
Seong et al. BMC Public Health         (2022) 22:1593  
https://doi.org/10.1186/s12889-022-13973-5

RESEARCH

Development of an integrated fatigue 
measurement system for construction workers: 
a feasibility study
Sojeong Seong1, Soyeon Park1, Yong Han Ahn1,2 and Heejung Kim3,4* 

Abstract 

Background:  Construction workers working in physically and mentally challenging environments experience 
high levels of occupational fatigue, which is the primary cause of industrial accidents and illnesses. Therefore, it is 
very important to measure fatigue in real time to manage the safety and health of construction workers. This study 
presents a novel approach for simultaneously measuring the subjective and objective fatigue of construction workers 
using ecological momentary assessment (EMA) and smartwatches. Due to the complexity and diversity of construc-
tion site environments, it is necessary to examine whether data collection using smartwatches is suitable in actual 
construction sites. This study aims to examine the feasibility of the integrated fatigue measurement method.

Methods:  This study comprised two phases: (1) development of an integrated fatigue measurement system for con-
struction workers, and (2) a validation study to evaluate the method’s feasibility based on sensor data acquisition, EMA 
compliance, and feedback from construction workers in the field (N = 80). Three days of biometric data were collected 
through sensors embedded in the smartwatches for objective fatigue measurement, including heart rate, acceler-
ometer, and gyroscope data. Two types of self-reported data regarding each worker’s fatigue were collected through 
a researcher-developed EMA application. The acceptability and usability of this system were examined based on the 
researchers’ observations and unstructured interviews.

Results:  Based on the standardized self-report questionnaire scores, participants were classified into high (n = 35, 
43.75%) and low (n = 45, 56.25%) fatigue groups for comparison. The quantitative outcomes did not show a statisti-
cally significant difference between the two fatigue groups. Both groups experienced positive emotions and were 
able to recognize their health condition at the time of self-reporting, but stated that responding to this measurement 
system could be burdensome.

Conclusions:  This feasibility study provides a unique understanding of the applications of EMA and smartwatches for 
safety management in the construction workforce. The developed measurement system shows potential for monitor-
ing fatigue based on the real-time collection of relevant data. It is expected that by expanding this integrated system 
through further research and onsite application, the health and safety of construction workers can be improved.
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Background
Construction workers experience high levels of occupa-
tional fatigue because they work in physically and men-
tally challenging environments. Occupational fatigue is 
the primary cause of industrial accidents due to increased 
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work errors and reduced awareness of dangerous situa-
tions [1–3]. In 2019, the number of deaths in the private 
construction industry increased to 1061, the highest since 
2007 [4]. In the United States, more than 200,000 cases 
of injuries and illnesses were reported among construc-
tion workers in 2019, resulting in a total of 79,700 days of 
labor loss [5]. Therefore, it is necessary to decrease the 
occupational fatigue of construction workers to ensure 
improved safety and health at construction sites.

Fatigue is defined as a loss of efficiency and lassitude 
or exhaustion resulting from bodily labor or mental exer-
tion that inhibits motivation for any type of effort [6, 7]. 
Considering the complex and multidimensional nature of 
fatigue, there is ongoing research on measuring fatigue. 
Researchers have often focused on the causes and effects 
of fatigue as substitutes for fatigue itself [7, 8]. Previous 
studies identified factors that cause fatigue, for exam-
ple, sleep deprivation, long work shifts, and demanding 
physical or mental activities [3, 7]. Several researchers 
reported a reduction in safe working behavior, job perfor-
mance, productivity, teamwork, and morale as a result of 
excessive fatigue [1, 7].

Many studies have traditionally used self-reported 
questionnaires to measure occupational fatigue [9–12]. 
The subjective measurement of fatigue is based on the 
perception of symptoms that people experience when 
they feel physically, mentally, and functionally exhausted 
[8]. When subjectively measuring fatigue, evaluating 
self-reported symptoms of mental and physical fatigue is 
typical [8, 13, 14]. However, certain questionnaires suf-
fer from methodological limitations in the assessment 
of objective and real-time fatigue, because most of these 
measures require recalling the past few days, weeks, or 
months [15]. Several studies suggest that it is necessary 
to measure real-time fatigue multiple times in a day to 
consider the characteristics of rapid changes in fatigue [8, 
16]. Ecological momentary assessment (EMA) could be 
applicable in this regard.

EMA is defined as a subjective and repetitive evalua-
tion of time-varying variables in real time under natu-
ral settings [17]; it is a method of repeatedly collecting 
the data reported by subjects in real time for individual 
symptoms, affects, and behaviors in a natural environ-
ment [18]. It allows research participants to report emo-
tions, thoughts, and behaviors experienced through 
portable electronic devices (such as smartphones, actig-
raphy, and personal digital assistants) that they can 
carry in their daily lives [19–21]. Compared with ret-
rospective self-reports, EMA is advantageous in that it 
decreases the subject’s recall bias and can also evaluate 
temporary associations among several variables simul-
taneously [17, 18]. It provides information pertaining 
to the contextual changes in subjects [18, 22]. Recently, 

EMA has been applied in several health studies to 
understand depression, addiction, and general fatigue 
[17, 20, 21, 23–25]. However, no attempt has been made 
yet to use this method to assess occupational fatigue of 
construction workers.

Researchers from diverse fields have developed fatigue 
instruments using new technologies. Objectively observ-
able variables include neuronal activity or cardiorespira-
tory metrics [26, 27]. Objective fatigue measurements 
detect physiological indicators (for example, skin temper-
ature, electroencephalogram, heart rate, muscle fatigue, 
eyelid movement, and energy consumption of physical 
activities), biometric indicators (for example, posture 
change, jerk, and head nodding), and cognitive fatigue 
indicators (for example, reaction time) [8, 15]. Although 
this approach provides real-time objective proxy data, it 
fails to capture subjective data. Thus, it is necessary to 
integrate both subjective and objective measures simul-
taneously to comprehensively capture real time data with 
respect to the natural environment [13, 16, 28].

Several studies have focused on testing wearable sen-
sors for the objective measurement of the fatigue of 
construction workers [26, 27, 29]. These studies used 
physiological metrics such as heart rate, surface elec-
tromyography, and skin temperature [2, 26, 27, 29–31]. 
Previous studies quantified physical fatigue [26, 31] and 
verified the accuracy and reliability of wearable sensing 
technology to measure the physical fatigue of construc-
tion workers in real time through physiological metrics 
[27, 29]. However, the majority of these studies were 
conducted with a relatively limited sample size in a con-
trolled laboratory environment, rather than in the real 
world and natural environment [2, 27, 30, 32]. Due to 
the complex and diverse working environment of a con-
struction site, it is necessary to examine whether data 
collection using wearable sensors is suitable at actual 
construction sites. Thus, this study aims to examine the 
feasibility of both subjective and objective fatigue meas-
urements using wearable devices for construction work-
ers. We (1) developed an integrated system to measure 
the fatigue of construction workers using both subjec-
tive and objective data; (2) examined the feasibility and 
usability of applying this newly developed system for 
construction workers in the field; and (3) discussed the 
contextual and methodological challenges during the 
implementation of this system.

Methods
This study comprises two phases: (1) development of an 
integrated fatigue measurement system for construction 
workers using both subjective and objective real-time 
data and (2) evaluation of feasibility and usability based 
on the feedback of construction workers in the field.
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Phase 1: development of an integrated fatigue 
measurement system
This measurement system includes a smartwatch (Galaxy 
Watch Active 2; Samsung Electronics Co., Ltd., Repub-
lic of Korea), an application for sensor data collection, 
LASoR (LK2 Consulting, Republic of Korea), and the 
developed EMA application as well as a smartphone 
(Galaxy S7 or later released; Samsung Electronics Co., 
Ltd., Republic of Korea). Our interdisciplinary research 
team developed the integrated fatigue measure using 
both wearable devices and the EMA methodology. The 
interdisciplinary research team comprised construction 
management, nursing, data science, and IT experts for 
sensor data collection. We conducted a preliminary sur-
vey on 108 construction workers and selected a smart-
watch as the wearable device. We also consulted user 
interface designers who confirmed that the user interface 
design of the EMA application was better supplemented 
by inserting emoticons, such as by applying a color scale. 
The collected EMA data were stored in local storage. In 
addition, the smartwatch sent the collected sensor data 

to the smartphone via Bluetooth in real time, and the 
smartphone sent the data to the cloud server via Wi-Fi 
every hour (Fig. 1).

Smartwatch and smartphone
The main hub of our system is a smartwatch (Gal-
axy Watch Active 2; Samsung Electronics Co., Ltd., 
Republic of Korea) and smartphone (Galaxy S7 or later 
released; Samsung Electronics Co., Ltd., Republic of 
Korea). The product dimensions of the smartwatch are 
1.6 × 1.6 × 0.41 in., and its weight is 26 g. It has an inter-
nal storage of 1.4 GB and a battery life of up to 95 h per 
charge. This smartwatch was selected due to its sev-
eral advantages. Being based on the Korean language, 
it has an easy-to-understand interface compared with 
other products. In addition, it is also more user friendly 
because it provides various applications and functions 
that are well-integrated in the Android OS that is mostly 
used by Korean construction workers. It also uses Wi-Fi 
and is efficient at sending data.

Fig. 1  Integrated fatigue measurement system procedure
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Application for sensor data collection, LASoR
This smartwatch consists of several passive sensors 
including an accelerometer, gyro sensor, heart rate sen-
sor, light sensor, and global positioning system. It can col-
lect various biometric signals, including physical activity, 
sleep patterns, and psychological distress. The biometric 
data collected through sensors embedded in the smart-
watch include heart rate, three-axis accelerometer, and 
three-axis gyroscope data. Heart rate is the most widely 
used form of physiological information for personal 
health status [2, 33]. Photoplethysmography (PPG) sen-
sors are used to measure heart rate. Accelerometer and 
gyroscope data are collected to evaluate the amount of 
activity of workers. In previous studies, the feasibility 
of recognizing the activity of workers was verified using 
smartwatch acceleration data, without interfering with 
their ongoing work [34, 35]. The three-axis acceleration 
is the acceleration force data along each axis (x, y, and z 
axes) collected from the accelerometer, and the three-
axis gyroscope is the rotational speed around each axis. 
These data can be used to detect motion and measure the 
amount of activity. The three-axis accelerometer, which 
measures inertial body motions, provides information-
rich data regarding the workers’ activities, without con-
siderable additional computational expenses [36].

EMA application
We developed the EMA application to load on the smart-
watch. Our interdisciplinary research team consulted 
construction site managers and occupational nurses to 
detect symptoms of fatigue in a timely manner without 
interfering with the daily lives of the construction work-
ers. We have developed applications for smartwatches 
that can respond to questions, considering that it is dif-
ficult for construction workers to use their smartphones 
to respond while working. Because construction workers 
wear protective gloves during work, the application was 
developed such that they can respond even when wearing 
gloves by pressing a button on the smartwatch.

The EMA app collected two types of self-reported data 
regarding the worker’s fatigue. First, the worker reports 
the overall fatigue levels after receiving an hourly alarm 
prompt (hereinafter referred to as EMA (type 1)). The 
worker answers the second EMA question regarding the 
participant’s fatigue symptoms four times a day when (a) 
starting the work, (b) taking regular breaks, and (c) fin-
ishing the work (hereinafter referred to as EMA (type 2)). 
Five specific questions were extracted from the Korean 
version of the Swedish occupational fatigue inven-
tory (K-SOFI) [16] to evaluate momentary occupational 
fatigue among construction workers. In this study, the 
fatigue level was measured on a 6-point Likert scale (0 = 

“not at all”, 5 = “severe fatigue”). Originally, the SOFI was 
on a 7-point Likert scale (0 = “not at all”, 6 = “very high 
level”) [9]; however, we revised it to a 6-point Likert scale 
based on the findings from interviews with construction 
site managers and several construction workers that high 
levels of fatigue were not frequent [16].

Phase 2: validation study to evaluate feasibility
In the second phase, we collected the data from 100 con-
struction workers in the field and evaluated data acqui-
sition, compliance with EMA, feasibility, acceptability, 
and usability. Feasibility of this developed system was 
assessed in line with recommendations of previous stud-
ies [18, 37, 38] using the following metrics: (a) sensor data 
acquisition rates as an objective fatigue measurement, (b) 
rates of EMA compliance as subjective fatigue measure-
ment, and (c) self-reported acceptability and usability of 
smartwatch-based EMA. All study participants provided 
informed consent, and the study design was approved by 
the Institutional Review Board of the affiliated univer-
sity (IRB No. XXX-2019-11-001 for anonymous review). 
Researchers explained the purpose, protocol, and strate-
gies to the construction site manager working on site to 
protect personal information.

Study participants
Because this feasibility study measured fatigue by using 
EMA and collecting physiological data of construction 
workers, the sample size was determined by referring 
to previous studies. First, according to studies related to 
physiological data collection of construction workers, 
the advantage of sensor data measurement is that it can 
be analyzed with relatively few subjects (10–25 people) 
compared to self-report studies such as surveys [2, 26, 27, 
29]. Second, in previous studies on the EMA of fatigue, 
approximately 40–80 participants were analyzed [23, 39, 
40]. The number of subjects to be used for analysis was 
chosen to be 80, referring to previous studies, and the 
sample size was calculated as 100 corresponding to the 
expected dropout rate of 20%.

A sample of 100 Korean construction workers was 
enrolled from five construction sites. Participants were 
recruited via an announcement posted on the bulletin 
boards or via word-of-mouth, and the construction site 
managers assisted recruiting the participants. The inclu-
sion criteria were as follows: (1) age ≥ 19 years, (2) the 
ability to use a smartwatch and smartphone, and (3) the 
ability to understand the EMA instructions. The exclu-
sion criteria were as follows: (1) non-Korean workers and 
(2) workers using a smartphone other than an Android 
smartphone. After checking the data completeness, 
seven participants were excluded from the analyses due 
to data for classifying fatigue groups. Of the 93 study 
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participants, 80 completed the entire protocol: (a) five 
dropped out during data collection due to device connec-
tion problems, (b) six dropped out due to work schedule 
changes, and (c) two dropped out by accidentally unin-
stalling the EMA app during the study. The final data 
of 80 participants were included for the data analyses 
(Fig. 2).

Measures
Study participants completed the baseline questionnaires 
on the socio-demographic, work-related, and health-
related characteristics. Socio-demographic character-
istics included age, sex, marital status, education, and 
living status. Work-related characteristics include work 
experience, working hours of a day, employment form, 
and working intensity. Health-related characteristics 
include height, weight, smoking, drinking, and exercise.

K-SOFI was used to assess fatigue levels at the base-
line for classification into the high and low fatigue 
groups [16]. The SOFI is internationally used to meas-
ure self-reported fatigue [9]. It comprises measures for 
lack of energy, physical exertion, physical discomfort, 
lack of motivation, and sleepiness (range: 0–120) [13]. 
The Korean version of the SOFI has demonstrated suit-
able reliability (Cronbach alpha ranging from .70 to 
.90) and has been tested on construction workers [16]. 
Based on the mean value of the K-SOFI of the partici-
pants, 1.56 (SD = 1.28), the high fatigue (higher than 
1.56) and the low fatigue groups (lower than 1.56) were 

classified through a group comparison, based on the 
data acquisition rate or compliance with EMA.

Data collection procedure
The data were collected using standardized self-report 
questionnaires, K-SOFI, and the smartwatches with 
the EMA application were installed between July and 
November 2020. Our strategy was to evaluate construc-
tion workers’ fatigue over three working days using 
the developed system. The research team installed an 
application for data transfer on their smartphones. 
Trained research assistants explained the purpose of 
the self-reported EMA and smartwatches. In order to 
facilitate accurate self-reports by the participants and 
maintain strong inter-rater and intra-rater reliability, 
we provided video supplements to explain the approach 
to EMAs and the specific fatigue symptoms depending 
on levels. Whenever needed, trained research assis-
tants additionally taught the participants to operate 
the smartwatches. Participants were expected to wear 
the smartwatch at all times, except during charging 
and bathing. To manage battery limitations, research-
ers instructed the participants to charge their smart-
watches daily. To incentivize involvement, researchers 
encouraged the completion of all measures and indi-
cated the remote monitoring of compliance; addition-
ally, participants received a reward worth US $100 
during the study.

Fig. 2  Participant flow diagram
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Results
General characteristics of the study participant
Based on the mean value of the SOFI score, 35 partici-
pants were classified as the high fatigue group (43.75%) 
and 45 as the low fatigue group (56.25%). The major-
ity of the men were middle-aged, who were married 
and living with their family. Their average work experi-
ence is approximately 11.81 ± 10.70 years. They work an 
average of 8 to 10 h each day. There was no difference 
between the high and low fatigue groups in terms of most 
of the general characteristics. However, the high fatigue 
group reported poorer levels of perceived health status 
(χ2 = 9.046, p < 0.05), and the low fatigue group reported 
longer sleep times the day before work (t = 1.786, 
p = 0.078; Table 1).

Quantitative outcomes
Sensor data acquisition rates
Three types of sensor data were collected using smart-
watches: heart rate, three-axis accelerometer, and three-
axis gyroscope data. Heart rate data is the average 1-min 
rate measured using a PPG sensor. The data of each of 
the 80 final participants were collected every second and 
aggregated into three time zones: morning work, after-
noon work, and sleep time. Valid data were sensor data 
measured from participants wearing smartwatches dur-
ing work or sleep, and a total of 9,632,061 HR, 10,840,297 
three-axis accelerometer, and 10,840,297 three-axis 
gyroscope valid data were collected. Sensor data col-
lected from smartwatches through the application were 
organized in chronological order on each participant’s 
Excel sheet. We calculated whether sensor data for each 
participant were collected without omission every sec-
ond based on the work and sleep times recorded by the 
workers. The sensor data acquisition rate for each partici-
pant was defined as the ratio of valid data to total data. 
Table  2 shows a comparison of sensor data acquisition 
rates for each fatigue group across the three time zones. 
The sensor data acquisition rate for each time zone was 
calculated as follows: the sum of the three-day valid data 
counts for each time zone divided by the total number of 
data should be collected for each time zone for 3 days. 
The mean acquisition rate of accelerometer and gyro-
scope data is 86.55% (95% CI 82.39–90.18%). However, 
the mean heart rate data acquisition rate is 76.58% (95% 
CI 70.50–81.86%), which is lower than the mean acqui-
sition rate of the accelerometer and gyroscope data. 
Among the high fatigue group, the average accelerom-
eter and gyroscope data acquisition rate is 84.40% (95% 
CI 76.02–90.75%), while for the low fatigue group, the 
average is 88.23% (95% CI 83.67–92.28%). For heart rate, 
the average data acquisition rate among the high fatigue 

group is 75.16% (95% CI 64.58–83.92%) and for the low 
fatigue group, it is 77.67% (95% CI 70.36–84.18%). There 
was no statistically significant correlation between the 
two fatigue groups across all the three types of sensor 
data.

EMA compliance rates
In a three-day experiment, two types of EMA data were 
collected using the app loaded on the smartwatches. For 
EMA (type 1), comprising a simple questionnaire on sub-
jective individual fatigue on the 6-point Likert scale, the 
maximum amount of data was 2469 during the 3-day 
study period. It was calculated as the number of times 
each participant responded per hour within the actual 
working hours. A total of 1910 (77.36%) EMA (type 1) 
data were collected, 1767 (71.57%) of which were valid 
for analysis. Some participants responded again within 
minutes to this value, although ideally, responses were 
only expected once an hour. These values were treated 
as follows: (a) if re-entered within 5 min of the first value, 
the last value was considered as valid data; and (b) if re-
entered 5 min after the first value, the average of all the 
values was considered to be the valid data. Of the 80 par-
ticipants, 65 (81.25%) recorded valid data for EMA (type 
1) at least 6 times a day on average. The EMA compliance 
rate was calculated as the ratio of valid data to the maxi-
mum amount of data for each participant. The compli-
ance rate of EMA (type 1) among the high fatigue group 
was 71.53% (95% CI 64.94–77.35%), and the compliance 
rate of EMA (type 1) among the low fatigue group was 
71.52% (95% CI 66.07–76.69%); thus, there was no signif-
icant difference between the two fatigue groups.

For EMA (type 2), consisting of five questions that 
measure momentary symptoms of fatigue, the maxi-
mum amount of data planned was 960. It was calculated 
by multiplying the number of participants (80 samples) 
with the participation period (3 days) and the number of 
changes in the work state (4 times per day). A total of 735 
(76.56%) EMA (type 2) data were collected, 618 (64.38%) 
of which were valid for analysis. The compliance rate of 
EMA (type 2) among the high fatigue group was 66.19% 
(95% CI 55.91–75.62%), and the compliance rate of EMA 
(type 2) among the low fatigue group was 62.96% (95% CI 
53.60–70.66%); thus, there was no significant difference 
between the two fatigue groups.

The difference in the two types of EMA compliance 
rates between the fatigue groups was not statistically 
significant, but the average compliance rate of the high 
fatigue group was slightly higher in both EMA responses. 
However, when analyzing the correlation between the 
general characteristics of the participant and the com-
pliance rates through further analysis, EMA (type 2) 
showed a significant correlation with age (r = −.287, 
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Table 1  Differences in general characteristics between the two fatigue groups (N = 80)

Variables Total (N = 80) High fatigue group 
(n = 35)

Low fatigue group 
(n = 45)

p

Age, mean (SD) 44.86 (11.49) 46.71 (11.40) 43.42 (11.48) .206

Work experience (year), mean (SD) 11.81 (10.70) 12.17 (9.98) 11.53 (11.34) .793

Sex, n (%) .207

  Male 78 (97.5) 35 (100.0) 43 (95.56)

  Female 2 (2.5) 0 (0.0) 2 (4.44)

Marital status, n (%)a .547

  Not married 26 (32.5) 10 (28.6) 16 (35.5)

  Married 48 (60.0) 23 (65.7) 25 (55.6)

  Divorced or separated 4 (5.0) 1 (2.85) 3 (6.7)

Education, n (%)a .701

  Middle school 4 (5.0) 1 (2.9) 3 (6.7)

  High school 34 (42.5) 16 (45.7) 18 (40.0)

  College or above 41 (51.2) 18 (51.4) 23 (51.1)

Living status, n (%)a .730

  Living alone 12 (15.0) 5 (14.3) 7 (15.6)

  Living with family members 53 (66.3) 25 (71.4) 28 (62.2)

  Living with nonfamily members 14 (17.5) 5 (14.3) 9 (20.0)

Working hour of a day, hour (%) .750

  Less than 8 h 24 (30.0) 9 (25.7) 15 (33.4)

  8 to 10 h 41 (51.2) 18 (51.4) 23 (51.1)

  10 to 12 h 12 (15.0) 6 (17.1) 6 (13.3)

  12 h or more 3 (3.8) 2 (5.7) 1 (2.2)

Employment form, n (%)a .130

  Full-time 21 (26.25) 12 (34.3) 9 (20.0)

  Dispatched 6 (7.5) 1 (2.9) 5 (11.1)

  Contract 27 (33.75) 10 (28.6) 17 (37.8)

  Temporary 19 (23.8) 11 (31.4) 8 (17.8)

  Others 6 (7.5) 1 (2.8) 5 (11.1)

Work intensity, n (%) .299

  Extremely hard 6 (7.5) 3 (8.6) 3 (6.7)

  Hard 31 (38.7) 17 (48.5) 14 (31.1)

  Normal 37 (46.3) 12 (34.3) 25 (55.6)

  Easy 5 (6.3) 3 (8.6) 2 (4.4)

  Extremely easy 1 (1.2) 0 (0.0) 1 (2.2)

Smoking, n (%) .946

  Never smoker 24 (30.0) 10 (28.6) 14 (31.1)

  Current smoker 52 (65.0) 23 (65.7) 29 (64.4)

  Past smoker 4 (5.0) 2 (5.7) 2 (4.4)

Drinking, n (%) .873

  No 22 (27.5) 8 (22.9) 14 (31.1)

  2–3 times a month 16 (20.0) 7 (20.0) 9 (20.0)

  1–2 times a week 23 (28.7) 12 (34.3) 11 (24.5)

  3–4 times a week 17 (21.3) 7 (20.0) 10 (22.2)

  Everyday 2 (2.5) 1 (2.8) 1 (2.2)

Exercise, n (%) .373

  Almost every day 4 (5.0) 2 (5.7) 2 (4.4)

  3–4 times a week 8 (10.0) 3 (8.6) 5 (11.1)

  2–3 times a week 4 (5.0) 3 (8.6) 1 (2.2)

  1–2 times a week 31 (38.8) 10 (28.6) 21 (46.7)
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p = 0.01), but EMA (type 1) did not exhibit any statisti-
cally significant correlation.

Qualitative outcomes
Acceptability and usability
The acceptability and usability of this system were exam-
ined based on the observations and unstructured inter-
views performed by the research team. Both groups felt 
positive emotions while using this fatigue measurement 
system. Based on open-ended feedback, participants 
expressed perceptions of acceptability and usability 
through representative quotes such as “assisted in recog-
nizing fatigue at the time of self-reporting” and “allowed 
me to ponder upon my health condition.” However, there 
were also negative perceptions, reflecting dissatisfaction 
or discomfort while using this system. Representative 
quotes for this perception included, “it was uncomfort-
able to wear it because I do not usually wear a watch,” and 
“sometimes I felt burdened owing to interference with 
work.” Participants also cited the burden of responding as 
reasons for EMA non-compliance owing to difficulty in 
recognizing the individual fatigue level experienced.

Problems and solution
During the study, a few problems were encountered. 
Device errors sometimes occurred while using the 
smartwatch. For example, when sensor data stored 
in the smartwatch were not transmitted to the smart-
phone in real time, they had to be transmitted manually 
by pressing the transfer button; the main reasons for 
this were that the participants had accidentally turned 
off Bluetooth or experienced interruptions in Internet 
connectivity. In addition, for a worker located under-
ground, the data transmission was delayed or data loss 
occurred due to network communication problems. 
Furthermore, the smartwatches were sometimes dis-
charged while working, despite regular charging by the 
participants. Due to the nature of work of construction 
workers, they often worked from early morning to late 
evening, which hindered securing the charging time. 
Because sleep was important for alleviating fatigue, 
we asked the participants to wear smartwatches dur-
ing sleep time to collect physiological data during sleep 
that resulted in insufficient charging time. Therefore, 
this problem could be alleviated if construction workers 

* P-value<.05
a missing data included

Table 1  (continued)

Variables Total (N = 80) High fatigue group 
(n = 35)

Low fatigue group 
(n = 45)

p

  No 33 (41.2) 17 (48.5) 16 (35.6)

Perceived health status, n (%)a .029*

  Good 15 (18.8) 3 (8.6) 12 (26.7)

  Moderate 51 (63.7) 24 (68.6) 27 (60.0)

  Poor 9 (11.3) 7 (20.0) 2 (4.4)

Sleep time the day before work, hour (SD) 6.449 (1.19) 6.186 (1.01) 6.659 (1.28) .078

Table 2  Sensor data acquisition rate by type per group

Variable Total (N = 80)
Mean (95% CI)

High fatigue group (n = 35)
Mean (95% CI)

Low fatigue group (n = 45)
Mean (95% CI)

Data acquisition rate (%) during morning work
  Heart rate 79.87% (73.59–85.17%) 77.85% (67.26–86.67%) 81.44% (73.81–88.34%)

  Accelerometer 92.75% (88.85–96.39%) 91.70% (83.15–97.61%) 93.57% (89.21–97.28%)

  Gyroscope 92.75% (88.85–96.39%) 91.70% (83.15–97.61%) 93.57% (89.21–97.28%)

Data acquisition rate (%) during afternoon work
  Heart rate 79.13% (72.48–84.68%) 79.68% (67.67–89.85%) 78.71% (70.52–85.92%)

  Accelerometer 91.41% (87.20–94.90%) 91.68% (84.01–97.94%) 91.20% (86.38–95.64%)

  Gyroscope 91.41% (87.20–94.90%) 91.68% (84.01–97.94%) 91.20% (86.38–95.64%)

Data acquisition rate (%) during sleep time
  Heart rate 67.81% (59.99–75.88%) 64.31% (49.14–76.92%) 70.52% (59.15–81.64%)

  Accelerometer 72.54% (64.68–80.17%) 65.92% (50.68–78.72%) 77.69% (68.20–86.63%)

  Gyroscope 72.54% (64.68–80.17%) 65.92% (50.68–78.72%) 77.69% (68.20–86.63%)
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wore smartwatches only during work and charged them 
at other times.

Participants were more aware of their condition and 
responded to them because EMA (type 2) was based on 
a questionnaire on five symptoms of fatigue. However, 
many of the participants said that they were significantly 
burdened because of the need to answer five questions, 
with their working state changing four times a day. Some 
participants mentioned that there were cases when they 
answered five questions without contemplating owing to 
time conflicts at the start of the work. We confirmed that 
most participants preferred to respond to EMA (type 1) 
over EMA (type 2).

Discussion
This study aims to evaluate the feasibility of using an 
integrated system to measure fatigue of construction 
worker using EMA and smartwatches. We classified 
them into high and low fatigue groups based on SOFI 
scores and collected diverse types of data, such as the 
EMA to measure subjective fatigue while working, sensor 
data to measure objective fatigue, and self-report ques-
tionnaires. The high fatigue group reported poorer lev-
els of perceived health status than the low fatigue group, 
but there was no significant difference between the two 
fatigue groups in terms of the other general characteris-
tics. The quantitative outcomes showed that there was no 
significant difference in sensor data acquisition rates and 
EMA compliance rates between the two fatigue groups; 
however, the EMA (type 2) compliance rate was cor-
related with age. The qualitative outcomes showed that 
they experienced positive emotions by being interested 
in their health condition after using our fatigue meas-
urement system. However, they also felt burdened while 
using the smartwatch because it often interrupted their 
work while responding to the scheduled EMA.

In the case of sensor data, a relatively high acquisition 
rate was realized merely by wearing a smartwatch on the 
wrist. In this study, the mean working time of partici-
pants is 10 ± 1.18 h a day, and the mean time of the accel-
erometer and gyroscope data collection is 9.3 ± 2.08 h a 
day, accounting for 92.9%. The reasons for the missing 
data are as follows: (a) Internet connection was discon-
nected for a long time due to underground work or user 
manipulation error, (b) the participant did not wear the 
smartwatch because its battery was discharged or the 
participant forgot to wear the smartwatch, and (c) smart-
watch or data-collection application errors. The mean 
of heart rate data acquisition rate was lower than the 
accelerometer and gyroscope data because there were 
missing values owing to lose attachment of smartwatch 
on the wrist. Most wristband-type wearable devices use 
PPG sensors for heart rate measurement, and several 

researchers have attempted to improve noise problems 
in heart rate data obtained from the daily exercises of 
subjects in controlled laboratory environments and to 
evaluate the accuracy of PPG-based heart rate monitor-
ing [29, 41–43]. However, because PPG signals are sensi-
tive to motion artifacts caused by user movement during 
data acquisition [29, 42], more missing values in heart 
rate than accelerometers and gyroscopes occurred due to 
signal noise, when data were collected from construction 
workers with considerable physical movements.

The findings of this study suggested that EMA is a fea-
sible and useful methodology that promises potential 
applications in the construction industry. The method 
of fatigue measurement of construction worker using 
smartwatch with EMA can provide symptoms of fatigue 
subjectively and objectively in real time. It is possible 
to monitor the individual pattern and examine fatigue 
fluctuations during a day. The two types of self-reported 
EMA data demonstrated suitable compliance rates com-
pared to other feasibility studies on EMA [37, 44, 45]. The 
use of EMA in the construction population is novel, and 
additional research is perhaps required to better under-
stand and maximize EMA acceptability and compliance 
among construction workers suffering from occupa-
tional fatigue. EMA was originally conducted individu-
ally; however, the peer-support system proved effective 
owing to the collective working environment of con-
struction workers in the current study. Despite the ten-
dency of older workers to avoid using mobile technology, 
younger coworkers assisted in responding to their EMA. 
EMA (type 1) comprising a simple question was appro-
priately collected regardless of age; however, in the case 
of EMA (type 2) comprising five questions, the compli-
ance rate was lower for older workers. Workers assisted 
one another in responding to EMA (type 1) because the 
prompt sounded at a set time during work, but in case 
of EMA (type 2) that necessitated response at a time 
when individual work status changed, the older workers 
unfamiliar with smartwatches faced difficulty respond-
ing. This suggests that effective strategies are required 
to enhance compliance and acceptability in this popula-
tion. Thus, in case of EMA (Type 2), it is necessary that 
the safety or health officers at construction sites remind 
the older workers at the start or end of work. It is also 
important to select valid questions to measure momen-
tary fatigue of construction workers. Therefore, research-
ers should consider its practicality, select the appropriate 
instrument, and train workers [17].

Through interviews with construction workers who 
participated in this study, we found that they were 
more interested in health than expected. Some partici-
pants reported faithfully responding to EMA because 
they wanted to check their health status. In previous 
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studies, most monitoring systems for application in 
construction sites focused on allowing safety managers 
or site managers to check the workers’ conditions in 
real time [2, 27, 29, 46]. Researchers of previous stud-
ies indicated that early detection of fatigue symptoms 
of construction workers in the field enables timely 
interventions such as rests [15]. Through this study, it 
is expected to enable voluntary and active safety and 
health management that motivates construction work-
ers by facilitating the recording of their fatigue condi-
tion during work.

However, several methodological issues were identi-
fied in this study, which provide valuable information 
for the further development of fatigue measurement 
systems for construction workers. Sleep is an impor-
tant factor that affects workers’ fatigue [47], but col-
lecting sleep data using a smartwatch causes battery 
discharge problems. In this study, 27.5% of the partici-
pants did not wear smartwatches while sleeping, and 
they reported the inconvenience of wearing a smart-
watch while sleeping, followed by the lack of battery 
charging time. Thus, the collection of sleep data using 
smartwatches is not feasible, and this should be modi-
fied in future studies. In addition, one of the important 
factors to consider when applying wearable sensing 
technology to the industry is the social and privacy 
issues [15, 48]. A few workers expressed concern over 
their personal information being potentially stored on 
the device. Because wearable sensing technology is 
vulnerable to data security risks, strong security meas-
ures must be adopted to protect the workers’ personal 
information from security threats for actual construc-
tion site application [49].

Overall, while the study showed acceptance and fea-
sibility of this developed system, there are several limi-
tations in this study. First, we used an instrument that 
is internationally used to assess occupational fatigue 
for classifying the participants into two fatigue groups, 
because this instrument has shown suitable reliabil-
ity and has been tested on Korean construction work-
ers [16]. However, defining a fatigue group may require 
further evaluation based on assessment of fatigue 
caused by various complex factors. In addition, the 
participants were recruited at the construction site of 
large construction companies in Korea; therefore, they 
may not appropriately reflect the general construction 
population owing to cultural and institutional differ-
ences. Hence, it is necessary to address this issue by 
evaluating the feasibility of incorporating construction 
workers belonging to various countries and cultures 
in future research. Moreover, the use of incentives and 
researchers’ bias may have caused an overstatement of 
compliance.

Conclusions
Our fatigue measurement system is a novel approach that 
integrates wearable sensing technology and EMA meth-
odology and can be utilized for subjectively and objec-
tively measuring the fatigue of construction workers. 
Many systems using wearable sensing technology have 
been developed to obtain only physiological data of con-
struction workers. Moreover, the previous studies did not 
collect actual data from workers at construction sites and 
did not adopt EMA for subjective fatigue data collection. 
By contrast, our system was applied to actual construc-
tion sites and integrated self-reported data on fatigue 
into the system leveraging EMA methodology. To obtain 
both subjective and objective fatigue data, we imple-
mented a cloud-based IoT system comprising a smart-
watch, a smartphone, and an EMA application, made 
feasible by our interdisciplinary research team through 
collaboration with several experts working in the health-
care and ICT industry. We found that objective and sub-
jective fatigue symptoms were appropriately collected 
by the proposed fatigue measurement system based on 
wearable sensing technology and EMA. The developed 
fatigue monitoring system can reduce the accident rates 
of construction workers and provide an opportunity to 
develop a fatigue management system. However, the cur-
rent feasibility study is limited to describing only a pro-
portion of data acquisition. Thus, future studies should 
further investigate detailing sensor data to develop future 
fatigue monitoring systems for the construction industry.
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