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Networks with continuous set of attractors are considered to be a paradigmatic model for
parametric working memory (WM), but require fine tuning of connections and are thus
structurally unstable. Here we analyzed the network with ring attractor, where connec-
tions are not perfectly tuned and the activity state therefore drifts in the absence of the
stabilizing stimulus. We derive an analytical expression for the drift dynamics and conclude
that the network cannot function as WM for a period of several seconds, a typical delay
time in monkey memory experiments. We propose that short-term synaptic facilitation in
recurrent connections significantly improves the robustness of the model by slowing down
the drift of activity bump. Extending the calculation of the drift velocity to network with
synaptic facilitation, we conclude that facilitation can slow down the drift by a large factor,
rendering the network suitable as a model of WM.
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INTRODUCTION
Working memory (WM) is an attentional function that enables
the online holding and manipulation of information. WM is cru-
cial to higher cognitive functions such as planning, reasoning,
decision-making, and language comprehension (Baddeley, 1986;
Fuster, 2008). The persistent activity recorded in specific groups of
neurons in several cortical areas during WM tasks is thought to be
the main neuronal correlate of WM (Fuster and Alexander, 1971;
Miyashita and Chang, 1988; Funahashi et al., 1989, 1990; Romo
et al., 1999, 2002). For example, a substantial fraction of neurons
in the prefrontal cortex (PFC) elevate their activity selectively and
persistently during the delay period of visuo-spatial WM tasks in
which a monkey has to remember the direction of a visual cue
for several seconds (Funahashi et al., 1989; Constantinidis and
Steinmetz, 2001; Constantinidis and Wang, 2004).

This selective persistent activity must be created internally since
during the delay period the sensory cue is absent. A classical view
is that this activity reflects the existence of many intrinsic states
of the PFC circuits, each of which is an attractor of the network
dynamics (Hebb, 1949; Amit et al., 1997; Seung, 1998; Wang, 2001).
Each state is characterized by a specific group of active neurons
that sustain their activity through their recurrent interactions. In
this framework, the transiently presented cue triggers the selec-
tion of a specific attractor in which network remains after the cue
has disappeared until the behavioral task is performed (the delay
period). Once the cue feature has lost its behavioral relevance the
network returns to its baseline state. Therefore, during the delay,
the neuronal activity encodes a memory trace of the cue feature.

The cue features that are kept in WM could be either of discrete
nature (categorical), such as a visual object or a spoken word, or

continuous, such as the frequency of a vibration or the spatial loca-
tion of a visual stimulus. In the first case, a paradigmatic theoretical
framework is a Hopfield-like network in which the dynamics dis-
play a discrete set of attractors (Hopfield, 1984; Amit, 1989). In
the second case, on which the present paper focuses, the relevant
framework is of a network with a continuous set of attractors.

To be specific we consider the case of visuo-spatial WM task.
A model to account for the delay activity observed in these tasks
is a recurrent network made of identical neurons with the geome-
try of a circle and a connectivity pattern such that the interaction
strength between two neurons is fine-tuned to depend only on
their distance on the ring (Amari, 1977). Therefore the network
architecture is invariant to rotation. With sufficiently strong and
spatially modulated recurrent excitation the network dynamics
possess an infinite and continuous set (ring) of attractors (Ben-
Yishai et al., 1995; Hansel and Sompolinsky, 1998). In an attractor
the activity is persistent and its profile has the shape of a “bump”
localized at an arbitrary location. A transient stimulus tuned to a
specific location on the ring, corresponding to the direction to be
memorized, selects the bump attractor which peaks at that loca-
tion. After the stimulus is withdrawn, the network remains in this
attractor (Figure 1). Therefore the network is able to encode in its
activity the memory of the cue location.

While this mechanism is an attractive general proposal for a
network basis of parametric WM, it suffers from an essential lim-
itation. Indeed, it is structurally unstable: any deviation from the
rotational symmetry, e.g., spatial heterogeneities in the connectiv-
ity or in intrinsic properties of the neurons, destroys the continuity
of the attractor set (Tsodyks and Sejnowski, 1995; Zhang, 1996;
Seung et al., 2000; Renart et al., 2003). In terms of WM, this means
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FIGURE 1 | Working memory via persistent activity. A recurrent
network of neurons (black circles) is ordered by a one-dimensional variable
θ . (A) During spontaneous activity, the network receives a spatially
homogeneous weak input (red), which results in a homogeneous profile of
neural activity (blue). (B) During the cue period an inhomogeneous input

(red), is received, peaked at a particular position θ cue. The resulting profile
of neural activity (blue) isa “bump” centered at the same position. (C)

During the delay period the network receives a spatially homogeneous
input, while the profile of neural activity remains inhomogeneous and
centered at the same position.

that during the delay period, the network state drifts toward an
attractor that is only very weakly correlated with the cue position,
leading to the loss of memory about the precise position of the
cue.

Therefore the ring model can be a biologically realistic mech-
anism of parametric WM only if the recurrent connections are
sufficiently fine-tuned to satisfy the following two conditions: (1)
to guarantee the stability of the bump activity pattern and (2) to
prevent its fast drift away from the cue position during the delay
period. Moreover, the latter condition requires much tighter tun-
ing than the former as indicated by previous analysis of this and
other continuous attractor models (Tsodyks and Sejnowski, 1995;
Zhang, 1996; Koulakov et al., 2002; Renart et al., 2003). Since there
is little experimental evidence for the degree of tuning of neocorti-
cal connections, we address this issue theoretically by considering
the ring model with strongly inhomogeneous connections that
satisfy the first condition.

Connections between PFC pyramidal neurons exhibit
increased level of short-term synaptic facilitation compared to
primary sensory areas (Wang et al., 2006). Synaptic facilitation
could be involved in WM by providing a memory trace lasting
for up to several seconds (Mongillo et al., 2008). Here we show
that short-term synaptic facilitation in recurrent interactions in
PFC may be mitigating the inherent structural instability of the
ring model by slowing down the degradation of the memory trace
during the delay period. To this end we consider a rate model
with “ring architecture” in which the symmetry of the network
is broken due to random spatial fluctuations in the connectiv-
ity. We derive analytical one-dimensional approximations of the
“bump” dynamics. This allows us to estimate the velocity of the
drift of the activity bump and hence the rapidity at which the
memory of the cue feature fades during the delay period. Sub-
sequently, we argue that without facilitation, the drift is too fast
and the number of attractors is too small for the memory trace to
be accurate over the typical duration of the delay period used in
WM experiments, which is of several seconds. However, synaptic
facilitation temporarily modifies effective connection strengths,
selectively amplifying connections between neurons that are acti-
vated by the cue. We demonstrate that this amplification tends

to pin down the bump at its initial position. We show analyti-
cally that this slows down the drift dramatically (up to a factor
of 100), so that no additional tuning of connections beyond that
required for the stability of the bump is needed. We conclude that
short-term facilitation may be essential to the stability of memory
of continuous variables over delay duration up to a few tens of
seconds.

RESULTS
WORKING MEMORY DRIFT IN THE PRESENCE OF SYNAPTIC
HETEROGENEITY
The model
We consider a recurrent network which models a local circuit in
dorsolateral PFC. It consists of a set of N units, or mini-columns,
each of which corresponds to a group of PFC neurons with sim-
ilar functional properties. The network has the architecture of a
ring, a unit being labeled by its location θ i on a circle (i = 1,.., N ;
−π ≤ θi < π). The population average firing rate of the i-th unit,
denoted as mi = m(θ i), satisfies the rate dynamics:

τ ṁi = −mi +
⎡
⎣Ii +

N∑
j=1

Jij mj

⎤
⎦

+
, (1)

where [y]+ = max(0,y), and the synaptic matrix J is given by:

Jij = 1

N

(
J0 + 2J1 cos(θi − θj)

) + ε√
N

nij . (2)

The first term in (2) depends only on the distance between the
i-th and j-th units and therefore is invariant by translation along
the ring. In the second term the elements nij are random and
independently distributed with zero mean and unit variance. This
represents random spatial fluctuations in the connection strengths
between mini-columns and breaks the rotational symmetry on the
ring. The two terms in (2) scale with the network size N so that
each of their contributions to the total input

∑N
j=1 Jij mj is finite

(= O(1)) in the limit of large N. Note that the scaling N −1/2 of the
heterogeneity term results in preservation of the “bump” attractor
dynamics for ε= O(1) in the limit of large N (see next section).
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The external input Ii(t ) to the i-th mini-column, is the sum of
two terms, Ii = I b + I cue

i . The background input Ib reflects the
attentional state that we assume to depend on the epoch of the task.
We take Ib ≤ 0 during pre-stimulus period whereas Ib = I 0> 0
during the delay period. The “cue” input I cue

i is received dur-
ing presentation of a transient sensory-related stimulus that is
directionally selective (Figure 1).

Without synaptic heterogeneity (ε= 0), the interaction pattern
is rotationally invariant and it is well-known (Ben-Yishai et al.,
1995; Hansel and Sompolinsky, 1998; Blumenfeld et al., 2006) that
if J 1> 1 (and for J 0 sufficiently negative) the dynamics of the net-
work in the presence of spatially homogeneous supra-threshold
external input (i.e., Ii = I 0> 0), possess N stable attractors. At the
attractor, the activity profile has the shape of a localized bump of
activity given by

m0(θ) = πm0[cos(θ − ψ)− cos θc ]+
(sin θc − θc cos θc )

, (3)

where ψ is the center of the bump and θ c is its half-width that
satisfies (see Appendix)

θc − sin θc cos θc = π

J1
.

Upon presentation of the stimulus in direction θ cue, dur-
ing the cue period, the attractor with ψ = θ cue is selected and
the network remains in this state until the end of the delay

period (Figures 1B,C). Therefore the cue direction is kept in the
population activity of the network during the delay period.

Continuous attractor falls apart in the presence of synaptic
heterogeneity
The continuity of the attractor set is broken in the presence of
heterogeneities in the interactions, i.e., when ε �= 0 (Tsodyks and
Sejnowski, 1995; Zhang, 1996; Seung et al., 2000; Renart et al.,
2003). This happens even for arbitrary small ε. Although in this
case the shape of the “bump” is very weakly perturbed by the inter-
action heterogeneities, there is only a small number of locations
on the circle where it is stable. During the delay period the bump
drifts to one of these locations as shown in the simulation results
displayed in Figure 2A. As the interactions are more and more
heterogeneous (increasing ε), the drift becomes even faster and
the perturbation in the bumps shape becomes more severe, until
it disappears completely. With the scaling of Eq. (2) this happens at
ε that is on the order of one. Note that the Figure 2A used the value
ε= 0.5; at this value the magnitude of the synaptic heterogeneities
is significantly larger than the magnitude of the synaptic efficacies
of the “unperturbed” Ring model (Figure A1 in Appendix). This
is due to the different scalings w.r.t. N of these two terms in Eq.
(2). Nevertheless, the approximate shape of the bump attractor
was still roughly preserved.

In order to gain a better understanding of the attractors of the
dynamics and the robustness of the memory trace when the inter-
actions are heterogeneous we derived an analytical approximation

FIGURE 2 | (A) Evolution of firing rates in a network with synaptic
heterogeneity (ε= 0.5). Black curve indicates ψ (t ) for the m(θ ,t )
plotted in color-scale. Magenta curves indicate ψ (t ) for the solutions
m(θ ,t ) with an initial bump centered at different angles. (B)

Comparison of ψ (t ), computed for the solution of the Ring model
(black) and the reduced one-dimensional evolution according to Eq. (4)

(red). (C) Plot of ψ̇ ≈ ετ−1Fnf(ψ) as a function of ψ for the same
instance of nij as in (A). Notice that two attractors from the (A) are at
the angles where F nf(ψ ) is zero with negative slope. (D) The function
gnf(θ c) (black trace), that describes the dependence of the average
speed on the bump width, is very well approximated by the linear
function

√
2/5θc (gray line).
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for the drift velocity under the assumption that N is large and that ε
is small so that the shape of the bump is approximated by Eq. (3),
i.e., m(θ ,t ) = m0(θ −ψ(t )) + O(ε), in the presence of constant
spatially homogeneous input I 0. A singular perturbation analysis
of the dynamics (see Methods and also the Appendix) shows that
the bump location ψ approximately follows the one-dimensional
dynamics:

ψ̇ = ε

τ
Fnf(ψ)+ O(ε2), (4)

with

Fnf(ψ) =
∫ θc
−θc

∫ θc
−θc

n(θ + ψ , θ ′ + ψ)m0(θ ′) sin θ dθdθ ′∫ θc
−θc

m0 (θ) cos θdθ
,

where m0(θ) is the “bump” profile (3) and θ c is its half-width (see
derivation in Appendix).

Although Eq. (4) was derived in the limit of small ε, it cap-
tures well the evolution of ψ(t ) even if ε is relatively large. This
is shown in the simulation results in Figures 2B,C (ε= 0.5). The
fixed points of dynamics (4) are given by the solutions to the
equation F nf(ψ0) = 0. If the condition F ′

nf(ψ0) < 0 is also satis-
fied, then this solution corresponds to a stable fixed point of (4),
and therefore to the peak of a “bump” attractor of the dynamics
(1). It should be noted that with our choice of the bump width
(≈90˚) there were typically two or three attractors of the dynamics
of (1), and therefore these discrete attractors did not approximate
the circle satisfactorily (Figure A2 in Appendix).

Equation (4) demonstrates that the dynamics of the firing rates
in the ring model exhibit a structural instability, i.e., even a very
small perturbation of the structure of the synaptic matrix causes a
drift of the WM trace. However, this drift might not be a concern
if it were happening on time-scales too slow to be relevant to the
WM. For this reason we estimate the drifts average velocity.

Average drift velocity
The precise number of attractors and their location on the ring
depend on the specific realization of the interaction pattern
nij = n(θ i,θ j). For a given realization, the trajectory of the drift
of the bump toward one of them depends also on its initial loca-
tion at the beginning of the delay period. To get an estimate of
the drift speed that is independent of the network realization we
computed the square of the drift velocity averaged over the net-
work realizations. Using Eq. (4) we found (see derivation in the
Appendix) that√

〈ψ̇2〉 = ε

τ
√

N
gnf(θc ), (5)

with gnf(θc ) =
√
θc (1+2 cos2 θc )−3 sin θc cos θc

θc −sin θc cos θc
.

The mean square speed of the drift is thus inversely propor-
tional to the square root of the number of mini-columns and
to the time constant τ . It is also approximately proportional
to the width of the bump (Figure 2D). Note that the mean

square velocity < ψ̇
2
> does not depend on the strength I 0 of

the background input because we have assumed a threshold lin-
ear input–output transfer function. For a more general transfer
function the background input may affect the speed of the drift.

The size of a typical memory field measured in PFC (Funahashi
et al., 1989, 1990) indicates that a possible range of values for the
bump width θ c is 60–100˚. As for the timescale τ , its value in our
simplified model should be taken as the typical time constants of
the synapses in PFC (Shriki et al., 2003). Therefore if one assumes
that interactions between PFC neurons is essentially mediated by
AMPA and GABAA synapses, it is reasonable to take τ on the order
of 5–10 ms. For the network size we take N = 720; this corresponds
to a discretization of the representation of the cue feature with a
precision of 0.5˚. With these parameters and our choice1 of the
heterogeneity strength ε= 0.5 Eq. (5) thus predicts a drift velocity
on the order of many tens of degrees per second (with τ = 10 ms,
the mean square velocity is in the range 71–119 deg/s for θ c in the
range of 60–100˚). This is much larger than the drift velocity mea-
sured experimentally, which is on the order of 1–2 deg/s (White
et al., 1994; Ploner et al., 1998). One would need to reduce ε by
two orders of magnitude (e.g., ε= 0.005) to move the estimate
(5) into the experimentally observed range. A drift velocity closer
to, although still significantly faster than, experimental data can
also be obtained if one assumes that in the PFC the synaptic time
constants of the vast majority of the excitatory interactions are
mediated by NMDA currents, with characteristic time constant in
the range 50–100 ms.

WORKING MEMORY IN THE PRESENCE OF SHORT-TERM SYNAPTIC
FACILITATION
While bump attractor dynamics are preserved for values of the
heterogeneity strength ε up to order O(1), the above analysis indi-
cates that the drift of the activity bump may be too fast unless ε is
chosen to be much closer to zero – i.e., unless the synaptic effica-
cies have much finer tuning than necessary for maintaining bump
attractor dynamics. In the following we investigate an alternative
mechanism which does not necessitate fine-tuned synapses, but
instead relies on facilitation to slow down the drift.

Drift velocity of the “bump” slows down in the presence of synaptic
facilitation
We assume now that the recurrent interactions display short-term
plasticity properties that we model as in (Barak and Tsodyks, 2007;
Mongillo et al., 2008). Therefore the dynamics of the network are
given by

⎧⎪⎨
⎪⎩
τ ṁ = −m + [

I (θ)+ ∫ π
−π J (θ , θ ′)u(θ ′)x(θ ′)m(θ ′)dθ ′]

+
tf u̇ = − (u − U )+ tf Um(1 − u),

td ẋ = − (x − 1)− td mux ,

(6)

where two synaptic variables (u,x) describe the activity-dependent
dynamics of synaptic efficacy: x stands for availability of synaptic
resources and u stands for utilization factor, so that their prod-
uct scales the synaptic strength. The variable u is up-regulated by
presynaptic activity above its baseline value u = U (facilitation)
and x is down-regulated by the activity below its baseline value

1We have chosen ε= 0.5 as a “large” heterogeneity strength of order O(1) that still
preserves the bump attractor dynamics.
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x = 1 (depression). In the absence of firing, synaptic facilitation,
and depression variables decay to their baseline levels with time
constants tf and td respectively.

Simulations of these dynamics reveal that if the overall behav-
ior of a single synapse is facilitating (e.g., U is small enough and
tf 	 td), the drift velocity of the bump is much slower for compa-
rable shapes and heights of the bump (Figure 3B, cf. Figure 2A,
see also Figure A3 in Appendix). To understand how this dramatic
reduction in drift velocity results from synaptic facilitation we con-
sider the limit in which the depression time constant is much faster
than the facilitation time constant. We also assume that U is small,
so that we can use a linear approximation for the dynamics of the
facilitation variable u. In this limit, we can substitute x = 1 and
approximate the dynamics of u by a linear equation, resulting in a
system

{
τ ṁ = −m + [

I (θ)+ ∫ π
−π J (θ , θ ′)u(θ ′)m(θ ′)dθ ′]

+
tf u̇ = − (u − U )+ tf Um.

(7)

In the absence of heterogeneities (ε= 0), the model with facil-
itation also exhibits a ring attractor in a certain range of synaptic
parameters. However, unlike in the case of a network with con-
stant synapses, transition from uniform state to ring attractor now
depends on the strength of the supra-threshold external input
I 0> 0, since recurrent connection effective strength increases with
activity due to facilitation. In particular, for our choice of para-
meters, the uniform solution is stable for weak inputs, and activity
bump appears for increasing input (Figure 3A). This scenario
implies that if the baseline state of the network is below the tran-
sition, the considered circuit cannot keep the parametric memory
trace, as a stable “bump” solution is needed for such a function. An
additional external (non-specific) excitation, which could come,
for example, from attentional regulation of the network, yields a
ring of stable bump solutions and thus enables the circuit to per-
form its parametric WM function (Figure 1; note that both in the
case with or without facilitation we assume that during the delay
period there is a non-selective excitatory attentional signal).

As above, assuming that ε is small, we can derive an analytic
expression for the evolution of ψ(t ). One finds (see derivation in

the Appendix) that

ψ̇ = εUFf (ψ)+ O(ε2), (8)

with

Ff (ψ) = 1

αq0
1

∫ θc

−θc

dθ sin θ
(

t−1
f + 2m0(θ)

)
∫ θc

−θc

dθ ′n
(
θ + ψ , θ ′ + ψ

)
m0 (θ ′))u0 (θ ′) ,

where α = π − J1
∫ θc
−θc

dθ sin2 θu0(θ), q0
1 = π−1

∫ π
−π dθ cos θ

m0(θ)u0(θ) and the functions m0(θ) and u0(θ) are the attractors
of the unperturbed (ε= 0) system (7). Equation (8) approximates
well the dynamics of the center of the drifting bump (Figure 3B).

Attractors in the presence of synaptic facilitation
While the speed of the drift is significantly slowed in the presence
of the synaptic facilitation, the attractors of the drift appear to be
very similar in Figures 2A and 3B. In fact, the functions Ff(ψ)
and F nf(ψ), while on a different scale have very similar set of
zeros (Figure 3C), and Ff(ψ) is close to “rescaling” of the function
F nf(ψ) (Figure A4 in Appendix).

It can be shown (see Appendix) that in the absence of facilita-
tion the location of attractors of the Ring model does not depend
on the strength of the feedforward input I 0. This is no longer
true in the presence of facilitation. In order to investigate how the
location and the number of attractors are affected by the pres-
ence of synaptic facilitation we performed simulation in which
we varied the strength of the constant feedforward input I 0 five-
fold. Figure 4B shows that although the function Ff(ψ) gained
new attractors, these new attractors are not deep, i.e., small per-
turbations would easily let ψ(t ) escape that attractor. The “deep”
attractors, on the other hand, hardly change their location (see
Figure 4A for the evolution of the attractors). This feature of
the considered circuit ensures that the attractors during the delay
period are not sensitive to realistic changes in input magnitude
(such as ramping of rates from the previous layer). As the strength
I 0 of the feedforward input increases several-fold, the profile of

A B C

ψ
(t)

  (
de

gr
ee

s)

Time (seconds)

−100

0

100

20 40 60 80 100
 

 

−4 −3 −2 −1 0 1 2 3 4
deg/s

−300 −200 −100 0 100 200 300

deg/s

θ 
(d

eg
re

es
)

−100

0

100

 

av
er

ag
e 

ra
te

 m
0 (

H
z)

feedforward input I
0

bu
m

p 
w

id
th

 θ
c (

de
g)

0 4 8 12 16 20
0

1

2

3

4

0

20

40

60

80

100

120

140

160

180

FIGURE 3 | (A) The strength of external input I0 controls the width and
stability of the bump attractor. Gray trace is the “bump” half-width θ c,
the black trace is the average firing rate m0. Dashed vertical line
indicates the transition between stable spatially homogeneous solution
(m = const) and the stable “bump” attractor. The synaptic parameters
used here are the same as in Figure 3B. (B) Evolution of ψ (t ) in the

presence of synaptic facilitation; here the synaptic inhomogeneities nij

are the same as in the simulation of Figure 2A. Black trace indicates ψ (t )
for the full facilitation/depression model; blue trace indicates ψ (t ) in the
simplified facilitation model; red trace indicates ψ (t ) in the
one-dimensional reduction (8). (C) Comparison of profiles of ετ−1Fnf(ψ )
(red) and εUFf(ψ ) (blue).
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Ff(ψ) eventually diverges from being close to a rescaled version of
F nf(ψ) (Figure A4 in Appendix).

Synaptic facilitation slows down substantially the drift of the bump
How does the drift velocity depend on synaptic facilitation? To
answer this question we have derived an analytical expression for
the average of the mean square velocity of the drift. One finds that

√
< ψ̇2 > = εU√

N
gf
(
θc , m0, tf

)
, (9)

with

gf (θc , m0, tf ) = α−1
(∫ θc

−θc

sin2 θ
(

t−1
f + 2m0(θ)

)2
dθ

∫ θc

−θc

(
u0(θ)m0(θ)

q0
1

)2

dθ

) 1
2

.

See Appendix for the derivation and the explicit formulas for
gf(θ c, m0, tf).

In contrast to what we found in the absence of facilitation, the
drift velocity depends on the spatial mean m0 of the “bump,” due
to non-linear dependency of the synaptic input on the presynaptic
activity. Note also that the time constant τ of the rate dynamics
does not affect the drift velocity given by Eq. (9). This is because
we have assumed here that this dynamics is much faster than the
facilitation dynamics. This factor contributes substantially to the
reduction in the velocity of the drift in presence of facilitation.

The ratio between the mean drift velocity without and with
facilitation√〈
ψ̇2

nf

〉
√〈
ψ̇2

f

〉 = gnf (θc )

τUgf
(
θc , m0, tf

)

is plotted in Figure 5 as a function of θ c and m0 for values of
U = 0.05, tf = 1 s, and τ = 10 ms. One sees that, facilitation may
result in more than 100-fold slow down of the drift (Figure 5).

DISCUSSION
Shortly after continuous attractors networks were proposed as a
model of processing sensory stimuli with continuously varying
features, the issue of structural instability of this model was identi-
fied (Tsodyks and Sejnowski, 1995; Zhang, 1996; Seung et al., 2000;
Wang, 2001; Renart et al., 2003). In particular, when the network
is not perfectly tuned, the continuous attractor is splitting into a
small number of discrete attractors. This issue is especially relevant
in case of WM networks, where information about the sensory cue
is carried in the activity pattern of the network. In the case of ring
model considered in this paper, the location of the activity bump
encodes the stimulus feature and thus has to be stable on the
time-scale of several seconds relevant for WM. The problem of
structural stability is therefore of a quantitative nature – how long
does it take for the bump to significantly drift away from its initial
position determines the stability of the memory.

In this work, we considered a perturbation of the ring model
obtained by adding a random component to the connectivity
pattern that breaks its rotational invariance. We were then able
to derive an analytic expression for the drift velocity of the bump
under the condition that the perturbation is weak enough so that
its shape is not significantly altered. This solution shows that,
unless parameters are chosen such that synaptic efficacies are
significantly more fine-tuned than what is necessary to preserve
bump attractor dynamics, the bump may drift far away from the
cue position very quickly, at a speed inconsistent with experimen-
tal observations. Whether such a precise tuning can be achieved
biologically is an open question. It was addressed theoretically
in (Renart et al., 2003) where ring model with inhomogeneities
in neuronal thresholds was considered. The authors proposed a
mechanism of synaptic tuning based on adiabatic plasticity, which
significantly slowed down the drift velocity of the bump to real-
istic levels. We believe however that the ability of plastic cortical
circuits to precisely tune themselves for one particular task can
be limited due to constant bombardment by spiking inputs from
other cortical areas that are not necessarily related to the particular
WM task.

Motivated by recent experimental studies of synaptic connec-
tivity in the PFC (Wang et al., 2006), we considered the effect

FIGURE 4 | (A) Dependence of the attractors of the facilitated model on the
average firing rate m0 as the strength of the feedforward input varies fivefold
from I0 = 7 to I0 = 35. Dots represent attractors for the corresponding values

of m0. (B) Comparison of ψ̇ ≈ εUFf (ψ) as a function of ψ for I0 = 7 (blue) and
I0 = 35 (red). The deep attractors (circled brown) persist despite fivefold
change of the amplitude of the feedforward input.
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FIGURE 5 |The ratio

√〈
ψ̇

2

nf

〉
/

√〈
ψ̇

2

f

〉
of mean square velocities without

and with facilitation as a function of the bump width θ c and the

average firing rate m0. The black dot indicates the same parameters
(θ c,m0) as in Figure 3B. Note that the average velocity of the drift is slower
for lower m0 (and thus lower external input I0).

of short-term synaptic facilitation on the ring model, and found
that it significantly slows down the drift velocity, rendering the
network suitable for WM. This solution eliminates the need for
an additional fine tuning of the network connections. The reason
facilitation makes the memory more stable is that when the activity
bump is triggered by the input at a certain position, recurrent con-
nections between the corresponding neurons facilitate and hence
make it harder for the bump to drift away. This type of stability
is complementary to the one demonstrated in (Mongillo et al.,
2008), where it was shown that WM with facilitation is stable to
brief suppression of spiking due to external perturbation.

In the present work, we have focused on the case where het-
erogeneities are in the connectivity pattern. However, our analysis
can be extended to other sources of heterogeneities, e.g., in the
intrinsic properties of the neurons or in the background inputs.
For instance, in the latter case a similar approach as above shows
that facilitation in the recurrent synaptic interactions can also slow
down the drift velocity by roughly two orders of magnitude as it is
the case when the heterogeneities are in the connectivity pattern
(see Appendix.)

Our results have been derived in the framework of a single-
population effective ring model (Amari, 1977; Ben-Yishai et al.,
1995). In this framework excitatory and inhibitory neurons are
lumped into one population of neurons and excitatory and
inhibitory interactions are described by one effective interaction
function with a “Mexican hat” profile. As a consequence, when
facilitation is introduced it affects excitation as well as inhibi-
tion. However, our approach can be generalized straightforwardly
to a two population rate models in which the four (EE, EI, IE,
II) interactions are described separately. One can show that in
this case, the drift velocity is also reduced considerably when the
synapses of the excitatory neurons exhibit facilitation (Figure A5
in Appendix).

Finally, we would like to point out that in our analysis we
assumed that rate dynamics is controlled by fast synaptic cur-
rents having the time-scale of several milliseconds, such as the
case of AMPA-mediated glutamate current. At least some of the
synaptic transmission between pyramidal cells in the PFC is medi-
ated by NMDA receptors, which are much slower (τ ( 50–100 ms;
see, e.g., Myme et al., 2003). Depending on the dominance of
NMDA-mediated transmission, the bump stability will be slowed
down proportionally to NMDA time constant, as can be seen, e.g.,
from Eq. (4) above. Whether PFC is characterized by increased
prevalence of NMDA receptors compared to other cortical areas
is controversial: while increased levels of mRNA for NMDARs
were measured in a human postmortal immunohistological study
(Scherzer et al., 1998), direct electrophysiological recordings found
equal NMDA/AMPA current ratios in PFC and the visual cor-
tex (Myme et al., 2003). What is the dominant mechanism for
WM stabilization needs to be addressed in future experimental
studies.

METHODS
NEURAL DYNAMICS
We approximated the discrete system (1) by

τ ṁ = −m +
[

I (θ)+
∫ π

−π
J (θ , θ ′)m(θ ′, t )dθ ′

]
+

, (10)

While all analytic derivations (see Appendix) were performed
using this continuous model and also system (7), all simula-
tions were performed using the appropriate discrete models with
N = 720 mini-columns. This corresponds to a spatial resolution
of half a degree. Throughout the paper we used the following
constants: the time-scale of the firing rate dynamics was assumed
to be τ = 10 ms, while the time-scales of synaptic facilitation and
depression were assumed to be tf = 1 s, and td = 0.1 s, cf (Barak
and Tsodyks, 2007). We also assumed that the baseline level of the
utilization of synaptic facilitation is U = 0.05; this corresponds to
a maximal-possible 20-fold facilitation of an effective strength of
a synapse. The magnitude of the synaptic heterogeneity used in
the simulations was ε= 0.5.

SYNAPTIC PARAMETERS AND BUMP ATTRACTORS
We have used the following parameters for the model with
facilitation and depression (6): J 0 = −10, J 1 = 8, I 0 = 10. With
these parameters, and the other constants defined as above, the
unperturbed system has a stable family of bump attractors (3)
with m0 ≈ 4.1 Hz, and θ c ≈ 90˚. We have chosen the parame-
ters for the other two models, the simplified facilitation model
(7) (J 0 = −8.04, J 1 = 3.48, I 0 = 18.2) and for the ring model (1)
(J 0 = −10, J 1 = 2.13, I 0 = 40.4) so that they resulted in a stable
bump attractor (3) of approximately the same width and height
as in the model (6).

SCALING OF THE SYNAPTIC HETEROGENEITY
We have chosen the scaling ε in Eq. (2) as ε= 0.5 for the model
without facilitation. We have chosen the appropriate scaling εf in

the other two models with facilitation so that εf

√
J

f
1 = 0.5

√
J nf
1 ,
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where J
f
1 and J nf

1 are the values used for the parameter J 1 in Eq. (2)
for the model with and without facilitation respectively. We chose
this particular scaling in order to compensate for different values
of J 1 in different models. For example, if we assume that spatial
fluctuations in the connectivity result from anatomical random-
ness in the number of connections between mini-columns, the
amplitude of fluctuations will scale with the square root of the
average number of connections, which in turn will be propor-
tional to J 1. We checked that choosing the fixed value of ε= 0.5
does not change the results significantly.

EVOLUTION OF THE BUMP CENTER
For a function q(θ ,t ) we denote its first Fourier coefficient as
Z (t ) = q1eiψ(t ) = π−1

∫ π
−π dθeiθq(θ , t ) and its phase as ψ(t ).

For models without facilitation, we used q = m to compute the

center of bump ψ(t ); for the model with facilitation and depres-
sion the effective synaptic input q(θ ,t ) = u(θ ,t )x(θ ,t )m(θ ,t ) was
used; for the approximated model (7), q(θ ,t ) = u(θ ,t )m(θ ,t ) was
used. We used singular perturbation analysis to derive the evo-
lution Eqs. (4) and (8) describing the dynamics of ψ(t ); these
derivations, as well as the derivations of mean square velocities are
provided in Appendix.
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APPENDIX
COMPUTATIONS FOR THE PERTURBED RING MODEL WITHOUT FACILITATION
The non-perturbed ring model
We begin with some basic facts about the Ring model (Amari, 1977; Amit, 1989). Recall that the unperturbed (i.e., ε= 0) discretized
Eq. (1) in the main text approximates its continuous analog

τ
∂

∂t
m(θ , t ) = −m(θ , t )+

[∫ π

−π
J
(
θ − θ ′)m

(
θ ′, t

)
dθ ′ + I (θ)

]
+

, (A1)

where [y]+ = max(0,y) denotes the threshold-linearity and J (θ) = 1
2π J0 + 1

π
J1 cos(θ). Denote

m0
def= 1

2π

∫ π

−π
m(θ , t )dθ , andm1eiψ(t ) def= 1

π

∫ π

−π
dθeiθm(θ , t ), (A2)

then it can be easily shown that

m1 = 1

π

∫ π

−π
dθ cos(ψ − θ)m(θ),

∫ π

−π
dθ sin(ψ − θ)m(θ) = 0, and

J ∗ m = J0m0 + J1m1 cos(ψ − θ).

We model the delay period by assuming that during the delay period the feedforward input is constant: I (θ) = I 0 = const. It is
well-known that if J 1> 1 then there is a continuous family of steady states (“bumps”), centered at an arbitrary angle ψ :

m0(θ) = πm0[cos(θ − ψ)− cos θc ]+
(sin θc − θc cos θc )

, (A3)

where the bump’s half-width θ c is related to the synaptic parameters via

θc − sin θc cos θc = π (J1)
−1, (A4)

while the Fourier coefficients m0 and m1 can be found from

J1(sin θc − θc cos θc )m1 − πm0 = 0

J1 cos θc m1 + J0m0 = −I0.

Note that here the width of the bump depends only on J 1, while the amplitude of the bump is proportional to I 0 for large enough
positive I 0. It can be shown that for J 1< 1 the only fixed point is straight line (no bump solution), and that for J 1> 1 the only
steady state is the “bump” – no stable straight–line solution. It particular, system (1) does not have a multi-stable regime with constant
feedforward inputs (Amit, 1989).

The dynamics of ψ (t) in the presence of synaptic inhomogeneity
It follows from (2) that the time-dependent coefficients ψ(t ) and m1(t ) satisfy the following equations:

π ṁ1 =
∫ π

−π
dθ cos(θ − ψ)ṁ(θ),

πm1ψ̇ =
∫ π

−π
dθ sin(θ − ψ)ṁ(θ).

(A5)

Motivated by Figure 2A, we would like to derive the dynamics of the perturbed Ring model with constant feedforward input:

τ
∂

∂t
m(θ , t ) = −m(θ , t )+

[∫ π

−π
J (θ , θ ′)m(θ ′, t )dθ ′ + I0

]
+

,
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where J (θ , θ ′) = ( 1
2π J0 + 1

π
J1 cos(θ − θ ′)

) + εn(θ , θ ′). As simulations suggest, during the delay period with constant feedforward
input, the evolution of m(θ ,t ) can be described by

m(θ , t ) = m0(θ − ψ(t ))+ O(ε),

where m0(θ) is the steady state (3) centered at zero.
Using (5) and keeping in mind that (2) implies that

∫ π
−π dθ sin(θ −ψ)m(θ) = 0, and also that

∫ π
−π dθ ′m(θ ′)( 1

2π J0 + 1
π

J1 cos(θ −
θ ′)) = J0m0 + J1m1 cos(ψ − θ), we obtain the following:

τπm1(t )ψ̇ =
∫ π

−π
dθ sin(θ − ψ(t ))τ ṁ(θ , t )

= −
∫ π

−π
dθ sin(θ − ψ)m(θ , t )+

∫ π

−π
dθ sin(θ − ψ)

[
I0 + J0m0 + J1m1 cos(ψ − θ)+ ε

∫ π

−π
dθ ′n(θ , θ ′)m(θ ′)

]
+

= ε

∫ ψ+θc

ψ−θc

dθ sin(θ − ψ)

∫ π

−π
dθ ′n(θ , θ ′)m(θ ′)+ O(ε2).

Similarly, we obtain

τπ ṁ1 = m1 (J1 (θc − sin θc cos θc )− π)+ O(ε), (A6)

τπ ṁ0 = −πm0 + J1m1 (sin θc − 2θc cos θc )+ O(ε), (A7)

τπθ̇c sin θc = −π
(

cos θc + J0m0

J1m1

)
+ J0 (sin θc − 2θc cos θc )+ J1

(
θc cos θc − sin θc cos2 θc

) + O(ε). (A8)

Assuming the approximation of small ε we can see that the dynamics of m0, m1, and θ c are on a faster timescale than the dynam-
ics of ψ . Therefore, for the purpose of understanding the dynamics of ψ(t ), we can approximate m1(t ) � m0

1 + O(ε), where

m0
1

def= 1
π

∫ π
−π m0(θ) cos θdθ , is the first Fourier component of the bump attractor1 m0(θ) of the unperturbed (ε= 0) ring model

with constant feedforward input I 0. Taking into account the approximation m(θ ,t ) = m0(θ −ψ(t )) + O(ε) we obtain the following
one-dimensional dynamics of ψ(t ):

ψ̇ = ε

τ
Fnf(ψ)+ O(ε2), where Fnf(ψ) = 1

πm0
1

∫ θc

−θc

dθ sin θ

∫ θc

−θc

dθ ′n(θ + ψ , θ ′ + ψ)m0(θ ′). (A9)

This in particular means that the attractors of the dynamics of ψ(t ) do not depend on the scaling ε of the “noise” n(θ ,θ ′) as long as
ε is small enough. These attractors can be found as the zeroes of F nf(ψ) at which F ′

nf(ψ) < 0.

Computation of the mean square velocity without facilitation
Given a periodic function function n(θ ,θ ′) we define

F f ,g (ψ)
def=

∫ π

−π
dθ f (θ)

∫ π

−π
dθ ′g (θ ′)n(θ + ψ , θ ′ + ψ)

Furthermore, we assume that the circle is discretized into N equal size bins with centers at θ1,. . .,θN, and that the values of n(θ i,θ j)

is independently identically distributed, moreover n(θi , θj) =
√

N
2π nij , where nij are independent random variables with zero mean and

unit variance. Note that the scaling of n(θ i,θ j) is chosen so that for large N and approximating the integrals by sums we obtain

∫ π

−π
dθ ′n(θi , θ

′)m(θ ′) ≈ 1√
N

N∑
j=1

nij mj

in agreement with Eqs. (1) and (2) in the main text.
Lemma 1. Under the above assumptions and in the limit of large N, the following identity for the variance of F f,g holds:〈(

F f ,g (ψ)
)2
〉

� 1

N

∫ π

−π
(f (θ))2 dθ

∫ π

−π
(g (θ))2 dθ , (A10)

1Here we always assume that m0(θ) is centered at θ = 0.
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proof. Observe that

F f ,g (θk) ≈ 2π

N 3/2

N∑
i=1

f (θi)

N∑
j=1

g
(
θj
)

ni+k,j+k ,

thus denoting fi = f(θ i), gj = g (θ j), and also using that 〈ni,jnk,l〉 = δikδij we obtain

〈
F f ,g (θk)

2
〉
≈ 4π2

N 3

N∑
i1,i2,j1,j2=1

fi1 gj1 fi2 gj2

〈
ni1+k,j1+k ni2+k,j2+k

〉 = 1

N

2π

N

N∑
i=1

f 2
i

2π

N

N∑
j=1

g 2
j ;

this approximates the integral (12) in the limit of large N. �
Now we can use this computation with f(θ) = sinθ and g (θ) = m0(θ) to calculate the average square velocity (11) as

〈
ψ̇

2
〉
= ε2

τ 2

〈
F 2

nf(ψ)
〉 = ε2

N τ 2
(
πm0

1

)2

∫ θc

−θc

sin2 θdθ

∫ θc

−θc

m0(θ)2dθ = ε2

N τ 2

θc (1 + 2 cos2 θc )− 3 sin θc cos θc

θc − sin θc cos θc
.

Note that the mean square velocity depends only on the half-width θ c of the bump attractor m0(θ) and thus, thanks to identity (4),

does not depend on I 0, or J 0. Moreover, gnf(θc )
def=

√
N 〈F 2

nf〉 is well approximated by a linear function y(θc ) = √
2/5θc (see Figure 2F

the main text) for most values of θ c and is bounded by
√

3.

COMPUTATIONS FOR THE SIMPLIFIED FACILITATION MODEL
We use the following system, whose solutions approximate the solutions of the system with both facilitation and depression (Figure 3B
in the main text)

{
τ d

dt m(θ) = −m(θ)+ [∫ π
−π J (θ , θ ′)u(θ ′)m(θ ′)dθ ′ + I (θ)

]
+

d
dt u(θ) = −t−1

f (u(θ)− U )+ Um(θ),
(A11)

where u(θ ,t ) is the facilitation variable, and U is the constant that determines the “depth” of facilitation (U = 0.05 in all simulations.)
As before, we assume that J (θ , θ ′) = ( 1

2π J0 + 1
π

J1 cos(θ − θ ′)
) + εn(θ , θ ′).

We denote q(θ , t )
def= u(θ , t )m(θ , t ) and define the “location” ψ(t ) of the “bump” as the phase of the first Fourier transform of

q(θ ,t ):

q1(t )e
iψ(t ) = 1

π

∫ π

−π
dθeiθq(θ , t ).

Because the time constant of the rate dynamics (τ = 0.005 s throughout this paper) is much smaller than the time constant (tf = 1 s) of
the dynamics of the facilitation variable u(θ), we can assume separation of time-scales, i.e., assume that the “fast” variable m(θ) is always
near its attractor that is determined by the dynamics of the “slow” variable u. This implies that −m+[∫ π

−π dθ ′J (θ , θ ′)q(θ ′)+ I0
]
+ ≈ 0,

and thus

m(θ , t ) ≈
[∫ π

−π
dθ ′J

(
θ , θ ′) q

(
θ ′) + I0

]
+

=
[

J0q0 + J1q1 cos(θ − ψ)+ I0 + ε

∫ π

−π
dθ ′n

(
θ , θ ′) q

(
θ ′)]

+
(A12)

= [
m0(θ − ψ)+ εη(θ ,ψ)

]
+, (A13)

where q0
def= 1

2π

∫ π
−π dθq(θ), q1

def= 1
π

∫ π
−π dθ cos(θ − ψ)q(θ), and

η(θ ,ψ)
def=

∫ π

−π
dθ ′n

(
θ , θ ′) q0 (θ ′ − ψ

) =
∫ θc

−θc

dθ ′n
(
θ , θ ′ + ψ

)
u0 (θ ′)m0(θ ′).

Here

m0(θ) = πm0[cos(θ)− cos θc ]+
(sin θc − θc cos θc )

, and u0(θ) = U
(
1 + tf m0(θ)

)
(A14)
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are the attractor2 of the unperturbed (ε= 0) system (13).
Using this and also the identity∫ π

−π
dθ sin(θ − ψ)q(θ , t ) = 0

we derive that

πq1ψ̇ =
∫ π

−π
dθ sin(θ − ψ)q̇(θ)

=
∫ π

−π
dθ sin(θ − ψ) (uṁ + mu̇)

≈
∫ ψ+θc

ψ−θc

dθ sin(θ − ψ)

((
u0(θ − ψ)+ O(ε)

) (
J0 q̇0 +J1 q̇1 cos(θ − ψ)+ J1q1ψ̇ sin(θ − ψ)+ εψ̇

∂η(θ ,ψ)

∂ψ

)

− 1

tf
um + U (t−1

f m + m2)

)
+ O(ε2).

Similarly to the case of the drift with no-facilitation [see The Dynamics of ψ(t ) in the Presence of Synaptic Inhomogeneity, (8)–(10)]
it can be shown that the variables q0(t ), q1(t ), and θ c (t ) evolve on much faster time-scale than ψ(t ). Since we are interested only in
the dynamics of ψ(t ), we therefore can consider the evolution of ψ(t ) assuming that those variables are already near their respective
attractors, i.e.,

q̇i(t ) = O(ε), and θ̇ c (t ) = O(ε). (A15)

Using (16), observing that
∫ π
−π dθ sin(θ − ψ)q(θ) = 0, using the approximations (14) and also that m2 ≈ (m0(θ −ψ))2 +

2εm0(θ −ψ)η(θ ,ψ) + O(ε2) we can discard the integrals of odd functions, we then derive

πq1ψ̇ =
∫ ψ+θc

ψ−θc

dθ sin(θ − ψ)

(
ψ̇u0(θ − ψ)

(
J1q1 sin(θ − ψ)+ ε

∂η(θ ,ψ)

∂ψ

)
+ + εU

(
t−1
f + 2m0(θ − ψ)

)

×
∫ θc

−θc

dθ ′n(θ , θ ′ + ψ)q0(θ ′)
)

+ O(ε2),

and thus obtain

ψ̇ = εUFf (ψ)+ O(ε2), (A16)

Ff (ψ) =
(
π − J1

∫ θc

−θc

dθu0(θ) sin2 θ

)−1 ∫ θc

−θc

dθ sin θ
(

t−1
f + 2m0(θ)

) ∫ θc

−θc

dθ ′n(θ + ψ , θ ′ + ψ)
q0

(
θ ′)

q0
1

,

where q0
1 = π−1

∫ π
−π dθ cos(θ)q0(θ) and the functions q0(θ) = u0(θ)m0(θ) and m0(θ) are the attractors of the unperturbed (ε= 0)

system (11).

Computation of the mean square velocity in the simplified facilitation model
Under the same assumptions as in Section“Computation of the Mean Square Velocity Without Facilitation”we can use Eq. (21) together
with Lemma 1 (here f (θ) = sin θ(t−1

f + 2m0(θ)) for |θ | ≤ θc , f (θ) = 0 for |θ | > θc and g (θ) = q0(θ)/q0
1) to compute

〈
ψ̇2〉 = (εU )2

〈
F 2

f (ψ)
〉
≈ (εU )2

Nα2

θc∫
−θc

sin2 θ
(

t−1
f + 2m0(θ)

)2
dθ

θc∫
−θc

(
q0(θ)

q0
1

)2

dθ , (A17)

where

α
def= π − J1

θc∫
−θc

dθu0(θ) sin2 θ .

2Note that we choose m0(θ) that is centered at zero.
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While above formulae provide a method for computing the mean square velocity, what we really need to know is the dependence of
the mean square velocity on the “observable” parameters m0 and θ c. For this reason we need to find the dependence of the parameters
J 1, and q0

1 on those observables.
We consider the attractor m0(θ) and u0(θ) (13) of the unperturbed system (11) in the case of constant I (θ) = I 0 = const. In this

case J (θ , θ ′) = J (θ − θ ′) = 1/2π J 0 + 1/π J 1 cos(θ − θ ′) and thus

J ∗ (m0(θ)u0(θ)
) = J0q0

0 + J1q0
1 cos(θ) = j0 + j1 cos(θ),

where q0
0

def= 1
2π ∫π−π m0(θ)u0(θ)dθ , q0

1
def= 1

π
∫π−π cos(θ)m(θ)u(θ)dθ , and ji

def= q0
1 Ji . These yield the following system of equations:

⎧⎪⎨
⎪⎩

0 = j0 + j1 cos (θc )+ I0

0 = 2πq0
0 + j1U

(
2(θc cos θc − sin θc )+ j1tf (3 cos θc sin θc − θc − 2θc cos2 θc )

)
3πq0

1 = Uj1
(
3 (θc − sin θc cos θc )+ 2j1tf

(
cos2 θc sin θc + 2 sin θc − 3θc cos θc

))
We observe from the first equation that q0

0 = −J −1
0

(
j1 cos (θc )+ I0

)
, plug this into the second equation and then obtain

{
2π

(
j1 cos (θc )+ I0

) = j1J0U
(
c1 (θc )+ j1tf c2 (θc )

)∣∣
3π = UJ1

(
c3 (θc )+ j1tf c4 (θc )

)
where

c1(θc ) = 2(θc cos θc − sin θc ), c2(θc ) = 3 cos θc sin θc − θc − 2θc cos2 θc

c3(θc ) = 3 (θc − sin θc cos θc ) , c4(θc ) = 2
(
cos2 θc sin θc + 2 sin θc − 3θc cos θc

)
.

From here we obtain the following:

j1 = J1q0
1 = πm0

(sin θc − θc cos θc )
,

UJ1 = 3π

j1tf c4(θc )+ c3(θc )
.

This furnishes the explicit relationship between J 1, q0
1 on one hand and the observables m0 and θ c on the other. Thus the formula

(2.1) combined with

m0(θ) = πm0[cos(θ − ψ)− cos θc ]+
(sin θc − θc cos θc )

, q0(θ) = Um0(θ)
(
1 + tf m0(θ)

)
,

yields

√
〈ψ̇2〉 = εU

√
〈F 2

f (ψ)〉 ≈ εU√
N

gf
(
θc , m0, tf

)
,

where the function

gf (θc , m0, tf ) = α−1
(∫ θc

−θc

sin2 θ
(

t−1
f + 2m0(θ)

)2
dθ

) 1
2
(∫ θc

−θc

(
q0(θ)

q0
1

)2

dθ

) 1
2

can be computed from the following formulae:

α = π − m0π
2

4 (sin θc − θc cos θc )
× (8 sin2 θc − 13πm0tf sin θc cos θc + 4 sin2 θc cos2 θc − 2πm0tf sin θc cos3 θc

− 20 sin θcθc cos θc − 4 cos3 θc sin θcθc + 12 cos2 θc θc
2 +3πm0tf θc + 12πm0tf θc cos2 θc )

× (
4πm0tf sin θc + 3θc sin θc + 2πm0tf cos2 θc sin θc + 3 cos2 θc sin θcθc − 3 θc

2 cos θc

−6πm0tf θc cos θc + 3 cos3 θc − 3 cos θc
)−1

, (A18)
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∫ θc

−θc

sin2 θ
(

t−1
f + 2m0(θ)

)2
dθ = 1

3t 2
f

(sin θc − θc cos θc )
−2 ×(6 sin θc θc

2 cos θc − 3 cos3 θc sin θc + 3 cos3 θc θc
2 sin θc

+ 3 cos θc sin θc + 4πm0tf sin θc cos3 θcθc + 2
(
tf πm0

)2
cos3 θc sin θc

+ 20 sin θcπm0 cos θc tf θc + 13
(
tf πm0

)2
cos θc sin θc − 12π2 m0

2 cos2 θc t 2
f θc

− 3 cos2 θcθc − 3θc − 3π2 m0
2 t 2

f θc − 3 θc
3 cos2 θc − 12 θc

2 (cos θc )
2 πm0tf

+ 4 cos4 θcπm0tf + 4πm0tf (cos θc )
2 +6 cos4 θcθc − 8πm0tf ), (A19)

∫ θc

−θc

(
q0(θ)

q0
1

)2

dθ = 3π4m2
0 (sin θc − θc cos θc )

4

40
× (20 sin θc cos5 θcθ

3
c − 6 sin θcθc cos θc + 12 cos3 θc sin θcθc

− 6 sin θcθ
5
c cos5 θc − 6 cos5 θc sin θcθc − 20 sin θcθ

3
c cos3 θc − 15 cos6 θcθ

4
c + θ6

c cos6 θc − cos6 θc

+ 15θ4
c cos4 θc + 15 cos2 θcθ

2
c + 1 − 3 cos2 θc − 30 cos4 θcθ

2
c + 3 cos4 θc + 15 cos6 θcθ

2
c )

−1

× (500 cos5 θc sin θc − 1990 cos3 θcθ
2
c sin θc − 693

(
π tf m0

)2
cos θc sin θc − 2184

(
π tf m0

)2
cos3 θc sin θc

+ 50 cos3 θc sin θc + 256πm0tf + 2172πm0tf cos2 θc + 1730 cos2 θcθc + 1350
(
π tf m0

)2
cos2 θcθc

+ 75
(
π tf m0

)2
θc − 588

(
π tf m0

)2
cos5 θc sin θc − 550 cos θc sin θc + 90θc − 580 cos4 θcθc − 1240 cos6 θcθc

+ 720 cos4 θcθ
3
c − 4828πm0tf sin θc cos3 θcθc − 980 cos5 θc sin θcθ

2
c − 1576 cos5 θc sin θcπm0tf θc

− 1332 cos4 θcπm0tf − 180 sin θcθ
2
c cos θc − 1096 cos6 θcπm0tf + 2400 cos4 θcθ

2
c πm0tf + 240 cos6 θcθ

3
c

+ 1800 cos4 θcπ
2m2

0t 2
f θc − 1156 sin θcπm0 cos θc tf θc + 900 θ2

c cos2 θcπm0tf + 240
(
π tf m0

)2
cos6 θcθc

+ 480 cos6 θcθ
2
c πm0tf + 90θ3

c cos2 θc )× (4πm0tf sin θc + 3θc sin θc + 2πm0tf cos2 θc sin θc

+ 3 cos2 θc sin θcθc − 3θ2
c cos θc − 6πm0tf θc cos θc + 3 cos3 θc − 3 cos θc )

−2.

COMPUTATIONS FOR THE CASE OF HETEROGENEITIES IN THE FEEDFORWARD INPUT AND IN THE PRESENCE OF SIMPLIFIED FACILITATION MODEL
Here we derive the equations describing the dynamics for the drift of the neural activity when heterogeneities are present in the
feedforward inputs (or alternatively in thresholds) I (θ). We consider the same model with synaptic facilitation:

{
τ d

dt m(θ) = −m(θ)+ [∫ π
−π J 0(θ − θ ′)u(θ ′)m(θ)dθ ′ + I0 + εν(θ ′)

]
+

d
dt u(θ) = −t−1

f (u (θ)− U )+ Um (θ) ,
(A20)

where J 0(θ)
def= 1

2π J0 + 1
π

J1 cos(θ) is the unperturbed connectivity of the Ring model and ν(θ) is the heterogeneity in the feedforward
inputs.

Similarly to Section “Computations for the Simplified Facilitation Model,” we denote q(θ , t )
def= u(θ , t )m(θ , t ) and define the

“location”ψ(t ) of the “bump” as the phase of the first Fourier transform of q(θ , t ):

q1(t )e
iψ(t ) = 1

π

∫ π

−π
dθeiθq(θ , t ).

Because the time-constant of the rate dynamics (τ = 0.005 s throughout this paper) is assumed much smaller than the time-
constant (tf = 1 s) of the dynamics of the facilitation variable u(θ , t ), we can assume separation of time-scales, i.e., assume that the
“fast” variable m(θ , t ) is always near its attractor that is determined by the dynamics of the “slow” variable u This implies that
m(θ , t ) ≈ [∫ π

−π dθ ′J 0(θ − θ ′)q(θ ′, t )+ I0 + εν(θ)
]
+, and thus

m(θ , t ) ≈
[∫ π

−π
dθ ′J 0(θ − θ ′)q(θ ′)+ I0 + εν(θ)

]
+

= [
m0(θ − ψ)+ εν(θ)

]
+ = [

J0q0 + J1q1 cos(θ − ψ)+ I0 + εν(θ)
]
+,

where q0(t )
def= 1

2π

∫ π
−π dθq(θ , t ), and q1(t )

def= 1
π

∫ π
−π dθ cos(θ − ψ)q(θ , t ). Differentiating the identity above we also obtain

that

ṁ(θ , t ) ≈ J0 q̇0(t )+ J1 q̇1(t ) cos(θ − ψ(t ))+ J1q1(t ) sin(θ − ψ(t ))ψ̇(t ) for every θ ∈ (−θc + ψ(t ), θc + ψ(t )).
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Using this and also the identity

∫ π

−π
dθ sin(θ − ψ)q(θ , t ) = 0 (A21)

we derive that

πq1ψ̇ =
∫ π

−π
dθ sin(θ − ψ)q̇(θ) =

∫ π

−π
dθ sin(θ − ψ) (uṁ + mu̇)

≈
∫ ψ+θc

ψ−θc

dθ sin(θ − ψ)

((
u0(θ − ψ)+ O(ε)

) (
J0 q̇0 +J1 q̇1 cos(θ − ψ)+ J1q1ψ̇ sin(θ − ψ)

) + Um2 − 1

tf
um + U

tf
m

)
.

Similarly to the previous sections, it can be shown that the variables q0(t ), q1(t ), and θ c(t ) evolve on much faster time-scale than
ψ(t ). Since we are interested only in the dynamics ofψ(t ), we therefore can consider the evolution ofψ(t ) assuming that those variables
are already near their respective attractors, i.e.,

q̇1(t ) = O(ε), and θ̇c (t ) = O(ε).

Using this, Eq. (20), and also that

m(θ , t )2 ≈ (
m0 (θ − ψ(t ))

)2 +2εm0(θ − ψ(t ))ν(θ)+ O(ε2)

we can discard the integrals of odd functions of (θ −ψ(t )). We then derive

πq1ψ̇ = J1q1ψ̇

∫ ψ+θc

ψ−θc

dθ sin2(θ − ψ)u0(θ − ψ)+ εU

∫ ψ+θc

ψ−θc

dθ sin θ
(

t−1
f + 2m0(θ − ψ)

)
ν(θ)+ O(ε2)

and thus obtain

ψ̇ = εH (ψ)+ O(ε2),

H (ψ) = U

q0
1

1(
π − J1U

∫ θc
−θc

dθ
(
1 + tf m0(θ)

)
sin2 θ

) ∫ θc

−θc

dθ sin θ
(

t−1
f + 2m0(θ)

)
ν(θ + ψ), (A22)

where

m0(θ) = πm0[cos θ − cos θc ]+
(sin θc − θc cos θc )

, (A23)

q0
1

U
= 1

π

∫ π

−π
dθ cos(θ)

(
1 + tf m0(θ)

)
m0(θ), and

J1U = 3π

(
2m0π tf

(
cos2 θc sin θc + 2 sin θc − 3θc cos θc

)
sin θc − θc cos θc

+ 3 (θc − sin θc cos θc )

)−1

.

Note that the function H (ψ) depends only on three parameters: the facilitation time-constant tf, the bump width θc and the average

firing rate m0 = 1
2π

∫ π
−π m0(θ)dθ .

Computation of the mean square velocity for the case of heterogeneities in the feedforward input and in the presence of simplified
facilitation model
Similarly to Lemma 1, it can be shown that if we assume that the circle is discretized into N equal size bins with centers at θ1, .., θN , and
the values of νi = ν(θi) are independently identically distributed with zero mean and unit variance, then approximating the integrals
by sums in the limit of large N one obtains

〈(
2π

N

N∑
i=1

f (θi)ν(θi)

)2〉
≈ 2π

N

∫ π

−π
(
f (θ)

)2
dθ ,
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FIGURE A1 | Synaptic heterogeneity may be significantly larger than the

unperturbed Ring model synaptic efficacies, without destroying the

bump-like attractors. (A) Colorplot of the synaptic matrix Jij Eq. (2) used in

the Figure 1 of the main text. (B) The values of 1/N (J 0 + 2J 1cos(θ i − θ j)) (black
trace) as a function of |θ i − θ j | versus that ±1 SD of the values Jij from [(A)

red/blue traces] for each value of |θ i − θ j |.

where for any continuous function f (θ). Therefore, by taking f (θ) = sin θ
(

t−1
f + 2m0(θ)

)
we obtain that

√〈
ψ̇

2
〉
= ε

√〈
H (ψ)2

〉 ≈ ε√
N

gI (θc , m0, tf ),

where the function

gI (θc , m0, tf ) =
π

√∫ θc
−θc

sin2 θ
(

t−1
f + 2m0(θ)

)2
dθ

α
∫ π
−π dθ cos(θ)

(
1 + tf m0(θ)

)
m0(θ)

can be evaluated using Eqs. (17), (18), and (22).
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FIGURE A2 | Discrete set of attractors of the Ring model with synaptic

heterogeneity does not approximate a continuous attractor. Black trace
indicates the average (over 200 trials) ratio of the total circle length covered
by 3˚ intervals around each putative attractor. Gray area indicates 1 SD
around the average. When the rotational invariance of the interactions is
perturbed the set of discrete attractors does not provide a good
approximation to a continuum ring attractor manifold even in the limit of
large N. To show that we first found the points ψ0 on a circle that satisfy
F nf(ψ0) = 0 and F ′

nf(ψ0) < 0. These points are not guaranteed to be the exact
actual centers of the bump attractors of the system (1), however every
center of the attractor bump of (1) is in an O(ε) – neighborhood of one such
point. We therefore overestimate the actual number of attractors. The mean
number of putative attractors slowly grows, with increasing N, although for
a realistic number of mini-columns it is rather low. However, it is not the
number of attractors per se that makes it possible to approximate the
continuous attractor by a collection of discrete attractors: it is rather the
distribution of how the attractors are placed on the circle that matters. To
quantify the proportion of the entire circle covered by putative attractors,
we draw an interval around each of them (3˚ in our simulations) to
determine the percentage of the total area covered. Numerical study
revealed that their coverage either does not grow or grows slowly for the
range of tested N ; it only reaches up to 9.9% for N = 1000.

FIGURE A3 | (A) Evolution of m(θ , t ) in the full facilitation-depression model
with the same matrix of heterogeneities nij as in Figure 2A. Black curve
indicates ψ (t ). For the first 3 s (brown bar at the bottom) the network is
presented with the feedforward cue input, while after the cue the network
is presented with constant feedforward input. (B) Evolution of m(θ ,t )
according to the simplified model with facilitation with the same matrix nij

as in (A) and Figure 2A. Black curve indicates ψ (t ). For the first 3 s (brown
bar at the bottom) the network is presented with the feedforward cue
input, while after the cue the network is presented with constant
feedforward input.
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FIGURE A4 | Similarity of Fnf(ψ) and Ff(ψ). We have used the cosine of
the angle

cos γ = ∫ Fnf(ψ)Ff(ψ)dψ√∫ F 2
nf(ψ)dψ

√∫ F 2
f (ψ)dψ

as a measure of similarity between the functions F nf(ψ ) and F f (ψ ). Note
that − 1 ≤ cosγ ≤ 1. The value cosγ = 1 implies that F f (ψ ) = constF nf(ψ ). (A)

Histogram of cosine angles for I0 = 10. For each instance (N trials = 1000) of
the synaptic heterogeneity nij the value of cosγ was computed. For
comparison, Figure 3C had cosγ � 0.936. (B) Same angles as in panel (A)
were computed now as a function of the strength I0 (5 ≤ I0 ≤ 35). Mean of
cosγ is the black trace, while the error bars mark 1 SD.
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FIGURE A5 | (A) The dynamics of two neuronal populations was simulated
(see below). The activity of the excitatory population is shown in exactly the
same manner as in Figure 2A of the main text. The evolution of firing rates
mE

i of N = 720 excitatory and firing rates mI
j of N = 720 inhibitory neurons

was modeled using the rate model

⎧⎪⎪⎨
⎪⎪⎩
τE

d
dt

mE
i = −mE

i +
[

N∑
j=1

JEE
ij mE

j − mI
i + IE

i

]
+

τI
d
dt

mI
i = −mI

i +
[

N∑
j=1

JIE
ij mE

j + I I
i

]
+
,

where τ E = 10 ms, τ I = 5 ms, IE
i = 40, I I

i = 1, and the synaptic strengths of
the (global) projections of the excitatory neurons are

JEE
ij = a1

N

(
1 + cos

(
θi − θj

))+ ε√
N

nEE
ij , JIE

ij = a2

N

(
1 − cos

(
θi − θj

))+ ε√
N

nIE
ij ,

with a1 = 0.5, a2 = 5, ε= 0.5. The matrices nIE
ij and nEE

ij were drawn
independently from normal distribution with zero mean and unit variance.
(B) The dynamics of two neuronal populations where the excitatory
synapses exhibit facilitation and depression. Similarly to the one-population
model, the velocity of the drift is slowed down by at least two orders of
magnitude. The evolution of firing rates was modeled as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τE
d
dt

mE
i = −mE

i +
[

N∑
j=1

JEE
ij uj xj mE

j − mI
i + IE

i

]
+

τI
d
dt

mI
i = −mI

i +
[

N∑
j=1

JIE
ij uj xj mE

j + I I
i

]
+
,

tf
d
dt

ui = − (ui − U)+ tf UmE
i (1 − ui ) ,

td
d
dt

xi = − (xi − 1)− td mE
i ui xi ,

where a1 = 1, a2 = 10, I I
i = 1, IE

i = 10, and the other parameters were
chosen as described above or the Section “Methods.”
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