to reveal the likely trends in water quality research regarding data collection, data
analysis, and reporting for physicochemical, bacteriological parameters, and trace organics. A total of 123 Web of
Science and quartile ranked (Q1–Q4) published articles involving water quality assessment in Nigeria were
analysed. Results indicated shortcomings in various aspects of data analysis and reporting. Consequently, we use
simulated heatmaps and graphs to illustrate preferred ways of analysing, reporting, and visualising some regularly
used descriptive and inferential statistics of water quality variables. Finally, we highlight alternative approaches
to the customarily applied water quality assessment methods in Nigeria and emphasise other areas of deficiency
that need attention for improved water quality research.
1. Introduction

Water quality studies are probably among the most important ven-
tures in the field of environmental studies in the 21st century. This
perception may be connected to the fact that water for various human
endeavours such as industrial use, agriculture, construction, consump-
tion, or other domestic applications demands a certain degree of quality
to assure the suitability for the anticipated use. Over the years in Nigeria,
the parameters of interest in water quality monitoring and assessment
have been in the groups of physicochemical (Afonne et al., 2020; Alum
and Okoye, 2020; Bello et al., 2020; Beshiru et al., 2018; Egbueri, 2020;
Ewuzie et al., 2020; Omaka et al., 2016), bacteriological (Aboh et al.,
2015; Adesakin et al., 2020; Aromolaran et al., 2019; Bamigboye et al.,
2020; Chigor et al., 2012), and trace organics, including other emerging
contaminants of concern (Aganbi et al., 2019; Ebele et al., 2020; Ogbeide
et al., 2019; Ogunbanwo et al., 2020; Sogbanmu et al., 2019).
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The contents of these parameters determine the water quality because
the index for categorising water as suitable or unsuitable for the intended
use is usually based on their concentrations (Nnorom et al., 2019). Copious
research studies have focussed on and provided evidence about the
ubiquity of various potentially toxic elements (PTEs) in aquatic systems in
Nigeria, and at times, their levels are above the permissible limits (Nganje
et al., 2020; Omaka et al., 2017). Chemical contaminants such as PTEs
pose health risks to water consumers, while physical parameters such as
colour, taste, and odour make water unpleasant to drink (WHO, 2017). To
illustrate, PTEs such as As, Cd, Hg, and Pb have no health benefits when
ingested through drinking water; rather, they are associated with cardio-
vascular disorders, renal injuries, and cancer risk in humans (Yao et al.,
2021). Also, they can induce neurotoxicity, oxidative stress, and alter
immune systems in aquatic animals (Ihunwo et al., 2020).

Trace organics, including other recently identified groups of emerging
contaminants of concern have been detected in various water bodies
mber 2021
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worldwide. For instance, pharmaceuticals and personal care products
were detected in somewater bodies in Egypt (Abou-Elwafa Abdallah et al.,
2019), Spain (Sadutto and Pic�o, 2020), and China (Lin et al., 2020). Also,
Ramírez-Morales et al. (2021) reported the levels of pesticides in surface
water in Costa Rica; in India, emerging contaminants such as endosulphan
and hexachlorohexane were detected in some groundwater samples
(Vashisht et al., 2020). In Nigeria, studies are increasing on the trends and
occurrence of these recalcitrant chemicals in the water bodies (Ebele et al.,
2020; Ogbeide et al., 2019). Most of these chemicals have been implicated
in endocrine disruption, thyroid function suppression, increased risk of
developing diabetes, hormonal imbalance, and adverse neurobehavioral
development (Carpenter, 2011; Ukaogo et al., 2020).

Evidently, the bacteriological assessment of domestic water– to
determine water quality– is essential from a public health perspective.
The results of such evaluations allow for informed actions to be taken by
the relevant authorities, and ultimately, to prevent the outbreak of water-
borne diseases such as cholera, diarrhoea, typhoid, and gastroenteritis
(Adesakin et al., 2020; Ayandiran et al., 2018; Dahunsi et al., 2014;
Ukaogo et al., 2020). Certainly, these contaminants deteriorate water
quality, render water resources unsafe for human consumption, and
create uninhabitable environment for aquatic animals (Kolawole et al.,
2011). Therefore, studies assessing the levels of these contaminants must
be stringent with their data collection and analysis, and communicate
their findings in an accurate and compliant manner.

Incidentally, not all the studies in published articles can boast of
adhering to the recommendations in the standard protocols regarding
data processing for accurate communication of findings. Statisticians
documented that statistical errors have become common in the scientific
literature; so much so that, about 50% of published articles have at least
one statistical error (Altman and Bland, 1991; Curran-Everett and Benos,
2004). This concern possibly stimulated some journals to publish edito-
rials and offer guidelines for communicating research findings. An
instance is the ‘Guidelines for reporting statistics in journals published by
the American Physiological Society’ (Curran-Everett and Benos, 2004).
One of the enumerations of the guidelines, ‘Analyse your data using the
appropriate statistical procedures and identify these procedures in your
manuscript’ buttresses the importance of applying adequate procedures
and communicating them in scientific articles. Invariably, the
non-reporting of important procedures in not only statistical evaluations
but also in data collection and reporting in environmental sciences is
becoming more common. This situation is worrisome, in that, procedures
not reported might be construed as procedures not followed. Therefore, it
is high time experts took cognizance of this trend and nip it in the bud
before it becomes a new normal.

In Nigeria, water quality monitoring and assessment have been well
documented in the scientific literature. A recent review presented a two-
decade literature analysis of water quality monitoring and assessment in
Nigeria, focussing on pollution sources of rainwater, ground, and surface
water sources (Ighalo and Adeniyi, 2020). This review synthesized the
findings in the literature in a systematic manner and communicated that
rainwater was less polluted than surface and groundwater in most parts
of the country. Such deductions serve as veritable information not only to
the government and water quality experts but also to the general public.
Furthermore, people depend on such information to choose the type of
water they consume, since it is rarely on the priority list of the Nigerian
government to provide them with treated water (Nnorom et al., 2019).
Therefore, it is pertinent that the data used for such conclusions are
obtained and analysed in a scientifically sound way.

One of the concepts that has not received much attention in water
quality assessment in Nigeria is the subject of this discourse, i.e.,
appraising how data generated in water quality assessment are analysed
and reported. Several reviewed articles tend to follow the approach of
previous articles when it comes to the mode of data acquisition, the
choice of statistics, and the use of regular graphics such as multiple pie
charts and stacked bar plots. At times, these graphics may be unwieldy
and provide little ability to compare differences between data groups;
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apparently, there is a certain reluctance to change or improvement. A
possible reason for this practice is the availability of standard statistical
packages with pre-loaded analytical and graphical options. These seem-
ingly simplified tools increase the unwillingness of most researchers that
are not core statisticians or computer scientists to acquire some pro-
gramming skills to create innovative graphics in environments such as
MATLAB and R. However, an important theme, which this article seeks to
promote, is the proper knowledge and appropriate use of statistical tools
in water quality data analysis.

There are problems with incorrect statistical analysis of water quality
data. For instance, variables can appear unrelated when there are fasci-
nating relationships, or their real interrelationship may not be correctly
inferred. Again, variables may seem to cluster, but really, they belong to
different groups, thereby leading to misclassification. Furthermore,
incorrectly reporting numerical data can result in misinterpretation. For
example, reporting Pb concentration in drinking water as “ND” (not
detected) without giving the corresponding quantification or method
detection limit may be misleading. The aftermath is that an unsuspecting
and/or amateur reader may interpret “ND” as not present in the water
since it was not detected. Besides, using standard deviation to quantify
the dispersion of skewed data is of questionable value for water resources
data (Helsel et al., 2020).

Water quality research entails collecting data through online (remote)
instrumentation, in situ measurements, and/or laboratory experimenta-
tion, then analysing the data using appropriate statistical techniques, and
subsequently interpreting and reporting the results. Data collection is the
basic and most crucial step in water quality research. It has the objective
of ensuring that dependable and informative data are collected for sta-
tistical analysis so that, in the end, useful decisions for the protection of
water quality can be reached. The entire data collection process borders
on how methods are selected, implemented, and quality-assured for
water quality-related field and laboratory measurements (USEPA, 2000).
Various consensus-based standards organizations (USEPA, 1999; USGS,
2010; WHO, 2017) and other literature (Matamoros, 2012; Tovar-S�an-
chez, 2012) have provided excellent guidance on methods for data
collection for water quality assessment. However, a more recent publi-
cation of the United States Geological Survey (Helsel et al., 2020) pro-
vides a guide for statistical analysis in this field.

This article, therefore, is not intended to be an exhaustive treatise on
data analysis and statistical concepts, and we suggest that readers consult
various articles and statistics books for a thorough understanding of these
concepts. Thus, this study attempts to overview the statistical analysis of
data generated in water quality assessment studies in Nigeria and the
reporting styles. In addition, specific examples as well as visuals and
heatmaps were simulated to showcase the preferred applications of
descriptive and some inferential statistics to establish uniform and
acceptable data analysis and reporting patterns, which will be applicable
not only for water quality assessment but also to environmental studies in
Nigeria and other countries. To accomplish this, we reviewed articles on
water quality assessment published in the last 20 years in Nigeria. By
doing this, we intended to integrate the current knowledge and identify
common gaps and drifts in data analysis and reporting patterns. Finally,
alternative approaches to the customarily applied water quality assess-
ment methods in Nigeria are highlighted, and other areas of deficiency
that need attention for improved water quality research are emphasised.
Of relevance to this review is attention to appropriate data analysis, which
will open new fascinating research directions and revamp the confidence
of water quality experts, researchers, students, decision-makers, and the
public on water quality research in Nigeria and other countries.

2. Methods

2.1. Nigeria's water resources

Nigeria is adjudged a nation with the most populated black humans
in the world (Ighalo and Adeniyi, 2020); and according to the latest data
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(the year 2020) from United Nations Population Fund (UNFPA), has a
population of about 206 million people, making it the 7th most popu-
lated nation in the world (https://www.unfpa.org/data/world-popula
tion/NG). Nigeria's hydrological (occurrence and distribution of
ground and surface water resources), meteorological (seasonal variation
in temperature, rainfall, humidity, and general atmospheric weather
condition as well as how they influence water quality), and geological
(diverse lithostratigraphic units found in different regions and their
rock-water interactions) blueprints have been well documented in
recent literature (Ewuzie et al., 2020; Ighalo and Adeniyi, 2020;
Nnorom et al., 2019).

In this context, Nigeria's water resources are further examined to
divulge the possible rationale behind the disparity in the number of
studies related to water quality in different regions of the country.
Already, the amount of annual rainfall disproportionately favours the
southern regions of the country against their northern counterpart, which
is a result of the nearness of the former to the Atlantic Ocean, and the
latter to the Sahara Desert (Ighalo and Adeniyi, 2020). Consequently, the
south-south and south-west have abundant surface and groundwater, and
annual rainfall is high. Specifically, the major sources of water in the
south-south are creeks, rivers, shallowwells and boreholes; and studies of
water quality in this part have been tailored to them (Ihunwo et al., 2020;
Ocheli et al., 2020; Owamah, 2020; Owoyemi et al., 2019). Similarly,
studies in the south-west have been related to several rivers, lagoons,
groundwaters, lake and stream, as these are abundant (Ebele et al., 2020;
Ezemonye et al., 2019; Gbadebo, 2020; Odukoya et al., 2017; Ogun-
banwo et al., 2020). In the south-east region, groundwater in the form of
dug-wells, boreholes and springs, as well as streams, lakes, and few rivers
have been studied (Alum and Okoye, 2020; Chukwuka et al., 2019;
Egbueri, 2020; Ekere et al., 2019; Ewuzie et al., 2020; Nganje et al.,
2020). On the contrary, due to the scarcity of water in the northern re-
gion, wells, dams, few rivers and groundwater are the major sources of
water and have been studied (Jagaba et al., 2020; Okunola et al., 2020).
A case in point is that besides other factors such as researcher's area of
residence, availability of funds for research, accessibility of functional
laboratories with requisite equipment, and research interest and field of
study; the abundance of different water sources to be investigated in
some regions could be linked to the copious research projects and pub-
lications from such regions. Moreover, this is corroborated by the find-
ings of Ighalo et al. (2020) who added that literacy level and quality of
higher institutions of learning are among the reasons why research
output in water quality assessment varied by geopolitical zones in
Nigeria.

2.2. Dataset collection

Three well-known search engines, Google Scholar (https://scho
lar.google.com/), ScienceDirect (https://www.sciencedirect.com), and
PubMed (https://pubmed.ncbi.nlm.nih.gov) were employed to system-
atically comb for published articles on water quality assessment in
Nigeria. All these search engines possess a succinct search “timeline” that
enables the search of documents within the desired range of years, and at
the same time, informs how many papers, relative to the search criteria,
are contained in each year. The keywords used were “Quality”, “Water”
and “Nigeria”, searched simultaneously as “water quality in Nigeria”. The
use of these keywords ensured that papers germane to the review were
obtained as revealed by other researchers (Ighalo and Adeniyi, 2020).
The search was completed between 24th and 26th October 2020. During
the search, the papers were filtered to comprise the date range of
2000–2020. We downloaded a total of 183 research papers (excluding
reviews and book chapters) published within the time frame and dealing
with water quality assessment of surface, groundwater, rainwater, and
sachet/bottled water in Nigeria. However, the number of the papers was
reduced to 123 after papers that were not published in Web of Science
journals and not quartile-ranked (Q1–Q4) were dropped. This criterion
was used to ensure the authenticity and traceability of the data presented
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and analysed in this review. Other details about the journals can be found
in Table S1 (Supplementary Table).

2.3. Description of the collected dataset

One hundred and twenty-three research papers on water quality
assessment, published in the last two decades in Nigeria made up the
dataset for this review. Figure 1 depicts the journals in which authors
have published water quality-related papers in Nigeria in the last 20
years, their impact factors, and the number of reviewed articles in each
journal. Figure 1 reveals the quality and strength of the journals, which
communicated the research findings of water quality assessment in
Nigeria. It is also indicative of the journals that were frequently patron-
ized in the last 20 years. For instance, approximately 24.4% of the
reviewed papers (30 out of 123 articles) were published in Environmental
Monitoring and Assessment journal, whereas other higher impact factor
journals such as Environmental Pollution, Chemosphere, Journal of Envi-
ronmental Management, and Ecotoxicological and Environmental Safety had
equally received papers on water quality assessment in Nigeria in the last
20 years.

More importantly, the water sources considered in the reviewed pa-
pers, which are the sources of water in Nigeria are surface (river, pond,
stream, lagoon, lake, dam, creek, reservoir), groundwater (borehole,
well, spring), packaged water (in sachets, bottles), and rainwater. Among
these sources, rainwater had a dearth of papers on its quality as depicted
in Figure 2. This could be because of fewer people who use this source of
water. Besides, the usage is often limited to the rural areas where surface
water may be in abundance, thus, making rainwater an unpopular
source. Packaged water in Nigeria comes in sachets or bottles and is
marketed in both rural and urban cities of the country, though the latter
takes the larger proportion. Considering the proliferation of the use of
this source, the literature on its quality in the last two decades is scanty,
as shown in Figure 2. Nevertheless, this article does not intend to
compare the water sources but rather appraise the data analysis and
reporting approaches employed in the studies of all the water sources.

Overall, the selected papers contained data on physicochemical pa-
rameters (including physical, chemical, elements, metals, anions, and
cations), some trace organic contaminants of emerging concern
(including pharmaceuticals, pesticides, polychlorinated biphenyls,
polycyclic aromatic hydrocarbons, phenol, formaldehyde, and others)
and bacteriological indicators. By chemical, we mean other parameters
such as ammonia, hardness, alkalinity, chemical oxygen demand (COD),
and biochemical oxygen demand that are different from metals or ele-
ments. Also, the trace organic classes studied in the reviewed articles are
included in Table S2. The number of the reviewed papers in the last two
decades and the allotment of the parameters are elucidated in a Venn
diagram (Figure 3). This figure shows that these studies, over the years,
have focussed more on the physicochemical contents of these water
sources. Thus, this contaminant class was mainly used to illustrate
preferred applications of statistical analysis and reporting of water
quality data, while their applications for the other contaminant classes
(i.e., bacteriological and trace organics) were evaluated.

3. Review results and discussion

This section presents the results and discusses the findings from the
reviewed papers. It is divided into three sub-sections corresponding to
the items in the theme of this review, namely, data collection, data
analysis (statistical approaches), and reporting and visualisation.

3.1. Data collection

Collection of water quality data, either in the field or through labo-
ratory experimentation usually precedes data analysis and reporting of
results. In situ real-time (online) data acquisition is highly desirable in
that it provides early detections of deviations or problems, facilitate

https://www.unfpa.org/data/world-population/NG
https://www.unfpa.org/data/world-population/NG
https://scholar.google.com/
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Figure 1. List of the journals showing the number of the reviewed articles in each journal and 2019 impact factor (IF) or scientific journal ranking (SJR) of
the journals.
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proactive management of water supply systems while reducing the la-
bour and cost associated with laboratory measurements (Bridgeman
et al., 2015; Forzani et al., 2007). On the other hand, data collection
through laboratory experimentation is required for regulatory purposes
(Bridgeman et al., 2015), and in most cases where online instrumentation
for water quality monitoring is non-existent. Besides, data collected by
the online instruments are usually compared/verified with those from
laboratory experimentation, at least at the developmental stage (Szabo
and Hall, 2014). Most of these monitoring tools are based on sensor
technology and can be used to collect data in situ (online) or after sample
collection (Belikova et al., 2019).

Much earlier, most fabricated sensors were mainly for the collecting
water quality data of physical nature such as temperature (Culler et al.,
2004). But recent advances in optical fibre and nanomaterial-enabled
screen-printed electrochemical sensors have enabled the collection of
chemical or biological data such as trace metals (Liu et al., 2019; Mim-
endia et al., 2010; Pesavento et al., 2019) pesticides (Saleh et al., 2020),
and microbial and organic matter (Bridgeman et al., 2015). Additionally,
a water quality automatic monitoring system based on general packet
radio service (GPRS) data communications can continuously acquire
real-time data and send them to control centres or personal gadgets (Ionel
4

et al., 2015). These wireless instrumentations have also been successfully
implemented in collecting water quality data (e.g., temperature) for the
oil and gas industry (Petersen et al., 2014), and are advantageous in
environments where data collection points are scattered (Wei et al.,
2012). Besides, the clamour for data collection through online equipment
is due to their swift methods to aid the development of operational
response and provide a level of public health protection in real-time
(Storey et al., 2011). Also their methods are fully automatic and
considerably minimize the use of reagents, thereby contributing to the
so-called green chemistry (Rodríguez-Maese et al., 2020). Conversely,
some authors have expressed concerns that using these technological
devices may enable the collection of much more data than required. This
notion is due to the ease with which data can be collected, for example, in
a water quality assessment or monitoring program, thereby wasting time
that would have been useful for data analysis and reporting (Falkenberg
and Styan, 2014; Hanley, 2012).

More importantly, all the reviewed articles implemented data
collection either through laboratory experimentation or portable moni-
toring devices, but not remote online instrumentation. Irrespective of the
data collection method, it should follow the guidelines in standard pro-
tocols (such as USEPA, 1999; USGS, 2010; WHO, 2017) for data



Figure 2. Percentage allotment of the reviewed papers with water sources in perspective.

Figure 3. Venn diagram showing the number of reviewed papers studying
different parameter combinations.
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collection to ensure that the data collected are dependable and adequate,
which when analysed, would be informative for decision-making.
Nevertheless, the evaluation of whether the reviewed articles imple-
mented these guidelines or not is elaborate and not within the scope of
this review. Still, we assumed adequate data collection for the articles
that documented the standard protocol or literature they adopted as a
guide for collecting their data. Based on this conjecture, we identified
some international (APHA, USEPA, ASTM, AOAC) and national (Nigeria
Department of Petroleum Resources, DPR) protocols as well as literature
that served as references for data collection. For the articles on physi-
cochemical parameters, approximately 58.3% cited at least one of the
international or national protocols; about 14.8% employed the
5

procedures found in the literature, while the remaining 26.9% did not
report adopting the guidelines in any standard document for data
collection (Supplementary Table S3). In other words, approximately
73.1% of the reviewed articles supposedly used a reliable data collection
approach, while the remaining articles might have acquired their water
quality data in an undependable manner.

Also, for trace organic parameters, about 68.8% of the reviewed ar-
ticles followed the procedure prescribed by standard organizations (such
as USEPA, APHA) or the literature for their data collection. Nonetheless,
the other 31.2% did not present such a report. Again, reviewing the ar-
ticles that studied bacteriological parameters, it was observed that 55%
of them collected their data in a manner that conformed with guidelines
in the standard protocols. Conversely, almost half of the articles (45%)
possibly used a less reliable approach during data collection. In scientific
writing, it is essential to detail the methods and protocols employed
during data collection and analysis; otherwise, it may indicate that no
standard protocol was used as guidance, thereby discrediting the work.

3.2. Statistical data analysis

Hardly had a water quality assessment study been adjudged complete
when the statistical analysis of the generated data had not been done.
This process positions the concept of data analysis at a higher priority in
water quality research. This sub-section takes a critical look at how the
reviewed articles analysed the data generated in their studies. It is dis-
cussed under the following headings: descriptive statistics, classification
of variables, inferential statistics, and data pre-treatment.

3.2.1. Descriptive statistics
Descriptive statistics aims to allow for data presentation in a mean-

ingful and understandable way, and ease of interpretation. Appropriate
knowledge of descriptive statistics is key in presenting/summarizing a set
of observations as simply as possible, which at first glance, communicates
the salient details of the dataset, such as the symmetry of the distribution.
The United States Geological Survey document (Helsel et al., 2020)
described water resources data as being characterised by the presence of
censored values (otherwise referred to here as rounded zeros),
non-normal distribution of data, presence of outliers, and skewness of
data; the last three being interwoven. Mean (also known as the arithmetic
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mean; average) and median are the most popular measures of central
tendency used in water quality assessment, while standard deviation (SD)
and standard error (SE; also called standard error of the mean) are the
most used measures of dispersion for water quality data, at least in
Nigeria. From the reviewed articles, it appears that researchers almost
always compute mean and SD, and rarely the median, as descriptive
statistics (See Table S3). Krzywinski and Altman (2013) had observed
such practice and stated that researchers use the SD or SE with approx-
imately equal frequency in research papers. However, Greenacre (2016)
pointed that “this way of thinking about the SD as a single all-purpose
measure of the spread of the data is clearly inappropriate in the case where
the data values are highly skewed”.

The reasonwhy themean as ameasure of central tendencymay not be
preferred in presenting skewed data is that all observations do not have
the same influence on the mean; thus, the mean may not give an intuitive
summary of the “centre” of the data. Therefore, computing a resistant
estimator of central tendency such as the median with other quantiles
when dealing with skewed data may be preferable, since the median is
only minimally influenced by the magnitude of any single observation
(Helsel et al., 2020; Manikandan, 2011). It was observed from the
reviewed articles that only a few articles used the median due to the
skewness of their data for physicochemical parameters (Aremu et al.,
2002; Ebele et al., 2020) and trace organics (Ebele et al., 2020). Again, a
few other articles computed both the mean and median (Edet and Wor-
den, 2009; Nganje et al., 2015; Nnorom et al., 2019), which illustrates a
better usage of the statistics for skewed data. Similarly, SE and SD
describe the variability of the mean of a group of data and the dispersion
of the original data, respectively. However, just like the mean, the SD can
be beneficial for the said purpose only when data are distributed sym-
metrically (and especially normally distributed) about the mean. This
postulate is so because the values are calculated using the squares of
deviations of data from the sample mean; thus, extreme values affect
their magnitudes. The consequence of using SD at such an instance is that
it may give the impression of higher variability than most of the dataset
indicated. Nevertheless, authors have reported that they compute the
arithmetic mean to compare their results with guidelines (usually mean
values) for individual parameters (Nnorom et al., 2019). While this may
be true, in our own opinion, it should be indicated in the manuscript, and
the appropriate measure of central tendency be computed and included
in the results as well. Furthermore, other proper measures of dispersion
(other than SD or SE) that are not influenced by outlying observations
include the use of quantiles (interquartile range, percentiles) and median
absolute deviation (MAD) (Ewuzie et al., 2021; Helsel et al., 2020). The
margin of error (ME) is more useful than the SE, since it gives the bounds
of a confidence interval for the mean (Greenacre, 2016).

3.2.2. Classification of variables
Classification of variables through cluster analysis helps to agglom-

erate several variables or observations into a number of meaningful ho-
mogeneous groups (Ewuzie et al., 2021). Cluster analysis (CA) is
commonly used in water quality assessment studies, and approximately
11.1% of the reviewed articles on physicochemical parameters per-
formed this analysis (Table S3). In most cases, the variables that are being
grouped have different units or orders of magnitude. Thus, using the
standard statistical applications for such data during CA, for example,
without transformation, may result in misclassification. Data trans-
formation (via z-score standardisation or range scaling (normalisation))
is usually applied before CA. Nevertheless, statistical computing in an
environment such as R can simultaneously perform the required stand-
ardisation and cluster analysis. Standardisation or normalisation of data
serves the purpose of jettisoning the unit limit of data and transforming
them into a totally dimensionless value, after which various units or
orders of magnitude can be weighted or compared (Li et al., 2019). It is
very useful for cluster analysis where wide differences in data dimen-
sionality could cause misclassification (Liu et al., 2003; Omo-Irabor et al.,
2008). The z-score standardisation is performed by subtracting the mean
6

value from each variable score and dividing by the standard deviation
(Equation 1). In such a case, each standardised value would reflect the
distance from the mean in units of standard deviation.

z� score standardised value¼Variable score�mean
Standard deviation

(1)

From our discussion in section 3.2.1 about the use of mean and SD,
Eq. (1) shows that unless the data are normally distributed, z-score
standardisation before cluster analysis may still result in misclassification
(This will be graphically elucidated in section 3.3). However, if it is
assumed that all variables have come from approximately normal dis-
tribution, then z-score standardisation would bring them all close to the
standard normal distribution. Thus, the resulting distribution will have a
mean of 0 and a standard deviation of 1. Nevertheless, suppose it is pre-
determined that the variables have possibly emanated from different
(and non-normal) distributions. In that case, range scaling (normaliza-
tion) may be applied to brings the data to the 0 to 1 scale, which is done
by subtracting the minimum value from each variable score and dividing
by the range (Equation 2).

Range scaled value¼Variable score�Minimun
Maximun�Minimum

(2)

For the reviewed papers on physicochemical parameters, only 4 out of
the 12 papers that performed cluster analysis standardised their data
before the test, while the remaining articles did not mention transforming
or standardizing their multivariate data that included variables on
different scales/units. Furthermore, a few articles on trace organics per-
formed cluster analysis but there was no report on transformation of their
data that might have been skewed (Adekunle et al., 2017; Omo-Irabor
et al., 2008). More so, in the reviewed articles as well as other studies
conducted in other countries (Table S4), z-score standardisation seems to
be the only method of transformation before CA and principal component
analysis (PCA), even when it was determined that the data distribution
was non-normal. This approach may not be appropriate, especially for
highly skewed data that might likely influence z-score value whose
determination is dependent on the mean and SD (Equation 1). More
importantly, adequate knowledge of the generated data is necessary to
perform pre-treatment tests that are only relevant to the statistical analysis
to be done. For instance, over 85% of the reviewed articles might have not
standardised or normalised their data because they did not perform any
analysis (such as CA) that warranted such a procedure or that their data
are in a uniform scale with negligible variances.

3.2.3. Inferential statistics
As the name implies, they are used to reach conclusions pertaining to

the population by observing the sample data. In most cases, they offer a
quantitative method regarding the acceptance or rejection of the null hy-
pothesis. Numerous statistical tests are available for this purpose; the test
chosen should be dependent on the type of data being analysed and the
number of groups involved. In water quality assessment, we are sometimes
concerned with contaminant effects and whether a particular contaminant
is as impactful as another in awater source. Likewise, the interestmay lie in
knowing whether the contaminant's average level varies in significant
amounts in differentwater sources. In otherwords, a dependent variable in
a particular casemay be an independent variable in another scenario. Such
studies and many others designed to answer these questions depend on
inferential statistics to disprove or support one treatment over another.
Furthermore, assessingwhether the association of parameters is significant
or not also relies on inferential statistics. In the reviewed articles, sample t-
test, correlationanalysis, andanalysis ofvarianceare someof the significant
inferential statistics employed, sometimes in error.

3.2.3.1. Correlation and comparison of group means. Studying in-
terrelationships through correlation and comparing group means
through t-tests or analysis of variance (ANOVA) are among the widely
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computed statistics in water studies in Nigeria. Linear correlation is used
to evaluate the association between two variables, which is reflected by
the value of the correlation coefficient (Misra et al., 2021). In water
quality research, a high positive correlation (r > 5) between two vari-
ables such as Pb and Hg suggests that both elements can have similar
hydrochemical characteristics and vice versa (Nnorom et al., 2019).
Furthermore, a t-test is applied for comparing the means of two groups of
data; it determines whether the means of the two groups are equal (Helsel
et al., 2020). ANOVA is analogous to a t-test between three or more data
groups and is governed by the same assumptions as to the t-test (Williams
and Quave, 2019). When two groups of elements such as Fe and Mn have
equal means, it may suggest that they have similar origin (Nnorom et al.,
2019). In performing any of these parametric tests, it is expected that the
distribution of the data or residuals will at least be approximately normal.
However, their corresponding non-parametric tests are available for use
when non-normality is suspected/ascertained. For instance, Spearman
correlation instead of Pearson correlation, Wilcoxon Rank test in place of
two-sample t-test, or the Kruskal Wallis test instead of ANOVA should be
used (Williams and Quave, 2019). These nonparametric tests have been
said to exhibit greater power than do parametric tests in the presence of
skewness and outliers (Helsel et al., 2020). Another alternative is the
transformation of skewed data, after which parametric tests can be used
(data transformation is discussed in section 3.2.4). The bottom line is that
it is difficult to say how sample data or residuals are distributed without
either visualising or testing them. Generally, visual (stem-and-leaf plot,
boxplot, P–P plot, Q-Q plot) and statistical (Anderson-Darling test,
Cramer-von Mises test, Anscombe-Glynn kurtosis test, D'Agostino skew-
ness test, Kolmogorov-Smirnov (K–S), Lilliefors corrected K–S, and
Shapiro-Wilks test) methods of testing for normality are well documented
(€Oztuna et al., 2006). Among these tests, the Shapiro-Wilks test, which is
based on the correlation between the data and the corresponding normal
scores, offers more acceptable power than the K–S test even after
applying Lilliefors correction (Ghasemi and Zahediasl, 2012). Although
their suitability depends on sample sizes and the properties of the data.

Whether to apply a preliminary test for normality or not is a question
many researchers ask, but the point is knowing when to carry out this test
for a particular statistical task. For example, while one of the assumptions
of a correlation test is that the sample data should approximate a normal
distribution, the assumption for testing between groups means (using t-
test or ANOVA) is that the residuals should be approximately normal. In
light of the foregoing, it means that preliminary testing of data for
normality is performed only before a correlation test; ANOVA or t-test is
performed first before adequately using any of the graphical or statistical
methods to ascertain the normality of the residuals. This is another aspect
that was greatly misconceived in almost all the reviewed articles. All the
articles that performed the test for normality did so before any para-
metric test. They reported testing for normality, which enabled them to
choose between parametric and nonparametric tests. While this is
appropriate for a correlation test, it may be an unreliable approach for
ANOVA and t-tests, in which the residuals need to be normally distrib-
uted too. Besides, some articles even reported using parametric tests after
confirming the non-normal distribution of their data, probably due to
their large sample sizes. Sample size has been recognized as an important
factor in water quality studies since the data are usually non-normally
distributed (asymmetric distribution). It is documented that as sample
sizes increase (e.g., sample size�70), the distribution of the samplemean
will be approximately normal (USEPA, 2002). However, sample sizes
>30 have also been regarded as large enough for the assumption of the
normality of mean (Ghasemi and Zahediasl, 2012; Greenacre, 2016).
From the foregoing, it appears that some of the reviewed articles that
performed one or more parametric tests without testing for normality did
so because of their large sample sizes. The samples were large enough to
allow the distribution of the sample means to be closely approximated by
a normal distribution–Central Limit Theorem. For instance, twenty
reviewed articles on physicochemical parameters that had sample sizes
between 36 and 256 performed either ANOVA, Pearson correlation, or
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t-test without any report on normality test (Table S3). Conversely, 16
articles that performed one or more of these tests without testing for
normality had sample sizes between 6 and 29. Thus, they might not have
been lucky to have their sample mean approximating a normal distri-
bution. We, therefore, recommend an appropriate normality check for
small-sized data with obvious skewness, before carrying out a parametric
test on the dataset.

3.2.4. Data pretreatment
Water quality data are unique data. They are usually made up of

variables with varying magnitude, non-detects (rounded zeros), outlying
values, and even variables that can have negative integers such as redox
potential. All these items make data analysis for water quality studies
somewhat cumbersome. Data pretreatment is, therefore, an essential step
in data analysis. It usually involves data imputation or replacement for
missing values or rounded zeros, respectively, and data transformation
for highly skewed data to achieve an appropriate scale of data before
using standard statistical approaches. More importantly, the occurrence
of samples with censored values for some parameters impacts the
multivariate statistics for mapping hydrogeochemical processes (Carra-
nza, 2011). Moreover, just imputing ‘zeros’ or values of the detection
limits in statistical tools, especially when rounded zeros occur in large
numbers may result in false correlation or even misclassification of
clusters (Liu et al., 2003). Therefore, several ‘rounded zero’ replacement
approaches have been proposed, including replacement with a fraction of
the corresponding detection limit, for instance, 2/3 of detection limit
(Carranza, 2011), statistical/mathematical models (Helsel, 2012), and
even in developed software (Palarea-Albaladejo et al., 2014). Neverthe-
less, utilizing an inaccurate method may introduce bias; thus, researchers
must select the appropriate method suitable for their censored data type.

Meanwhile, log-transformation and root transformation are the most
used approaches to transform skewed water quality data. However, some
issues regarding using the transformations mentioned above for skewed
data have been raised (Ali and Bhaskar, 2016; Feng et al., 2014;
Greenacre, 2016). These issues are related to the fact that
log-transformation can only be used on positive data, arbitrary in the
choice of root transformation, and dissimilarity in the back-transformed
data and the original data, making it somewhat difficult for interpreta-
tion. Another drawback is the difficulty in finding a single transformation
that can be applied to all groups, which will result in each having an
appropriate scale with constant variance (Helsel et al., 2020). Regardless,
log-transformation is widely used in water research, and when cautiously
used, could produce data of appropriate scale, depending on the prop-
erties of the data. For instance, after log-transformation of initially
asymmetrical data, it was confirmed that the skewness and kurtosis tests
ranged from 0 to 0.060 (Mustapha and Aris, 2012), which indicated an
approximately normal distribution of the dataset. More so, if a para-
metric test must be used to analyse small-sized and skewed data, then
transformation is vital to achieving an appropriate scale. That way, the
distributional assumptions of the parametric test will not be violated.
Alternatively, use the modern resampling-based distribution-free boot-
strapping method.

3.3. Data reporting and visualisation

Several published articles are already indicating (with evidence) the
flaws in the reporting and presentation of results in fields such as ecology
(Greenacre, 2016), rheumatology (Misra et al., 2021; Misra and Agarwal,
2020) physiology (Weissgerber et al., 2015), and statistics in general
(Krzywinski & Altman, 2013, 2014); presenting appropriate alternatives.
Studies on water quality should leverage these correct reporting recom-
mendations to ensure that the efforts put in data collection and analysis
are rewarded with informative interpretations. Therefore, this
sub-section considers the reporting of descriptive statistics, both
numerically and with graphical plots, visualisation of preferred ap-
proaches to CA and inferential analysis, and reporting of rounded zeros.
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To accomplish this, part of the dataset in one of the reviewed articles
(Nnorom et al., 2019), downloaded from a repository in a public domain
was used for simulation. The data can be found through the link: https://
doi.org/10.17632/6dzmn2kb7m.1. Five trace metals (As, Co, Cr, Cu, Ni)
from 24 stream samples (STR1–STR24) whose concentrations were in
μg/L were chosen from the entire dataset. Bar plots with error bars (as
SD) and boxplots were constructed in Statistica version 10. Also, heat-
maps of preferred approaches to CA and some inferential analysis were
simulated in R (R Core Team, 2020; https://www.R-project.org). The R
scripts used for the illustrations are available to enable the readers to
either reproduce or create their graphics in R.

3.3.1. Reporting and visualisation of descriptive statistics
Apart from few reviewed articles that reported individual values of

their results for physicochemical parameters (Omaka et al., 2017;
Onwuka et al., 2019; Orisakwe et al., 2006; Ukah et al., 2018; Zacchaeus
et al., 2020), and trace organics (Aganbi et al., 2019; Odukoya et al.,
2010; Onyekwelu and Aghamelu, 2019), the others reported various
measures of central tendency and dispersion (Table S3). The arithmetic
mean was mainly reported irrespective of the nature of the data distri-
bution, which is not a preferable approach (see comments on section
3.2.1). It is common knowledge that when data are skewed (which is
common to most water quality data), the arithmetic mean is no longer
considered equal to the median. Instead, the mean is on the side of the
median where the tail of the distribution is longer. Therefore, the mean is
typically larger than the median in any positively skewed data, and the
standard deviation is likewise inflated by the long tail. Consequently, the
tables of summary statistics comprising only the mean and standard
deviation (or variance) are of questionable value for water resources data
(Helsel et al., 2020). Thus, reporting the median and other percentiles
such as interquartile range andMAD in summary tables, have much more
applicability to skewed data.

Another misconception that has been dealt with in the literature
(Greenacre, 2016; Krzywinski and Altman, 2013), which continues to
manifest even in the reviewed papers is about the reporting of mean
with plus/minus one standard deviation or one standard error (i.e.,
mean � SD or mean � SE). Readers should check the appropriate usage
of SD and SE in section 3.2.1. One SD or SE does not give useful in-
tervals because �SD or �SE only includes about 68% of the observa-
tions or 68% of the estimated dispersion of the mean, respectively. In
the case of the dispersion of the mean, the ME, which is a critical value
for the appropriate t-distribution multiplied by SE, gives about 95%
confidence level, which is intuitive and signifies a high level of confi-
dence about the mean's true value. Suppose the SD of the observed
values must be reported for whatever reason. In that case, it should be
written without the plus/minus prefix, for example, in brackets [i.e.,
mean (SD)] or separately. In all the reviewed articles, almost an equal
number of articles reported mean � SD or SE and the mean separately
from SD or SE (Table S3). It is hoped that the clarification given above
would help to address the inappropriate use of these statistics in water
quality studies.

Graphical representation enhances the understanding of sample data
and aid in making comparisons across samples. Nonetheless, inadequate
presentation of data can either disguise or obscure vital information
regarding the data. Visualisation such as stacked bar chart, bar plots with
error bars, and multiple pie chart (without proper labelling) has been
described as inappropriate owing to their inability to make a precise and
easy judgement of differences as well as offer minute visual differences of
groups of data (Helsel et al., 2020; Krzywinski& Altman, 2013, 2014). In
our review, we found some articles that visually represented the vari-
ability of their data using bar plots with error bars (as SD) (Ejike et al.,
2017; Emenike et al., 2020; Kolawole et al., 2011; Owamah, 2020) and
dispersion of the mean using bar plots with error bars (as SE) (Ewuzie
et al., 2020). However, the usage of error bars is strongly discouraged
since they only reflect the variation of data (or mean) but not the error in
measurement (Krzywinski and Altman, 2013). The preferred alternatives
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are the boxplot, quantiles, and the distribution-free bootstrap (see
Davison and Hinkley, 1997 for bootstrap method).

Figure 4 illustrates the visualisation of descriptive statistics of water
quality data. Bar plots with error bars (a) and boxplot (b) were con-
structed using the same scale to showcase the suitability of the boxplot
already explained above. Meanwhile, the data distribution was positively
skewed; thus, boxplot, as can be visualised is a better choice showing the
median, percentiles, outlying values, and extreme values in a single plot.
It is also shown in Figure 4a that the whiskers (representing ‘�SD’)
extended into negative, which is not intuitive and further buttresses the
inappropriateness of using error bars to represent the variability of data
in this instance.

3.3.2. Visualisation of preferred approaches to CA and inferential statistics
Part of this sub-subsection is dedicated to visually showing the cluster

results of raw skewed data and those resulting from various stand-
ardisation methods. This simulation is made to buttress the need for
adequate knowledge of the right statistics to be used without resulting in
misclassification of variables. The dataset described in section 3.3 was
used here. Figure 5 shows heatmaps of different clusters for the trace
metals depending on the data used. Based on Figure 5, it could be
inferred that the reviewed articles that performed cluster analysis
without any form of standardisation would have had a different classi-
fication should their data have been standardized or normalised, which is
the preferred approach. That means that even those that performed z-
score standardisation (seen in almost all the reviewed articles that per-
formed standardisation) but their data did not have an approximately
normal distribution might still have wrongly grouped the variables. For
instance, clustering the metals in the raw skewed data in Figure 5a, Cu
and Ni belonged to the same cluster while Co was in an entirely separate
cluster group. Conversely, the cluster analysis of the normalised data
(which is preferred for skewed data) put Cu and Co in a cluster instead,
but Ni was seen in another cluster, yet in the same cluster group with Cu
and Co (Figure 5c). In a hierarchical cluster diagram below shown as
heatmaps, different similarity measures can be used including complete
linkage, average linkage, and Ward's linkage, which may result in
different clusters. However, proper water quality data standardisation or
normalisation is required, irrespective of the similarity measure used and
depending on the properties of the data.

Furthermore, using heatmaps of correlated variables, we also show
that the articles that had small sample sizes and did not transform their
data, which might have violated the distributional assumption, possibly
had false correlations by employing Pearson correlation method. The
implication is that the strong correlation they reported for some variable
pairs was indeed weak or not correlated and vice versa. For such skewed
data, such anomaly could be averted by transforming the data or using a
suitable nonparametric test, in this case, Spearman. Using the simulated
dataset, log-transformation was not possible since some of the metals
have zero concentrations. Therefore, using heatmaps, Spearman method
was shown to possess more power in showing the variable pairs that were
significantly correlated. For instance, the Co–Cu pair with a correlation
coefficient of �0.5 when the Pearson method was applied had an
increased coefficient of �0.7 when the Spearman method was used
(Figure 6). Moreover, it is noteworthy that the strength of the correlation
coefficient is not the reason for selecting the Spearman method; instead,
it is a distribution-free method suitable for small-size skewed data.

In comparing group means using ANOVA, for instance, the distribu-
tion of the residuals should be approximately normal before using it (Sub-
section 3.2.3.1); otherwise, Kruskal-Wallis rank test may be used. The
dataset described earlier (Section 3.3) was used to simulate this ‘be-
tween-group's means' test. Firstly, it was possible to test for the normality
of the residuals through statistical (Shapiro-Wilk test), and visual
(normal Q-Q plot) tests in R. The p-value obtained (Shapiro-Wilk
normality test: W ¼ 0.72833, p-value ¼ 1.319e-13) was <0.05. The Q-Q
plot in Figure 7 corroborates the p-value of the Shapiro-Wilk test, indi-
cating non-normal distribution of the residuals. The deviation of the Q-Q

https://doi.org/10.17632/6dzmn2kb7m.1
https://doi.org/10.17632/6dzmn2kb7m.1
https://www.R-project.org


Figure 4. Illustration of (a) regular (bar plot with SD as error bars) and (b) preferred (boxplot) visualisation of skewed data.

Figure 5. Simulated heatmaps of (a) raw, (b) z-score standardized, and (c) range scale normalised data for cluster analysis.
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plot from the straight line further shows the skewness of the residuals. All
these suggested that the dataset's preferred approach for testing “be-
tween-group's means” was the distribution-free Kruskal-Wallis test.
Lastly, the p-value of this non-parametric tests (Kruskal-Wallis chi-
squared ¼ 7.7416, df ¼ 4, p-value ¼ 0.1015) does not shows enough
evidence to reject the null hypothesis. Thus, we conclude that there is no
significant difference among the mean concentrations of the trace metals
in the stream samples.
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3.3.3. Reporting of rounded zeros
Several reporting approaches for rounded zeros were used in the

reviewed articles (Supplementary Table S3). Some papers presented
them as ‘zeros’, ‘ND’ (not detected), ‘<MDL’ (less than method detection
limit), ‘<IDL’ (less than instrument detection limit), <LoQ (less than
limit of quantitation) and ‘<DL’ (less than detection limit); while the
others did not provide tables to showcase how rounded zeros were pre-
sented. Although it may be true that ascertaining the detection or



Figure 6. Simulated heatmaps of (a) Pearson correlation, and (b) Spearman correlation.

Figure 7. Simulated Q-Q plot of the residuals against the theoretical quantiles.
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quantitation limits of most volumetric methods of acquiring water
quality data presents some difficulties, researchers should endeavour to
determine these limits, more especially for instrumental methods.
Therefore, it is inappropriate not to perform these method performance
evaluation procedures (and not to report them in scientific articles) but
report concentrations of variables as “zero” or “ND”. However, if “ND” is
written in tables for individual variables, their reporting limits (or at least
the equipment detection limit) should be given. Additionally, while it is
not uncommon to report values as less than the equipment detection
limit, we suggest that reporting limits (such as LoQ or MDL) are used,
which are more robust because their determination is performed with
higher levels of certainty.
3.4. Comparison with some published papers from other countries

For physicochemical parameters, we reviewed about 13 scholarly
articles on water quality assessment studies in other countries, including
China, India, Nepal, Sri Lanka, Bangladesh, Angola, Ghana, and Taiwan.
The result in Table S4 shows that non-reporting of vital steps in data
analysis and inappropriate statistics are common in many regions. For
example, some articles used boxplot to present their descriptive statistics
as a result of obvious skewness of their data, but at the same time
tabulated mean and standard deviation (Chai et al., 2021; Koliyabandara
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et al., 2020; Liu et al., 2021). The preferred reporting of non-normally
distributed data was observed in an article where boxplot, and median
and range (in a summary table) were used (Wątor and Zdechlik, 2021).
Reporting of skewed data with mean � SD was also identified in some of
these articles. Still, we hope that this article and other related articles
would be a reference guide for appropriate usage of these statistics.
Additionally, some papers (about 46%) standardized (z-score stand-
ardisation) their data before performing statistical analysis such as PCA
and CA (Table S4), which might not have sufficed for highly skewed data
(see section 3.3.2). Generally, the trend in statistical data analysis and
reporting observed in the reviewed papers strongly buttress the necessity
for the continuous promotion of the correct application of statistical data
analysis and reporting of water quality data.
3.5. Alternative approaches to commonly used water quality assessment
methods

From this literature analysis, we could say that the traditional sta-
tistical methods are not in any way less of methods for water quality data;
thus, we earnestly advocate their adequate knowledge and appropriate
usage. Yet, alternative approaches are not unnecessary as they would at
least add varieties to available statistical methods. For instance, per-
forming statistical analysis in environments such as MATLAB and R are
fast and add several enhancements to the graphical presentation of data
compared to the output of standard software. Moreover, another area
worth considering in water quality assessment in Nigeria is artificial in-
telligence (AI) and the use of online instrumentation.

3.5.1. Machine learning and deep learning methods for water quality
assessment

Machine learning (ML) could be seen as a field of artificial intelli-
gence, which involves algorithms that allow computer systems to deduce
patterns from data (Hosseini et al., 2020). Alternatively, it is a process
designed for a machine to practically learn from an input dataset, develop
a structure, and improves it through the data for a specific purpose. Deep
learning (DL) is a subfield of machine learning, designed to allow
computational models with multiple hidden processing layers to learn
data representations with numerous echelons of abstraction. Currently,
research is being intensified in the use of these soft computing techniques
in water research as well (Barzegar et al., 2017; Hosseini et al., 2020;
Zhou et al., 2020). Although traditional models have been used for this
purpose, the complexity in hydrogeochemical processes of different
water systems requires more advanced techniques (Zou et al., 2020).
Therefore, these artificial intelligent models have becomemore adequate
alternatives to ensure adequate water quality assessment and prediction.
Incessant improvements have been made in this regard, going from
standalone to hybrid architectures (Rajaee et al., 2020), which have been
proven to offer better predictive performance by utilizing a feature
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optimization or a data preprocessing method. This area is relatively new
in Nigeria and has not been fully utilized, at least not in water quality
research. Therefore, we reviewed the commonly used machine and deep
learning methods to find adequate models that will be suitable for the
type and size of data being generated in water quality assessment in
Nigeria. Consequently, we urge environmental scientists in Nigeria to
develop the capability and take advantage of these cost-effective yet
accurate and time-saving techniques in assessing water quality.

3.5.1.1. Machine learning methods. The need to develop low-cost and
efficient methods for processing huge amounts of linear and non-linear
data led to the emergence of ML and DL (Najah Ahmed et al., 2019).
Several research works have employed ML for assessing and predicting
different water quality variables using various model architectures. Some
widely used ML models include Artificial Neural Networks (ANN), Sup-
port Vector Machine (SVM), and Decision Tree (DT) (Kim et al., 2014).

Artificial neural network (ANN) has turned out to be a widely
employed ML tool, not only in fields of medicine and ecology (Gredell
et al., 2019), but also in quality management of various water resources
(Khan and See, 2016; Najah Ahmed et al., 2019). ANN is believed to
imitate the nervous system networks of the human brain (Khan and See,
2016; Haghiabi et al., 2018); there is a transmission of input signal in a
forward direction, from one layer to the next through a network of neu-
rons. This process is known as feed forward propagation because the
weights,w assigned to each interlayer link aremultiplied by the input and
the resulting value proceeds forward to the next layer until it gets to the
output layer (Khan and See, 2016). Furthermore, in another process called
recurrent or feedback propagation, the signal can flow in forward and
reverse directions through a specific part or the entire network. In recent
times, ANN has been used in other countries to estimate and predict
various water quality variables such as nitrate, pH, alkalinity, turbidity,
E. coli, dissolved oxygen, chlorophyll-a, Ca2þ and Mg2þ (Al-Mukhtar and
Al-Yaseen, 2019; Chou et al., 2018;Mamun et al., 2020;Mohammed et al.,
2018). Hence, such studies in Nigeria would ensure the sustainability of
water resources through an efficient monitoring system.

It is noteworthy that ANN provides accurate predictions irrespective
of measurement error, does not demand the knowledge of the mathe-
matical forms of the association between the input variables and their
corresponding outputs, and has fast data processing (Farmaki et al.,
2010). Conversely, overfitting (i.e., training data too well, leading to
failure to reliably predict future variables) can occur as a result of using
many weights, and failure to generalise well when limited data are used
for training is imminent (Farmaki et al., 2010). Interestingly, a selection
of neural network architectures that are based on feed forward propa-
gation namely: Multilayer Perceptron Neural Network (MLP-ANN or
MLP) and Radial Basis Function (RBF-ANN) have exhibited satisfactory
potentials to overcome some of the challenges of the standalone neural
network. For instance, MLP-ANN has the potential to overcome over-
fitting that is peculiar to ANN (Farmaki et al., 2010), and can handle
non-linear data, which is a demerit of a single layer neural network
(Solanki et al., 2015). Similarly, RBF-ANN is advantageous due to its
reliability and robustness in noisy data, faster network convergence and
training, and ability to adequately generalise with lower samples to
variables ratio (Huang and Yang, 2020).

Support vector machine (SVM) depends on Vapnik's theory, a statis-
tical learning theory, which uses limited amount of data to achieve a high
level of generalisation and prediction accuracy (Barzegar et al., 2017).
Additionally, SVM is typified by an effective mechanism for circum-
venting overfitting, which results in good performance of the model
unlike ANN (Haghiabi et al., 2018). Support vector machine has been
utilised in conjunction with genetic programming to predict some water
quality variables (Joslyn, 2018). It was noted that SVM yielded a high
accuracy of 98.4% and 97.9% for temperature and dissolved oxygen,
respectively. However, long prediction time seems to mar the benefits
derived using SVM (Barzegar et al., 2017).
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In decision tree machine learning, each tree node represents an
attribute, each branch (link) represents a decision, while each leaf rep-
resents an outcome. The design and interpretation of DTs are simple,
accurate, and can handle high dimensional data. DTs offer various ad-
vantages such as ability to handle mixed data and missing values, resis-
tant to outliers, and have the ability to manage irrelevant inputs; their
lack of hidden layer enables better modelling performance (Bui et al.,
2020). However, DTs may also suffer the drawback of overfitting.

3.5.1.2. Deep learning methods. Deep learning models can perform
multiple nonlinear transformations due to numerous layers of computa-
tional units at each layer (Zhou, 2020). A DL method is a representation
learning method with various levels of representation derived from
combining simple but non-linear segments that each transforms the
representation at one level into another higher and more abstract rep-
resentation level (Lecun et al., 2015). A unique characteristic of DL is that
the layers of features are not pre-design by human; instead, they are
learnt from data using general-purpose learning procedures (Lecun et al.,
2015). Convolutional neural network (CNN) and Recurrent neural
network (RNN) are some of the DL architectures. While CNN is dedicated
to solving image processing challenges, RNN finds application in
modelling sequence data such as audio, text, or time series for predictions
(Lecun et al., 2015). Moreover, long short-term memory (LSTM) and
gradient recurrent units (GRU) are two specialised RNNs that are
designed to compensate for the short-termmemory that undermines RNN
resulting from the backpropagation algorithm used for its training (Lecun
et al., 2015). Amongst other DL models, CNN and LSTM have been used
to predict water quality variables such as dissolved oxygen,
chlorophyll-a, NH3–N, pH, and COD with acceptable accuracy (Barzegar
et al., 2020; Zhou, 2020; Zou et al., 2020).

Summarily, the input dataset is primarily an important element in
water quality prediction. Considering the above AI models, it may be
inferred that, owing to the nature of the data generated in water quality
research in Nigeria, we could leverage the various benefits of ML models
(not DL models) for the time being. A case in point is that our data
collection method is centered on the traditional grab sampling and
analysis (laboratory instrumentation), which preclude the acquisition of
time series data needed for most DL modelling. Besides, most of the pa-
rameters of interest for the preliminary water quality evaluation can be
accurately estimated and predicted using ML models. Also, the relatively
small size of the data generated using laboratory instrumentation, as seen
in the reviewed articles, warrants the application of ML, particularly ANN
and SVM that can achieve a high level of generalisation and prediction
accuracy using a limited amount of data (Barzegar et al., 2017).

3.5.2. Water quality assessment using online instrumentation
Water quality assessment is gradually shifting from traditional grab

sampling and analysis to online instrumentation. As observed from this
review, our data collection method was mainly laboratory instrumenta-
tion; thus, it would be desirable to take advantage of online instrumen-
tation. Water quality data have been reportedly collected from different
study locations using automated sensors (Zhou, 2020). Although it has
shortcomings such as ‘missing data’, methods have been put in place to
either fill or augment the missed data (Zou et al., 2020). Monitoring
water quality with online instruments has been admitted as dependable
and low-cost, taking care of low-frequency monitoring that typifies grab
sampling with its many drawbacks. These include the high cost of anal-
ysis, the time lag in collecting data, and the difficulty of accounting for
scenarios that transpire during sampling intervals (Castrillo and García,
2020). For microbiological assessment, researchers are developing bio-
sensors that aim to provide almost real-time results of the microbial
parameters of interest (Tatari et al., 2016). This technology will help
overcome the major drawbacks in conventional analyses, including the
days-long incubation time required to provide results and the laborious
processes involved (Tatari et al., 2016). These systems are especially
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critical in water quality monitoring, where a rapid response to potential
contamination events is necessary to protect public health (Lopez-Roldan
et al., 2013). Optical online bacteria sensors that function within a
10-minute time resolution are currently available (Højris et al., 2016).
They are based on the optical properties of the water sample and the
analytes (including the microorganisms) contained in it (Lopez-Roldan
et al., 2013).

Tatari and co-workers surveyed some of the biological sensor tech-
nologies that were available in the market at that time (which had po-
tential or were being validated for use for drinking water). They classified
these technologies into three categories, namely: (a) those that detected
specific indicator organisms (enzyme activity), (b) those that assayed for
the total bacteria concentration, and (c) those that assayed for the total
bacteria activity (Tatari et al., 2016). These systems can either detect the
presence of thermotolerant coliforms (and specifically E. coli) or estimate
the density of the total number of bacterial cells in a sample of water and
does so in rapid time (Lopez-Roldan et al., 2013; Tatari et al., 2016).

3.6. Areas of deficiency in water quality research in Nigeria

The implementation of appropriate data analysis and reporting for
water quality data will undoubtedly boost the researcher's confidence in
Nigeria and bring out the desired advancement in water research.
Additionally, funding and collaboration could help improve not only
research on water quality but also environmental science research in
general, but these areas are defective. Firstly, funding is needed for any
meaningful research to be carried out, but in developing countries such
as Nigeria, researchers are almost always financing their research.
Although, this could be partly blamed on researchers who should come
up with quality proposals worthy of financing by local or international
funding agencies. However, the pitiable state of science laboratories
coupled with dwindling power supply, persistent lecturers’ strike, and
non-payment of salaries are all contributors to poor research output in
Nigeria. To further buttress the above points, only 22.8% (28 of 123) of
the reviewed articles received funding from either local or international
funding bodies (Table S2). Moreover, 10 out of the 28 articles were
locally funded by bodies such as Tertiary Education Trust Fund (TET-
Fund), Niger Delta Development Commission (NDDC), and Petroleum
Technology Development Fund (PTDF) in Nigeria. The authors also
observed that the studies that received funding had elaborate studies,
consequently publishing their works in relatively high impact journals.

Last but certainly not least is the collaboration among researchers in
different fields, local institutions, and foreign institutions. It is obvious
what collaboration can do in research. Research groups can collaborate
with others in the same or other institutions, leverage their knowledge or
equipment, form formidable research allies, and produce quality research
output. Indeed, this is not the case in most developing countries such as
Nigeria, at least not in water quality research. It was gathered from the
reviewed papers that approximately 34.1% of the studies were carried
out by researchers in a single department in an institution (Table S2). A
case in point is that a single department may not be able to produce
comprehensive research for water quality, especially when all the pa-
rameters are involved. Furthermore, the authors observed that most
departments undertook studies outside their field without a report of
consulting a researcher in the other departments. For instance, a
researcher in the Physics Department handling physicochemical param-
eters, while a researcher in the Chemistry Department determining
microbiological parameters without any contribution from a microbiol-
ogist. Overall, having also reviewed other papers from the developed
countries, the authors, therefore, opine that collaboration is necessary for
boosting water quality research in Nigeria.

4. Conclusion

This article has provided instances in the Nigerian context (but
applicable in other countries) where analysis and reporting of water
12
quality data could be misleading; thus, should be avoided. Notwith-
standing, preferred analysis, numerical reporting, and visualisation of
water quality data were illustrated for use by researchers. Obviously, it
may not be imprecise to say that the issues raised in this review are not
only peculiar to water research but also to other environmental studies in
Nigeria and other countries. Therefore, using a part of the dataset from a
previous study was necessitated to simulate visuals and heatmaps
showing various preferred approaches to presenting descriptive and
some inferential statistics of water quality data. More so, researchers are
encouraged to leverage the versatility of artificial intelligence in the
assessment and prediction of water quality. Moreover, the type and size
of data that can be generated through laboratory experimentation are
shown in this review. Thus, MLmodels, especially ANN and SVM that can
achieve a high level of generalisation and prediction accuracy using
limited amount of data, are the most appropriate AI architectures to start
with. This literature survey conveys an important message to experts,
students, researchers, government administrators, and the public about
existing knowledge and proffers solutions where there were drifts.
Therefore, if subsequent water quality studies in Nigeria and other
countries would close the gaps revealed in this literature analysis about
data collection, analysis, and reporting, the inferences from water
research studies would serve as a veritable tool for the protecting water
resources.
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