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Abstract
Both	intrinsic	and	extrinsic	forces	work	together	to	shape	connectivity	and	genetic	
variation	 in	 populations	 across	 the	 landscape.	 Here	 we	 explored	 how	 geography,	
breeding	system	traits,	and	environmental	 factors	 influence	the	population	genetic	
patterns	of	Triodanis perfoliata,	a	widespread	mix-	mating	annual	plant	in	the	contigu-
ous	US.	By	integrating	population	genomic	data	with	spatial	analyses	and	modeling	
the	relationship	between	a	breeding	system	and	genetic	diversity,	we	 illustrate	the	
complex	ways	 in	which	 these	 forces	 shape	 genetic	 variation.	 Specifically,	we	 used	
4705	 single	 nucleotide	 polymorphisms	 to	 assess	 genetic	 diversity,	 structure,	 and	
evolutionary	history	among	18	populations.	Populations	with	more	obligately	selfing	
flowers	harbored	less	genetic	diversity	(π: R2 = .63, p = .01, n =	9	populations),	and	
we	 found	 significant	population	 structuring	 (FST =	 0.48).	Both	geographic	 isolation	
and	environmental	factors	played	significant	roles	in	predicting	the	observed	genetic	
diversity:	we	found	that	corridors	of	suitable	environments	appear	to	facilitate	gene	
flow	between	populations,	and	that	environmental	 resistance	 is	correlated	with	 in-
creased	genetic	distance	between	populations.	Last,	we	integrated	our	genetic	results	
with	 species	 distribution	modeling	 to	 assess	 likely	 patterns	 of	 connectivity	 among	
our	study	populations.	Our	landscape	and	evolutionary	genetic	results	suggest	that	T. 
perfoliata	experienced	a	complex	demographic	and	evolutionary	history,	particularly	
in	the	center	of	its	distribution.	As	such,	there	is	no	singular	mechanism	driving	this	
species'	evolution.	Together,	our	analyses	support	the	hypothesis	that	the	breeding	
system,	geography,	and	environmental	variables	shape	the	patterns	of	diversity	and	
connectivity	of	T. perfoliata	in	the	US.
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1  |  INTRODUC TION

Understanding	 what	 factors	 drive	 patterns	 of	 genetic	 diversity	
among	populations	is	central	to	evolutionary	ecology,	and	critical	for	
predicting	how	species	 respond	 to	 changing	environments	 (Manel	
&	Holderegger,	2013).	Evolution	is	intrinsically	linked	to	genetic	di-
versity,	which	often	serves	as	the	raw	material	for	evolutionary	pro-
cesses	(e.g.,	Alsos	et	al.,	2012;	Jump	et	al.,	2009;	Stange	et	al.,	2021).	
However,	 data	 on	 quantitative	 traits	 are	 rarely	 available	 for	 wild	
species	across	 their	distributions,	 limiting	our	ability	 to	study	how	
traits	evolve.	Measures	of	genetic	diversity	from	neutral	markers	are	
more	 readily	 available	 and	 correlations	 have	been	 found	between	
the	 differentiation	 of	 quantitative	 traits	 and	 neutral	markers	 (e.g.,	
Frankham	et	al.,	1999;	Jump	et	al.,	2009;	Merilä	&	Crnokrak,	2001).	
The	adaptive	potential	may	be	limited	in	naturally	occurring	popula-
tions	with	low	genetic	diversity	and	small	effective	population	sizes	
(Hobbs	&	Humphries,	1995;	Jump	et	al.,	2009; Lai et al., 2019; Lande 
&	Shannon,	1996).

Intraspecific	 genetic	 diversity	 is	 often	 influenced	 by	 intrinsic	
factors	 such	 as	 variation	 in	 the	 reproductive	 system	 and	 demo-
graphic	history	(e.g.,	Chan	et	al.,	2011;	Clobert	et	al.,	2012;	Hellwig	
et al., 2021;	Toczydlowski	&	Waller,	2019)	and	extrinsic	factors	such	
as	 interactions	 with	 barriers	 that	 limit	 dispersal	 (physical,	 abiotic,	
and	biotic;	 e.g.,	Alvarado-	Serrano	et	 al.,	2019;	Brown	et	 al.,	2016; 
Galbreath	 et	 al.,	 2010).	 Taken	 together,	 these	 factors	 shape	 the	
variation	 in	 gene	 flow	among	populations,	 influencing	 subsequent	
evolutionary	 processes	 (e.g.,	 lineage	 diversification,	 hybridization)	
and	 patterns	 of	 genetic	 diversity	 among	 populations	 (e.g.,	 Chan	
et al., 2011;	 Cruzan	 &	 Hendrickson,	 2020;	 Hellwig	 et	 al.,	 2021).	
Studies	that	consider	both	 intrinsic	and	extrinsic	factors	over	mul-
tiple	scales	provide	a	more	complete	 interpretation	of	what	drives	
patterns	 of	 genetic	 diversity	 at	 the	 intraspecific	 level	 (Schregel	
et al., 2018;	Twyford	et	al.,	2020).

Because	flowering	plants	often	exhibit	high	 intraspecific	varia-
tion	 in	 reproductive	 systems,	 they	 present	 novel	 opportunities	 to	
examine	 the	 role	 of	 breeding	 systems	 in	 influencing	 patterns	 of	
genetic	diversity	and	divergence	among	populations	(e.g.,	Culley	&	
Stokes,	2012;	 Sun	et	 al.,	2002;	 Toczydlowski	&	Waller,	2019).	 For	
example,	many	 flowering	plants	 have	 the	 capacity	 for	 both	 cross-		
and	self-	fertilization,	a	condition	 termed	mixed-	mating	 (Goodwillie	
et al., 2005;	 Lande	 &	 Schemske,	 1985).	 Self-	fertilization	 presents	
several	 benefits	 in	 the	 context	 of	 mate	 availability	 and	 range	 ex-
pansion	 (Baker,	 1955;	 Busch	 &	 Delph,	 2012).	 Individuals	 within	
populations	 with	 relatively	 high	 inbreeding	 exhibit	 high	 genetic	
similarity,	 reducing	 effective	 population	 size.	 In	 turn,	 these	 popu-
lations	 are	highly	 susceptible	 to	 genetic	 drift	 and	 subsequent	 loss	
of	genetic	diversity	and	potentially	greater	susceptibility	to	changes	
in	the	external	environment	(Lande,	1988;	Lande	&	Shannon,	1996; 
Wright,	1946).	 Inbreeding,	 particularly	 in	 smaller	populations,	 also	
drives	 differentiation	 among	populations,	 in	 parallel	with	 patterns	
expected	for	geographically	isolated	populations	(Lowe	et	al.,	2005; 
Toczydlowski	&	Waller,	2019;	Wright,	1965).	Despite	the	potential	
importance	 of	 plant	 reproduction	 in	 driving	 patterns	 of	 genetic	

diversity	and	connectivity,	this	feature	of	species	is	still	poorly	un-
derstood	in	the	context	of	population	genetics	at	large	spatial	scales	
in	wild	populations.

Among	populations,	a	common	explanation	for	spatial	patterns	
of	 genetic	 diversity	 is	 isolation-	by-	distance	 (IBD),	 where	 popula-
tions	that	are	geographically	isolated	exhibit	greater	genetic	differ-
entiation	via	attenuated	gene	flow	and	genetic	drift	(Wright,	1943, 
Slatkin,	1993,	e.g.,	Toczydlowski	&	Waller,	2019,	Hellwig	et	al.,	2021).	
While	greater	inbreeding	may	drive	genetic	isolation	at	a	local	scale,	
IBD	often	has	a	greater	influence	at	broad	spatial	scales.	Larger	pop-
ulations	 are	 typically	 less	 susceptible	 to	drift,	 but	 founder	 effects	
and	 population	 bottlenecks	 can	 still	 drive	 genetic	 differentiation	
in	 isolated	 populations,	 especially	 following	 colonization	 events	
(Toczydlowski	 &	Waller,	 2019;	Wright,	 1977).	 In	 addition	 to	 IBD,	
many	 studies	 invoke	key	 roles	 for	variation	 in	 topography	and	cli-
mate	in	mediating	spatial	distribution	patterns,	which	either	restrict	
dispersal	(e.g.,	mountains,	rivers,	etc.),	or	act	as	suitable	corridors	for	
gene	flow	(isolation	by	the	environment;	McRae,	2006).	Species	also	
exhibit	 specific	 ecological	 tolerances	 that	 dictate	 spatial	 patterns	
of	gene	flow	and	migration	 (Chan	et	al.,	2011;	Sexton	et	al.,	2014; 
Wang	&	Summers,	2010).	Across	heterogeneous	 landscapes,	areas	
of	ecological	tolerance	for	a	species	may	be	more	limited,	resulting	
in	 increased	 genetic	 divergence	 among	 populations	 by	 reducing	
dispersal	 corridors	 (Wang	 &	 Bradburd,	 2014).	 Incorporating	 esti-
mates	 of	 environmental	 tolerance	with	 IBD	provides	 a	more	 real-
istic	 framework	 for	 understanding	 population	 connectivity	 across	
landscapes	 (e.g.,	 Alvarado-	Serrano	 &	 Hickerson,	 2018;	 Cruzan	 &	
Hendrickson,	 2020;	 Cushman	 et	 al.,	 2009;	 Hevroy	 et	 al.,	 2018; 
Toczydlowski	&	Waller,	2019;	Wang	&	Bradburd,	2014).

Integrating	 genetic	 data	 with	 landscape	 and	 environmen-
tal	 parameters	 can	 better	 describe	 the	 range	 of	 factors	 driving	
or	 maintaining	 patterns	 of	 genetic	 diversity	 among	 populations	
(e.g.Alvarado-	Serrano	&	Hickerson,	2018; Chan et al., 2011;	Cruzan	
&	 Hendrickson,	 2020).	 Here	 we	 explicitly	 examine	 how	 breeding	
system	variation,	geographic	distance,	and	habitat	suitability	may	be	
integrated	to	explain	spatial	patterns	of	genetic	diversity	in	18	popu-
lations	of	Triodanis perfoliata	(Campanulaceae),	a	widespread,	annual	
native	 to	North	 and	 South	America	 (Weakley,	2010).	 All	 individu-
als	of	this	species	exhibit	dimorphic	cleistogamy,	consisting	of	both	
obligately	self-	fertilizing	flowers	and	flowers	that	can	either	self-		or	
cross-	fertilize	 (Gara	&	Muenchow,	1990; Trent, 1942).	 Because	 of	
the	high	potential	for	 inbreeding	in	populations	of	T. perfoliata, we 
also	examine	how	breeding	system	may	correlate	to	metrics	of	ge-
netic	diversity	 and	 influence	overall	 patterns	of	 genetic	 structure.	
At	 broad	 geographic	 scales	 we	 predict	 high	 levels	 of	 population	
structure	and	relatively	high	population	genetic	divergence;	at	this	
scale	we	predict	that	both	isolation	by	distance	(IBD)	and	isolation	
by	environment	 (IBE)	will	 be	 the	 strongest	 factors	 structuring	 ge-
netic	diversity.	Both	geographic	distance	and	variance	in	biotic	and	
abiotic	 factors	can	 limit	gene	flow	or	shape	the	potential	 for	gene	
flow	 through	 particular	 corridors.	 Therefore,	we	 explicitly	 discern	
the	 roles	 of	 geographic	 isolation	 (IBD)	 and	 environment	 (IBE)	 in	
shaping	observed	patterns.	At	 local	 spatial	 scales,	we	predict	 that	
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populations	with	a	greater	allocation	to	cleistogamy	will	exhibit	re-
duced	genetic	diversity	and	high	population	genetic	structuring	(av-
erage Fst)	due	to	increased	inbreeding	and	that	the	breeding	system	
will	be	a	more	important	factor	influencing	population-	level	genetic	
patterns.	Finally,	we	use	habitat	suitability	models	to	predict	routes	
of	 dispersal	 among	 contemporary	 populations.	 Incorporating	 ge-
netic	data	into	these	analyses	provides	a	framework	for	understand-
ing	corridors	of	gene	flow	among	our	study	populations.

In	concert	with	our	other	predictions,	we	expect	the	models	to	
reflect	 limited	gene	flow	among	geographically	or	environmentally	
isolated	 population	 genetic	 clusters	 and	 phylogenetic	 clades;	 and	
that	 some	 genetic	 groups	may	 appear	 genetically	 isolated	 despite	
the	potential	for	gene	flow	through	these	corridors,	due	to	increased	
selfing	or	other	ecological	factors.	We	analyze	both	population-		and	
evolutionary	genetic	relationships	to	better	understand	the	contem-
porary	and	historical	 connectivity	among	populations.	Overall,	we	
aim	 to	 outline	 a	 thorough	 framework	 of	 factors	 driving	 observed	
population	genetic	patterns	at	both	broad	and	narrow	scales.

2  |  METHODS

2.1  |  Study species & breeding system

Triodanis perfoliata	 (L.)	 Nieuwl.	 (Campanulaceae)	 is	 a	 small,	 com-
mon,	annual	herb	native	to	North	and	South	America.	This	weedy	
annual	 grows	 in	 a	 variety	 of	 conditions	 including	 disturbed	 areas,	
along	 rocky	 outcrops,	 dry	 open	 habitats,	 and	 prairies	 (Gleason	 &	
Cronquist,	 1991;	Weakley,	 2010).	 Seeds	 of	 this	 species	 are	 quite	
small	 (approx.	 Length	=	 0.5 mm,	width	=	 1.3 mm)	and	may	be	dis-
persed	by	ants	(McVaugh,	1948;	Shetler	&	Morin,	1986).	Individuals	

exhibit	 a	mixed	mating	 system	 via	 dimorphic	 cleistogamy	 that	 in-
cludes	 two	 distinct	 floral	 types.	 Chasmogamous	 (CH)	 flowers	 are	
purple,	five-	petaled,	~1.5	cm	in	diameter,	and	can	either	outcross	or	
self-	fertilize;	cleistogamous	(CL)	flowers	completely	lack	a	corolla	and	
are	obligately	 self-	fertilizing	 (Gara	&	Muenchow,	1990;	Goodwillie	
&	Stewart,	2013; Trent, 1940).	All	individuals	of	T. perfoliata	exhibit	
both	floral	types	and	there	is	considerable	variation	among	popula-
tions	in	the	relative	production	of	CH	to	CL	flowers	(Ansaldi,	Franks,	
&	Weber,	2018).	 Some	of	 this	 breeding	 system	variation	 is	 driven	
by	variation	in	pollination	visitation	and	abiotic	conditions	(Ansaldi,	
Franks,	&	Weber,	2018;	Ansaldi,	Weber,	&	Franks,	2018).

2.2  |  DNA collection, extraction, and sequencing

In	late	spring	and	early	summer	2017,	leaf	tissues	were	collected	in	
the	 field	 from	18	 populations	 of	T. perfoliata	 (total	=	 76	 individu-
als; range =	 1–	6	 individuals/population)	 spanning	 the	 contiguous	
US	 (Figure 1a),	 and	 from	6	 individuals	 of	T. biflora	 from	 southeast	
Missouri	(Midwestern	US)	to	serve	as	an	outgroup	for	phylogenetic	
analyses.	We	used	a	CTAB	protocol	(Doyle	&	Doyle,	1987)	to	extract	
high	quality	genomic	DNA	from	silica	dried	leaf	tissue.	Subsequently,	
RADSeq	 (Restriction	 site	 Associated	 DNA	 Sequencing)	 was	 per-
formed	at	Floragenex,	Inc.	to	identify	genetic	variants	(Eaton,	2014).	
The	restriction	enzyme	Sbf1	generated	short	fragments	prior	to	the	
addition	of	sequencing	adapters,	and	all	samples	were	analyzed	on	
the	same	flow	cell	with	Illumina	1x91bp	sequencing.	After	sequenc-
ing,	quality	control	and	sequence	alignment	were	conducted	using	
Bowtie	 (Langmead	 &	 Salzberg,	 2012),	 BWA	 (Li,	 2011)	 and	 Velvet	
(Zerbino,	2010)	and	variant	calling	were	performed	using	Samtools	
(Li	 et	 al.,	 2009).	 The	 final	 dataset	 consists	 of	 variant	 calls	 with	 a	

F I G U R E  1 Sample	localities	and	models	of	population	connectivity.	(a)	Study	site	localities	(n =	18);	filled	markers	indicate	sites	for	
which	breeding	system	traits	were	estimated	(n =	9).	(b)	Population	connectivity	among	all	sites	(c)	population	connectivity	among	genetic	
clusters	(k =	4).	(d)	Population	connectivity	among	major	phylogenetic	clades.	Dark	lines	depict	least-	cost	paths.	Groups	with	no	connections	
represent	either	clades	or	cluster	groups	that	exist	only	at	that	locality.
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minimum	sequencing	depth	of	15x,	minimum	Phred	score	of	20,	and	
no	more	than	10%	of	missing	genotypes.

A	 total	 of	 9,716,774	 raw	 reads	 were	 generated,	 of	 which	
9,657,413	passed	quality	filters.	These	were	used	to	build	5,646,126	
provisional	clusters,	i.e.,	groups	of	sequencing	read	that	likely	cover	
the	 same	position	 in	multiple	 samples,	each	with	a	minimum	clus-
ter	depth	of	5x	and	maximum	cluster	depth	of	1500x.	After	reading	
alignment	and	quality	assessment,	this	yielded	a	final	assembly	that	
was	approximately	5.2	Mb	in	length,	consisting	of	56,6649	contigs,	
each	with	a	 length	of	92 bp.	An	average	of	38.9%	of	the	sequence	
reads	 from	each	sample	aligned	 to	a	single	position	 in	 this	assem-
bly.	Variant	calling	yielded	4705	single	nucleotide	polymorphic	(SNP)	
sites	observed	>90%	of	the	sequenced	individuals	of	T. perfoliata.

2.3  |  Genetic diversity & population structure

Bayesian	cluster	analyses	were	performed	using	STRUCTURE	v2.3.4	
(Pritchard	et	al.,	2000).	Ten	independent	runs	were	performed	for	each	
potential	number	of	genetic	clusters	(K)	[value	3–	22]	using	a	burn-	in	
period	of	40,000	and	 followed	by	80,000	 iterations	per	K;	 analyses	
were	run	under	the	admixture	model	and	assuming	correlated	allele	
frequencies.	 To	 determine	 the	most	 likely	 value	 for	K, we assessed 
values	of	ΔK	(evaluating	the	second-	order	rate	of	change	of	the	like-
lihood	function),	as	per	the	Evanno	et	al.,	2005	method	in	Structure	
Harvester	 v.6.0	 (Earl	 &	 vonHoldt,	 2012).	 Global	 FST	 was	 calculated	
via	the	R	packages	Adegenet	(Jombart	&	Ahmed,	2011)	and	Hierfstat	
(Goudet,	2005);	 the	R	package	vcfR	 (Knaus	&	Grünwald,	2017)	was	
used	for	file	conversion.	Genetic	divergence	between	populations	and	
genetic	clusters	(pairwise	FST,	Tajima	&	Nei,	1984)	and	population	level	
statistics	 (i.e.,	number	of	private	alleles,	π	 [mean	number	of	pairwise	
differences	 per	 site],	 number	 of	 polymorphic	 sites)	 were	 calculated	
using	Arlequin	3.5.2.2	(Excoffier	&	Lischer,	2010).

2.4  |  Phylogenetic tree estimation

We	used	RAxML	V8	 (Stamatakis,	2014)	 to	create	a	maximum	like-
lihood	 phylogeny	 from	 over	 6000	 SNPs.	 Phylogenetic	 trees	were	
generated	 using	 ASC_GTRGAMMA	 model	 of	 nucleotide	 evolu-
tion,	which	 is	an	ascertainment	bias	general-	time-	reversible	model	
(Lewis,	2001).	 Phylogeny	 support	was	 estimated	 by	 using	 10,000	
rapid	 bootstrapped	 trees.	 Direct	 confirmation	 was	 conducted	 by	
splitting	 the	 data	 set	 into	 five	 subsets,	 each	 consisting	 of	 1200	
SNPs,	and	generating	phylogenies	using	the	same	parameters	as	the	
complete	data	set	to	ensure	the	absence	of	major	deviations	in	the	
resulting	inferences.

2.5  |  Reproductive system assessment

Following	methods	 in	Ansaldi,	Franks,	&	Weber,	2018,	we	quanti-
fied	the	breeding	system	(i.e.,	extent	of	cleistogamy)	in	a	subset	of	

populations	 included	 in	 our	 genetic	 analyses	 (Figure 1a:	 filled	 cir-
cles).	Because	these	analyses	aimed	to	estimate	the	total	floral	input	
of	each	flower	type	in	a	population	(total	CH	and	CL),	we	used	only	
individuals	with	fully	mature	stems	(flowering	completed),	and	pop-
ulations	 for	which	we	had	access	 to	N	≥ 20	vouchered	 individuals.	
With	these	limitations,	we	assessed	the	breeding	system	for	N = 9 
of	our	18	overall	populations	with	samples	from	2017	(the	same	year	
as	tissue	collections	for	population	genetic	analyses).	Breeding	sys-
tem	data	for	the	OCN	population	(Otter	Creek	North	Carolina)	were	
derived	 from	 Ansaldi,	 Franks,	 &	 Weber,	 2018. The total average 
production	of	 each	 flower	 type	 in	 each	population	was	estimated	
by	collecting	whole	individual,	fully	mature	plants	(range	=	20–	50;	
33 =	mean	individuals	per	population).	For	each	population,	we	as-
sessed	 the	average	number	of	CH	 flowers,	number	of	CL	 flowers,	
total	flower	number	and	the	proportion	of	flowers	that	were	CH	out	
of	the	total	flower	number	(pCH).	To	test	the	hypothesis	that	popula-
tions	with	a	greater	allocation	to	CL	flowers	will	exhibit	greater	over-
all	 population	 structuring,	 we	 performed	 a	 linear	 model	 between	
pCH	and	mean	population	pairwise	FST	and	to	test	the	hypothesis	
that	 populations	 exhibiting	 greater	 proportional	 production	 of	 CL	
flowers	may	maintain	less	genetic	diversity,	we	performed	linear	re-
gressions	 between	metrics	 of	 genetic	 diversity	 (e.g.,	π,	 number	 of	
polymorphic	sites)	and	pCH	via	a	linear	regression	using	the	lm	func-
tion	in	R	statistics	v	4.1.1	(R	Core	Team,	2021).

2.6  |  Predicting dispersal networks

2.6.1  |  Creating	the	SDM

Likely	 routes	 of	 dispersal	 among	 populations	 or	 genetic	 groups	
were	predicted	via	least-	cost	corridor	analyses,	an	approach	that	
incorporates	species	distribution	models	(SDMs;	Chan	et	al.,	2011).	
SDMs	 were	 generated	 using	 occurrence	 records	 collected	 be-
tween	 the	 years	 2000–	2019	 obtained	 from	 digital	 herbarium	
vouchers,	primary	 literature,	our	 lab	 fieldwork,	 and	open-	source	
occurrence	 data	 (n =	 4503	 initial	 records;	GBIF.org 2020; addn. 
Data	and	citations	available	 in	Berg	et	al.,	2019).	Data	were	first	
vetted	for	taxonomic	assignment	as	well	as	apparent	 labeling	er-
rors	 (e.g.,	data	points	 in	oceans).	Spatial	clusters	of	 localities	can	
cause	models	to	over-	fit	toward	environmental	biases	and	inflate	
model	 performance	 values	 (Boria	 et	 al.,	 2014;	 Hijmans,	 2012; 
Veloz,	2009).	 Spatial	biases	were	addressed	by	 randomly	 select-
ing	 points	 clustered	 within	 a	 10-	km	 radius	 using	 SDMtoolbox	
2.4	 (Brown,	2014).	The	 final	vetted	dataset	consists	of	1735	oc-
currence	 records.	Nineteen	bioclimatic	 layers	at	a	30	arc-	minute	
resolution	from	WorldClim	v2.0	(Hijmans	et	al.,	2005)	were	used	
to	generate	 species	distribution	models	 (SDM)	 in	MaxEnt	3.3.3k	
(Phillips	et	al.,	2020).	SDMs	were	parameterized	with	SDMtoolbox	
v2.4	(Brown,	2014),	to	evaluate	the	performance	of	various	combi-
nations	of	five	feature	classes	(linear;	linear	and	quadratic;	hinge;	
linear,	 quadratic	 and	hinge;	 and	 linear,	 quadratic,	 hinge,	 product	
and	threshold),	and	five	regularization	multipliers	 (0.5,	1,	2,	3,	4;	

http://gbif.org
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Radosavljevic	&	Anderson,	2014).	 SDM	performance	built	under	
each	 combination	 of	 parameters	 was	 assessed	 through	 a	 geo-
graphically	structured	k-	fold	cross-	validation	(i.e.,	the	occurrence	
records were partitioned into k	 equal	 geographically	 clustered	
subsamples,	 here	 k =	 3,	 and	 the	models	were	 trained	with	 two	
of	 the	 groups	 and	 then	evaluated	with	 the	 excluded	group	until	
all	group	combinations	were	run).	Model	fit	was	assessed	via	the	
omission	rate,	area	under	the	curve	(AUC),	and	model	feature	class	
complexity	(Brown,	2014).	After	optimum	model	parameters	were	
determined	 (those	 leading	 to	 the	 lowest	 omission	 rate,	 highest	
AUC,	and	lowest	complexity,	in	the	order	listed),	a	final	SDM	was	
built	with	all	occurrence	sites	and	projected	 into	 the	current	cli-
mate	across	the	contiguous	US,	southern	Canada,	as	well	as	north-
ern	Mexico.

The	final	SDM	estimates	contemporary	habitat	suitability	and	
was	used	 to	estimate	potential	dispersal	networks	among	popu-
lations	and	genetic	groups	of	T. perfoliata	in	our	genetic	analyses.	
These	Least-	Cost	Corridors	(LCCs)	are	estimated	by	inverting	the	
SDM	(one	minus	SDM	suitability	values)	to	function	as	a	friction	
layer,	 characterizing	 the	 cost	 of	 dispersal	 through	 each	 pixel	 in	
the	landscape;	areas	of	high	suitability	have	a	lower	dispersal	cost	
compared	 to	 areas	 of	 low	 suitability	 (Chan	 et	 al.,	2011).	We	 ex-
amined	multiple	 separate	 scenarios	 to	 understand	 how	 connec-
tivity	among	these	populations	may	influence	patterns	of	genetic	
diversity.

2.6.2  |  Population	connectivity	(SDM	only)

In	the	first	scenario,	dispersal	networks	were	estimated	between	
all	 18	 populations	 included	 in	 our	 genetic	 analyses.	 This	 model	
serves	as	a	null	hypothesis	by	solely	considering	how	habitat	suit-
ability	predicts	population	connectivity	in	the	absence	of	genetic	
data.	Connectivity	among	genetic	clusters.	In	the	second	scenario,	
dispersal	networks	were	estimated	among	the	genetic	groups	de-
scribed	in	analyses	of	genetic	structure	(most	likely	K	value).	This	
scenario	 describes	 the	 role	 of	 likely	 dispersal	 corridors	 in	 shap-
ing	 the	 genetic	 structure	 seen	 across	 the	 sampled	 landscape.	
Connectivity	 among	 clades.	 In	 the	 third	 scenario,	 dispersal	 net-
works	were	estimated	among	major	phylogenetic	clades.	Here	we	
subjectively	split	the	phylogeny	into	subclades	by	placing	a	vertical	
line	near	the	base	of	the	tree	(see	dashed	line	in	Figure 3),	which	
split	 the	 phylogeny	 into	 8	 evolutionary	 groups	 that	 each	 share	
common	ancestry	with	clade	members.	These	sub-	clade	groupings	
were	chosen,	in	part,	because	they	matched	our	structure	groups	
(though	 sub-	divided	due	 to	discordance	 in	our	 results)	 and	each	
sub-	clade	was	 assigned	entirely	 to	 the	 same	 cluster	 group	 (with	
the	exception	of	the	clade	containing	the	NY	cluster).	Decreasing	
the	 sub-	clade	group	number	 (by	moving	 the	vertical	 line	 toward	
to	most-	recent	 common	ancestors)	would	have	 resulted	 in	more	
clades	containing	mixed	cluster	groups,	whereas	increasing	group-	
number	 would	 have	 removed	 deeper	 evolutionary	 relationships	
into	dispersal	corridors	calculation.

2.7  |  Examination of IBD and IBE

To	quantitatively	 test	 the	 relationships	between	 the	observed	ge-
netic	 divergence	 and	 both	 IBD	 and	 IBE,	we	 used	Multiple	Matrix	
Regression	with	 Randomization	 (MMRR)	 analyses	 in	 R	 (see	Wang	
et al., 2013	for	scripts	to	perform	analysis).	For	these	analyses,	we	
first	 generated	 the	 following	 four	 distance	 matrices:	 genetic	 dis-
tance,	geographic	distance,	environmental	least-	cost	path	distance,	
and	 environmental	 least-	cost	 path	 total	 resistance.	 Genetic	 dis-
tance	was	quantified	by	measuring	the	inter-	population	FST	among	
the	18	 research	 sites	 in	Arlequin	 v3.5	 (Excoffier	&	 Lischer,	2010).	
Geographic	distance	was	calculated	by	measuring	the	Euclidian	dis-
tance	between	the	research	sites.	To	investigate	the	explicit	role	of	
IBE,	we	calculated	the	least-	cost	paths	among	the	18	research	sites	
using	our	final	SDM,	a	friction	layer	where	the	suitability	values	were	
inverted	(Chan	et	al.,	2011).	This	analysis	resulted	in	the	creation	of	
two	distance	matrices:	(1)	a	matrix	measuring	the	path	length	of	the	
least-	cost	paths	and	(2)	a	matrix	measuring	the	total	resistance	cost	
of	 the	 least-	cost	paths	among	 the	 research	sites.	All	 spatial	meas-
urements	and	analyses	were	performed	in	ArcGIS	10.7	(ESRI,	2021)	
using	SDMtoolbox	v2.4	(Brown	et	al.,	2017).	The	two	raw	IBE	matri-
ces,	distance	and	resistance	values,	were	highly	correlated	with	the	
IBD	matrix	 (R2 = .988 and R2 =	 .914,	 respectively).	To	remove	the	
explicit	effects	of	geographic	distance	 from	our	 two	 IBE	matrices,	
we	performed	a	linear	regression	in	which	each	IBE	distance	matrix	
was	a	response	variable	and	our	geographic	distance	matrix	was	the	
predictor	variable	 (Davies	et	al.,	2007;	Fritz	&	Rahbek,	2012;	Vale	
et al., 2018).	We	used	the	resulting	residuals	output	from	each	linear	
regression,	one	where	environmental	least-	cost	path	(LCP)	distance	
was	 input	and	a	second	where	the	environmental	LCP	total	resist-
ance	was	input	(correlation	to	IBD	matrix:	R2 = .156	and	R2 = .406,	
respectively),	 as	our	 corresponding	 IBE	distance	matrices	 in	 sepa-
rate	MMRR	analyses.	In	each	MMRR	analysis,	genetic	distance	was	
used	as	a	response	variable,	whereas	the	IBD	and	IBE	matrices	were	
each	 considered	 individually	 as	 a	 single	 predictor	 variable.	 To	 as-
sess	the	statistical	significance	of	each	MMRR	analysis	and	predic-
tor	variables,	we	used	10,000	permutations	in	each	analysis	(Wang	
et al., 2013).

3  |  RESULTS

3.1  |  Genetic diversity and population structure

RADSeq	yielded	approximately	3.8	million	bases	and	n =	631,465	
total	 genotypes.	 We	 found	 n =	 4705	 single	 nucleotide	 polymor-
phisms	(SNPs)	in	aligned	sequence	sites	for	T. perfoliata.	These	SNPs	
were	presumably	random	except	for	their	proximity	to	the	Sbf1	re-
striction	site	that	was	used	to	generate	the	library.	There	is	no	rea-
son	to	believe	there	 is	systematic	selection	occurring	on	the	eight	
bases	that	constitute	 the	Sbf1	target	sequence	 (CCTGCAGG).	The	
final,	stringent	list	of	variants	contained	data	for	97%	of	genotypes;	
3%	of	genotypes	were	not	sequenced	or	found	to	have	low	quality,	
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and	 therefore	 were	 considered	missing.	 Total	 heterozygosity	 was	
relatively	 low	 (16%)	 and	 a	 potential	 signature	 of	 high	 inbreeding	
in	 this	 species.	 The	 number	 of	 private	 alleles,	π,	 and	 polymorphic	
sites	varied	widely	among	the	18	populations,	 indicating	consider-
able	variation	in	genetic	diversity	(Table 1).	Pairwise	FST revealed a 
considerable	 range	 in	 genetic	differentiation	between	populations	
and	 genetic	 clusters;	 population	 pairwise	 FST	 range	 (0.01–	0.80)	
(Tables	S1 and S2).	In	addition,	global	FST =	0.48	was	quite	high	sug-
gesting	substantial	overall	population	genetic	differentiation	which	
may	be	driven	by	the	capacity	for	inbreeding	in	this	species.

Analyses	of	the	genetic	structure	revealed	high	support	for	both	
K = 4 and K =	17	genetic	clusters	among	the	18	populations	of	T. 
perfoliata	(Figure 2).	For	K =	4	genetic	clusters,	which	had	the	high-
est	likelihood	support	values	(e.g.,	ΔK =	7.68),	populations	generally	
segregated	into	broad	geographic	regions	of	the	US	including	(1)	the	
central	Midwest	and	Western	states,	(2)	the	southern	Midwest	and	
Gulf	states,	(3)	Eastern	states	and	(4)	populations	from	NY	that	form	
a	separate	cluster	(Figure 2a;	Figure	S2b).	At	K =	17	genetic	clusters	
(ΔK =	6.28),	individuals	generally	segregated	into	clusters	by	popula-
tion	(Figure 2b;	Figure	S2c).	But	similar	to	the	K =	4	profile,	within	the	
K =	17	structure	profile,	some	populations	from	the	central	Midwest	
and	Western	 US	 shared	 genetic	 clusters	 (i.e.,	 CA,	 CO,	 KS1,	 KS2),	
and	some	populations	from	the	Eastern	US	also	clustered	together	
(e.g.,	 SC,	NC2,	NJ	Figure 2b).	We	also	accessed	genetic	 clustering	
using	 the	 package	 sMNF	 (Frichot	 et	 al.,	2014).	 sMNF	 is	 robust	 to	

departures	from	population	genetic	assumptions;	results	were	over-
all	very	similar	to	our	results	from	STRUCTURE	(Figure	S1).

3.2  |  Phylogenetic tree estimation

Phylogenetic	 analyses	 revealed	 three	 major	 geographic	 clades	 of	
T. perfoliata	within	the	US	(Figure 3).	A	couple	of	interesting	phylo-
genetic	patterns	concur	with	specific	 results	 from	genetic	clusters	
from	STRUCTURE:	populations	from	KS	and	CO	share	a	clade	with	
populations	from	CA	and	WA,	despite	the	significant	geographic	dis-
tance	between	these	sites.	In	addition,	individuals	from	a	population	
in	VA	appear	in	both	the	clade	consisting	primarily	of	Eastern	state	
populations	and	the	clade	of	Midwestern	and	Gulf	state	populations.	
But	 overall,	 our	 phylogeny	 shows	 discordance	 with	 results	 from	
STRUCTURE	(see	colored	boxes	in	Figure 3 correspond to colors as-
sociated with K =	 4	 cluster	 Figure 2a).	Only	 two	genetic	 clusters,	
NY	 and	 the	 KS,	 CO,	 CA,	 WA	 cluster	 form	 monophyletic	 groups.	
We	acknowledge	that	some	bootstrap	support	values	are	relatively	
low,	particularly	among	individuals	from	the	Midwest,	whereas	the	
coastal	populations	generally	have	higher	support.	In	general,	clus-
ter	groups	with	mixed	group	assignment	(K = 17 Figure 2b)	also	had	
much	 lower	 support	 in	 our	 phylogenetic	 trees	 (e.g.,	 compare	 the	
mixed	cluster	groups	KS2	and	NC2	with	their	corresponding	phylo-
genetic	support	values).

TA B L E  1 Characteristics	of	76	individuals	from	18	populations	from	across	the	contiguous	US

Pop No private alleles π No poly sites Individuals pCH Long (DD) Lat (DD)

CA 35 403.30 379 415 −116.614 33.680

CO 90 509.62 728 323, 324 −105.112 40.352

IL 221 555.92 1149 158,	161,	163,	165,	170,	173 0.53 −91.242 40.218

KS1 66 552.69 1056 176, 179, 180, 183, 191 0.76 −96.593 39.095

KS2 225 660.53 1480 196,	200,	201,	205,	209,	240 0.74 −96.617 39.095

KY 304 655.96 1229 101,	105,	111,	112,	118 0.52 −88.117 36.734

MO 66 220.82 352 446,	448,	450 0.27 −90.023 37.358

NC1 79 381.45 999 81, 84, 88, 91, 92, 94 −83.431 35.060

NC2 393 709.87 1592 226, 227, 230, 233, 234, 239 0.58 −77.310 35.431

NJ 103 448.20 906 242,	243,	245,	246,	250 −75.112 40.361

NY 16 195.77 352 440–	445 −73.574 41.208

OH 17 245.34 353 313, 318 0.40 −83.852 41.555

PA 16 196.79 347 219– 222, 224 0.16 −77.501 39.732

SC 20 377.58 356 373 −80.040 32.788

TX 238 493.56 863 39, 40, 43, 44, 47 0.33 −97.466 30.170

VA 61 468.26 882 65,	67,	71,	75,	77,	78 −78.065 39.063

WA1 61 205.59 345 405–	407,	409 −122.444 47.144

WA2 103 243.34 346 330, 336 −122.903 48.447

Note:	By	population:	Number	of	private	alleles,	π,	number	of	polymorphic	sites	generated	in	Arlequin.	For	nine	populations,	pCH	indicates	an	estimate	
of	the	population	breeding	system	(average	proportion	of	CH	flowers	to	CL	flowers);	addn.	Breeding	system	information:	Table	S3.	Longitude	and	
latitude	measured	in	decimal	degrees.
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3.3  |  Reproductive system assessment

Similar	to	previous	work,	we	found	that	breeding	systems	are	highly	
variable	across	populations	of	T. perfoliata	(i.e.,	mean	relative	chas-
mogamy	 (pCH)	was	 0.48 ± 0.07	 [N =	 9;	 mean ± 1	 SE;	 Table	 S3]).	
Across	these	nine	populations,	mean	population	pairwise	FST was 
significantly	negatively	correlated	with	pCH;	populations	produc-
ing	relatively	more	CL	flowers	exhibited	greater	overall	population	
substructuring	(p = .0015,	multiple	R2 = .78,	F =	25.19;	Table	S4).	
In	addition,	the	relative	proportion	of	CH	flower	production	(pCH)	
is	significantly	positively	correlated	to	multiple	metrics	of	genetic	
diversity	(π: R2 = .63, p = .01, Figure 4a;	number	of	polymorphic	
sites: R2 = .63, p =	 .01).	 These	 strong	 associations	 support	 the	
hypothesis	 that	 breeding	 system	 strongly	 influences	 population	
genetic	patterns.	Populations	with	a	greater	allocation	to	CL	flow-
ers	 exhibit	 reduced	 genetic	 diversity	 and	 increased	 population	
substructuring,	as	predicted	by	reduced	gene	flow	among	highly	
selfing	populations.

3.4  |  Predicting dispersal networks

Our	final	SDM	had	a	high	predictive	performance	with	an	Omission	
Rate	 (OR) < 0.01	 and	 a	 moderate	 discriminatory	 ability	 with	 an	
AUC =	 0.62	 (Supp.	 Figure 2).	 The	 resulting	 distribution	 predic-
tion	 matches	 our	 expert	 knowledge	 of	 the	 species'	 distribution.	
Population	connectivity	(SDM	only).	Our	first	LCC	model	considered	
only	the	role	of	habitat	suitability	in	influencing	dispersal	corridors	
among	 our	 study	 populations	 (Figure 1b).	 Without	 the	 inclusion	
of	 genetic	 data,	 the	 LCC	 model	 assumes	 an	 equal	 probability	 of	

connectivity	among	all	of	our	18	populations.	In	this	model,	we	ob-
serve	many	potential	dispersal	 corridors	among	Midwestern,	Gulf,	
and	 Eastern	 states	 within	 the	 US;	 and	 multiple	 potential	 disper-
sal	 corridors	between	 the	Western	US	and	 the	Midwest	 and	Gulf	
states,	 but	 the	 most	 highly	 predicted	 corridor	 goes	 through	 the	
Southwestern	US	(Figure 1b).

3.4.1  |  Incorporating	genetic	information	in	LCCs

To	better	visualize	the	likely	dispersal	corridors	among	groups,	
we	 incorporated	 genetic	 data	 into	 the	 LCC	 corridor	 calcula-
tions	 using	 two	 methods.	 Connectivity	 within	 population	
genetic	clusters.	The	first	method,	the	analysis	of	potential	cor-
ridors	 among	K =	 4	 genetic	 clusters,	 differs	 greatly	 from	 the	
null	 model	 (which	 compared	 all	 populations	 in	 LCC	 creation).	
Using	 genetic	 clusters	 imposes	 key	 roles	 for	 factors	 such	 as	
demography	 and	 lineage	 history	 in	 shaping	 the	 genetic	 land-
scape	in	addition	to	IBD	and	IBE	(Figure 1c).	In	this	model,	the	
NY	population	becomes	isolated,	and	no	dispersal	corridors	are	
predicted	 between	 the	 Eastern	 states	 and	 Midwest	 and	 the	
Western	US	states.	 In	this	same	model,	multiple	dispersal	cor-
ridors	between	the	Midwest	and	Western	US	are	predicted	as	
suitable,	but	the	Southwestern	corridor	route	still	appears	most	
likely.	 Interestingly,	 this	 model	 strongly	 predicts	 suitable	 dis-
persal	between	the	Gulf	states	and	several	Midwest	states	(e.g.,	
IL,	OH,	KY,	MO).	(Analyses	of	dispersal	corridors	among	K	= 17 
genetic	clusters	were	not	logical	because	individuals	from	pop-
ulations	 frequently	 belonged	 to	 multiple	 genetic	 clusters,	 re-
sulting	in	relatively	few	localities	to	model.)	Connectivity	within	

F I G U R E  2 Results	from	population	structure	analyses	showing	(a)	K =	4	and	(b)	K =	17;	two	scenarios	of	sub-	structuring	with	the	highest	
likelihood	values	using	the	Evanno	et	al.	(2005)	method	in	STRUCTURE	Harvester.	Letters	above	the	bars	indicate	the	population	(by	US	
state,	numbers	for	multiple	populations	in	a	single	state);	numbers	below	the	bars	indicate	the	individual	identifier.	Colors	from	the	K = 4 
plot are replicated in Figure 3	to	show	discordance	between	structure	analyses	and	phylogenetic	results.
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clades.	 Our	 second	 genetic-	based	 LCC	 analysis	 incorporated	
phylogenetic	 relationships	 in	 the	 LCCs	 calculation.	 To	 do	 this	
we	 estimated	 likely	 dispersal	 corridors	 among	major	 phyloge-
netic	clades	from	our	RaxML	analyses	(see	vertical	dashed	line	
Figure 1d).	 This	 LCC	model	 highly	 predicts	 dispersal	 between	
the	Midwest	and	Western	US	States.

3.5  |  Examination of IBD and IBE

Geography	 (or	 IBD)	 was	 the	 strongest	 predictor	 of	 our	 observed	
genetic	diversity	across	the	sampled	distribution	(R2 = .189, p < .01;	
Figure 4b).	 However,	 environment	 with	 the	 signal	 of	 IBD	 re-
moved,	 also	 significantly	 predicted	 the	observed	 genetic	 diversity	

F I G U R E  3 RaxML	maximum	likelihood	phylogenetic	tree.	Colors	boxes	indicate	primary	individual	identity	to	genetic	clusters	
corresponding to the plot K =	4,	(Figure 2).	Letters	indicate	the	population	(by	US	state,	numbers	for	multiple	populations	in	a	single	state);	
numbers	indicate	the	individual	identifier.	Truncated	branch	length	at	base	has	a	length	of	0.0603.	Small	inset	tree	is	a	tree	without	basal	
nodes	trimmed.	Branch	lengths	and	scale	bar	refer	to	the	number	of	nucleotide	substitutions	per	site.	Inset	image	is	modified	from	a	hand-	
colored	lithograph	by	Endicott	based	on	an	illustration	from	John	Torrey's	a Flora of the state of New York	(Torrey,	1843).
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(IBE	 distance,	 R2 < .001,	 p =	 .945,	 Figure 4c;	 IBE	 total	 resistance	
R2 =	.058,	p = .048, Figure 4d),	however	with	a	lower	R2	when	com-
pared	to	IBD.

4  |  DISCUSSION

Here	we	explicitly	 demonstrate	how	a	 variety	of	 factors,	 both	 in-
trinsic	 (i.e.,	breeding	system	variation)	and	extrinsic	 (i.e.,	 IBD,	 IBE),	
drive	 patterns	 of	 genetic	 diversity	 and	 population	 divergence	 in	
the	 mixed-	mating	 annual,	 Triodanis perfoliata	 (Campanulaceae).	
Specifically,	 we	 found	 that	 populations	 with	 a	 greater	 proportion	
of	 cleistogamous	 (obligately	 selfing)	 flowers	 had	 reduced	 genetic	
variation	compared	to	populations	with	relatively	more	open	flow-
ers	(π: R2 = .63, p =	.01).	Greater	inbreeding	also	tends	to	increase	
population	 structure	 and	 reduce	 gene	 flow	 among	 populations	
(Lande,	 1988;	 Lande	 &	 Shannon,	 1996;	Wright,	 1946).	 In	 concert	
with	 these	 predictions,	 we	 also	 found	 a	 strong	 negative	 associa-
tion	between	mean	population	pairwise	FST	and	the	extent	of	open	
flowers	(CH)	produced	in	populations;	suggesting	greater	gene	flow	
among	populations	with	a	greater	allocation	to	CH	compared	to	CL	
(closed)	flowers.	Overall	this	species	exhibits	a	relatively	high	global	

FST	 (0.48),	 a	 wide	 range	 of	 population	 pairwise	 FST	 values	 among	
populations	and	genetic	clusters	(Tables	S1 and S2),	and	significant	
genetic	sub-	structuring	(highest	likelihood	K =	4	out	of	18	popula-
tions).	Genetic	divergence	among	populations	of	T. perfoliata is also 
influenced	by	both	geographic	distance	and	environmental	factors.	
Therefore,	we	also	explored	models	of	population	 connectivity	 to	
better	understand	the	factors	shaping	the	genetic	landscape	of	this	
widespread,	mixed-	mating	species.

Reproductive	 systems	 can	 influence	 population	 dynamics	 in	
complex	 ways,	 driving	 patterns	 of	 genetic	 diversity,	 gene	 flow,	
and	 demographics,	 and	 influencing	 fitness	 (e.g.,	 Charlesworth	 &	
Charlesworth, 1987;	 Lande	 &	 Shannon,	1996;	Wright,	1946).	 Our	
findings	are	consistent	with	some	studies	that	have	also	found	sig-
nificant	population	genetic	structuring	 in	dimorphic	cleistogamous	
species	 (e.g.,	 Lesica	 et	 al.,	 1988;	 Schoen,	 1984;	 Sun	 et	 al.,	 2002; 
Toczydlowski	&	Waller,	2019).	However,	 some	cleistogamous	 spe-
cies	 can	 also	 exhibit	 relatively	 high	 levels	 of	 genetic	 diversity	 and	
low	population	genetic	structure	(e.g.,	Cortés-	Palomec	et	al.,	2006; 
Culley	&	Wolfe,	2001).	These	patterns	demonstrate	that	the	impact	
of	cleistogamy	on	population	genetic	patterns	is	context-	dependent	
because	some	populations	can	still	exhibit	high	levels	of	outcrossing	
in	chasmogamous	flowers	(Culley	&	Wolfe,	2001).

F I G U R E  4 (a)	Correlation	between	breeding	system	(estimated	as	the	average	proportion	of	cleistogamous	to	chasmogamous	flowers	
produced	among	individuals	in	a	population:	pCH)	and	genetic	diversity	(π:	The	number	of	nucleotide	differences	per	site	between	two	
randomly	chosen	sequences	from	a	population)	in	n =	9	populations.	MMRR	correlations	between	genetic	distance	and:	(b)	Euclidian	
distance	(in	decimal	degrees),	(c)	environmental	least-	cost	path	distance,	(d)	environmental	LCP	total	resistance.	*For	both	(c)	and	(d),	the	
matrices	analyzed	represented	residuals	of	a	lineage	regression	of	the	raw	environment	matrix	and	geographic	distance.	This	removed	the	
effect	of	geographic	distance	from	these	MMRR	analyses.

150

250

350

450

550

650

750

0.1 0.2 0.3 0.5 0.6 0.7 0.8

pCH

π

0.4

KS1

KS2

NC2

IL

KY

OH

TX

MOPA

0.0 0.2 0.4 0.6 0.8

0
10

20
30

40
50

genetic distance (pairwise FST)

eu
cli

de
an

 di
sta

nc
e

0.0 0.2 0.4 0.6 0.8

−4
−2

0
2

4
6

lea
st 

co
st 

pa
ths

 di
sta

nc
e*

genetic distance (pairwise FST)
0.0 0.2 0.4 0.6 0.8

−1
0

−5
0

5
10

genetic distance (pairwise FST)

lea
st 

co
st 

pa
ths

 re
sis

tan
ce

*

(a) (b)

(d)(c)

P = 0.01; R2 = 0.63 P < 0.01; R2 = 0.19

P = 0.95; R2 = 0.002 P = 0.048; R2 = 0.05



10 of 14  |     TACKETT et al.

Another	 important	 feature	of	 cleistogamous	 species,	 including	
T. perfoliata,	 is	 plasticity	 in	 reproductive	 allocation	 to	 cleistogamy	
due	 to	abiotic	 and	biotic	 factors	 (Ansaldi,	Franks,	&	Weber,	2018; 
Ansaldi,	Weber,	&	Franks,	2018;	 Jones	 et	 al.,	2013).	 In	 this	 study,	
we	 took	 advantage	 of	 population-	level	 variation	 in	 the	 breeding	
system	 to	 address	 if	 greater	 average	 cleistogamy	 impacts	 popula-
tion	genetic	diversity	 in	T. perfoliata.	We	acknowledge	 that	 in	 this	
study	we	did	not	directly	 link	 the	breeding	system	to	quantitative	
estimates	of	inbreeding	(FIS).	However,	strong	correlations	between	
the	 extent	 of	 cleistogamy	 at	 the	 population	 level	 and	 metrics	 of	
genetic	 diversity	 suggest	 a	 meaningful	 relationship	 that	 warrants	
subsequent	 investigation.	 Inbreeding	depression	 is	an	obvious	po-
tential	 negative	 consequence	 of	 greater	 inbreeding	 (Charlesworth	
&	Charlesworth,	1987;	Culley	&	Klooster,	2007),	 but	our	previous	
work	demonstrated	 relatively	 low	 inbreeding	depression	 for	 three	
populations	 of	 T. perfoliata	 under	 greenhouse	 conditions	 (Ansaldi	
et al., 2019).	 Nonetheless,	 here	we	 demonstrate	 that	 populations	
with	 more	 average	 cleistogamy	 harbor	 less	 genetic	 diversity	 and	
reduced	genetic	diversity	may	result	in	long-	term	demographic	con-
sequences	 that	are	more	difficult	 to	quantify	on	short	 time	scales	
(Hobbs	&	Humphries,	1995;	Jump	et	al.,	2009; Lai et al., 2019; Lande 
&	Shannon,	1996).	 Variation	 in	 relative	 production	 of	 cleistogamy	
in T. perfoliata	 is	 influenced	 by	 a	 variety	 of	 factors	 including	 soil	
type,	water	availability	and	pollinator	environment	(Ansaldi,	Franks,	
&	Weber,	2018;	 Ansaldi,	Weber,	&	Franks,	2018).	 Taken	 together,	
dimorphic	cleistogamy	presents	a	novel	opportunity	to	understand	
the	multifaceted	nature	in	which	reproductive	systems	and	ecology	
influence	population	genetic	patterns.

Increased	 inbreeding,	 geographic	 distance,	 and	 environmental	
resistance	will	all	lead	to	population	divergence	and	strong	patterns	
of	population	sub-	structuring.	For	T. perfoliata,	we	found	evidence	
of	 high	 population	 sub-	structuring	 and	 strong	 geographic	 signals	
describing	 regional	 connectivity	 among	 our	 study	 populations.	
Mixed-	matrix	models	 revealed	 that	 both	 geographic	 distance	 and	
environmental	resistance	describe	significant	patterns	of	population	
genetic	divergence.	Sexton	et	 al.	 (2014)	 surveyed	a	wide	 range	of	
taxa	and	found	that	IBE	was	the	strongest	pattern	observed	among	
animals,	but	both	IBD	and	IBE	were	the	strongest	patterns	among	
plants.	 Geographic	 distance	 is	 likely	 to	 incorporate	multiple	 envi-
ronmental	factors,	whereas	 IBE	 is	typically	 limited	to	the	scope	of	
factors	included	in	analyses.	We	explicitly	accounted	for	IBD	in	our	
analyses	of	IBE	and	found	that	isolation	by	environment	and	genetic	
distance	were	correlated,	suggesting	that	environmental	resistance	
can	lead	to	increased	genetic	divergence	between	populations,	likely	
through	a	combination	of	drift	and	local	adaptation.	The	variety	of	
mechanisms	 potentially	 driving	 IBE	 are	 quite	 diverse	 (e.g.,	 natural	
selection,	phenology),	but	our	data	suggest	 that	suitable	corridors	
of	population	connectivity	play	a	key	 role	 in	 facilitating	gene	 flow	
between	populations	of	T. perfoliata.

We	modeled	connectivity	among	all	populations,	as	well	as	ge-
netic	 groups	 to	 elucidate	 how	 various	 factors	 interplay	 to	 shape	
broader	landscape	genetic	patterns	for	T. perfoliata.	For	these	mod-
els,	routes	of	dispersal	are	predicted	using	least-	cost	corridor	(LCC)	

analyses,	a	method	that	uses	SDMs	to	find	predicted	corridors	(Chan	
et al., 2011).	As	a	null	model,	we	first	predicted	dispersal	corridors	
among	all	of	our	18	study	populations	in	the	absence	of	additional	
genetic	 information	 (Figure 1b).	This	 type	of	model	upweights	 the	
relationships	among	distantly	related	individuals,	which	typically	are	
more	geographically	isolated.	Because	of	the	indiscriminate	nature	
of	 these	 types	 of	 analyses,	 a	 landscape	 can	 be	 hyper-	connected,	
with	 all	 populations	 being	 connected	 via	 corridor	 pathways.	 Such	
a	 landscape	 ignores	 spatial-	temporal	 dynamics	 associated	 with	
historical	habitat	and	climate	change	 (i.e.,	glacial	 cycles	or	climatic	
refugia).	 To	 build	 a	 more	 realistic	 model	 of	 landscape	 connectiv-
ity,	we	next	 incorporated	genetic	 relationships	 into	our	 landscape	
connectivity	 model.	 We	 modeled	 population	 connectivity	 among	
K =	4	genetic	clusters,	and	this	model	was	markedly	different	from	
the	null	model	 (Figure 1c).	 In	the	genetic	cluster	model,	no	disper-
sal	corridors	are	predicted	to	connect	with	the	NY	population,	even	
with	geographically	close	populations.	In	other	areas,	we	see	broad	
patterns,	predicting	high	connectivity	 in	areas	of	high	habitat	suit-
ability	(Midwestern	US)	and	reduced	connectivity	for	geographically	
distanced	 localities,	 likely	due	 to	 isolation	by	distance.	This	model	
also	 seems	 to	 account	 for	 barriers	 to	 dispersal,	 particularly	 the	
Appalachian	and	the	Rocky	Mountains,	which	either	limit	or	reduce	
connectivity	 to	the	Midwestern	US.	We	further	explored	how	de-
mographic	and	lineage	history	can	influence	genetic	connectivity	by	
integrating	phylogeny	into	our	analyses	(Figures 1d and 3).

Due	 to	 methodological	 differences	 between	 our	 phylogenetic	
analyses	and	genetic	clusters,	the	phylogenetic	results	aim	to	eluci-
date	evolutionary	relationships	among	populations	and	should	clar-
ify	 geographic	 regions	 that	were	 historically	 connected	 at	 deeper	
timescales.	 In	most	cases,	discordance	between	our	structure	and	
phylogenetic	results	(Figures 2 and 3)	seem	to	reflect	cases	in	which	
recent	and	frequent	gene	flow	is	likely	between	geographically	close	
sites	(i.e.,	admixture).	Some	of	this	discordance	between	our	popu-
lation	genetic	 analyses	 and	our	phylogenetic	 analysis	might	be	 in-
dicative	 of	more	 complicated	 evolutionary	 histories,	with	 isolated	
evolutionary	 lineages	 coming	 back	 into	 contact	 periodically.	 The	
low	 observed	 phylogenetic	 support	 values	 in	 the	 Midwest	 could	
be	 a	 result	 of	 such	 phenomena,	 though	 such	 hypotheses	 require	
proper	 statistical	 and	 population	 genomic	 analyses	 (see	 Figure 3; 
e.g.,	TreeMix,	Pickrell	&	Pritchard,	2012).	This	is	further	reinforced	
by	 the	differences	between	our	phylogenetic	 LCC	 (Figure 1d)	 and	
our	genetic	cluster	LCC	 (Figure 1c).	Most	notable	 is	a	 lack	of	con-
nection	between	Midwestern	US	populations	on	either	side	of	the	
Mississippi	River	in	the	phylogenetic	analyses,	whereas	populations	
are	connected	in	the	cluster	LCC.

Our	 study	 encompasses	 a	wide	 geographic	 area,	 and	our	 data	
reflects	 both	 the	 implications	 of	 factors	 more	 predominant	 at	
the	 population	 level	 (e.g.,	 breeding	 system)	 and	 factors	 affecting	
landscape-	scale	 patterns	 such	 as	 geographic	 distances	 (Husband	
&	 Barrett,	 1996;	 Slatkin,	 1987).	 For	 these	 reasons,	 future	 work	
will	 explore	 how	 current	 landscape	 genetic	 patterns	 may	 have	
been	 influenced	 by	 historic	 climatic	 patterns	 that	 may	 limit	 or	
facilitate	 population	 connectivity.	 For	 example,	 research	 will	
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incorporate	paleoclimate	data	with	 time-	calibrated	phylogenies	 to	
estimate	temporally	relevant	connections	(for	example	see	Guillory	
&	Brown,	2021;	French	&	Brown,	2022 in preparation).	 In	addition,	
ongoing	work	aims	to	quantify	how	the	breeding	system	explicitly	
influences	patterns	of	demography	and	fitness	among	populations.	
Overall,	 our	analyses	of	T. perfoliata	 illustrate	 the	 influence	of	 the	
breeding	system,	geography,	and	the	environment	in	shaping	popu-
lation	genetic	patterns	in	this	widespread,	mixed	mating	wildflower.
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