
Ecology and Evolution. 2022;12:e9382.	 ﻿	   | 1 of 14
https://doi.org/10.1002/ece3.9382

www.ecolevol.org

Received: 23 April 2022  | Revised: 25 August 2022  | Accepted: 9 September 2022
DOI: 10.1002/ece3.9382  

R E S E A R C H  A R T I C L E

Breeding system and geospatial variation shape the population 
genetics of Triodanis perfoliata

Morgan Tackett1 |   Colette Berg2 |   Taylor Simmonds3 |   Olivia Lopez4 |   Jason Brown3 |   
Robert Ruggiero4  |   Jennifer Weber3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Neuroscience Graduate Program, 
University of Oklahoma Health Sciences 
Center, Oklahoma City, Oklahoma, USA
2Division of Biological Sciences, University 
of Montana, Missoula, Montana, USA
3School of Biological Sciences, Southern 
Illinois University, Carbondale, 
Carbondale, Illinois, USA
4Department of Biology, Southeast 
Missouri State University, Cape Girardeau, 
Missouri, USA

Correspondence
Jennifer Weber, School of Biological 
Sciences, Southern Illinois University, 
Carbondale, Carbondale, Illinois, USA.
Email: jennifer.weber@siu.edu

Abstract
Both intrinsic and extrinsic forces work together to shape connectivity and genetic 
variation in populations across the landscape. Here we explored how geography, 
breeding system traits, and environmental factors influence the population genetic 
patterns of Triodanis perfoliata, a widespread mix-mating annual plant in the contigu-
ous US. By integrating population genomic data with spatial analyses and modeling 
the relationship between a breeding system and genetic diversity, we illustrate the 
complex ways in which these forces shape genetic variation. Specifically, we used 
4705 single nucleotide polymorphisms to assess genetic diversity, structure, and 
evolutionary history among 18 populations. Populations with more obligately selfing 
flowers harbored less genetic diversity (π: R2 = .63, p = .01, n = 9 populations), and 
we found significant population structuring (FST  =  0.48). Both geographic isolation 
and environmental factors played significant roles in predicting the observed genetic 
diversity: we found that corridors of suitable environments appear to facilitate gene 
flow between populations, and that environmental resistance is correlated with in-
creased genetic distance between populations. Last, we integrated our genetic results 
with species distribution modeling to assess likely patterns of connectivity among 
our study populations. Our landscape and evolutionary genetic results suggest that T. 
perfoliata experienced a complex demographic and evolutionary history, particularly 
in the center of its distribution. As such, there is no singular mechanism driving this 
species' evolution. Together, our analyses support the hypothesis that the breeding 
system, geography, and environmental variables shape the patterns of diversity and 
connectivity of T. perfoliata in the US.
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1  |  INTRODUC TION

Understanding what factors drive patterns of genetic diversity 
among populations is central to evolutionary ecology, and critical for 
predicting how species respond to changing environments (Manel 
& Holderegger, 2013). Evolution is intrinsically linked to genetic di-
versity, which often serves as the raw material for evolutionary pro-
cesses (e.g., Alsos et al., 2012; Jump et al., 2009; Stange et al., 2021). 
However, data on quantitative traits are rarely available for wild 
species across their distributions, limiting our ability to study how 
traits evolve. Measures of genetic diversity from neutral markers are 
more readily available and correlations have been found between 
the differentiation of quantitative traits and neutral markers (e.g., 
Frankham et al., 1999; Jump et al., 2009; Merilä & Crnokrak, 2001). 
The adaptive potential may be limited in naturally occurring popula-
tions with low genetic diversity and small effective population sizes 
(Hobbs & Humphries, 1995; Jump et al., 2009; Lai et al., 2019; Lande 
& Shannon, 1996).

Intraspecific genetic diversity is often influenced by intrinsic 
factors such as variation in the reproductive system and demo-
graphic history (e.g., Chan et al., 2011; Clobert et al., 2012; Hellwig 
et al., 2021; Toczydlowski & Waller, 2019) and extrinsic factors such 
as interactions with barriers that limit dispersal (physical, abiotic, 
and biotic; e.g., Alvarado-Serrano et al., 2019; Brown et al., 2016; 
Galbreath et al.,  2010). Taken together, these factors shape the 
variation in gene flow among populations, influencing subsequent 
evolutionary processes (e.g., lineage diversification, hybridization) 
and patterns of genetic diversity among populations (e.g., Chan 
et al.,  2011; Cruzan & Hendrickson,  2020; Hellwig et al.,  2021). 
Studies that consider both intrinsic and extrinsic factors over mul-
tiple scales provide a more complete interpretation of what drives 
patterns of genetic diversity at the intraspecific level (Schregel 
et al., 2018; Twyford et al., 2020).

Because flowering plants often exhibit high intraspecific varia-
tion in reproductive systems, they present novel opportunities to 
examine the role of breeding systems in influencing patterns of 
genetic diversity and divergence among populations (e.g., Culley & 
Stokes, 2012; Sun et al., 2002; Toczydlowski & Waller, 2019). For 
example, many flowering plants have the capacity for both cross- 
and self-fertilization, a condition termed mixed-mating (Goodwillie 
et al.,  2005; Lande & Schemske,  1985). Self-fertilization presents 
several benefits in the context of mate availability and range ex-
pansion (Baker,  1955; Busch & Delph,  2012). Individuals within 
populations with relatively high inbreeding exhibit high genetic 
similarity, reducing effective population size. In turn, these popu-
lations are highly susceptible to genetic drift and subsequent loss 
of genetic diversity and potentially greater susceptibility to changes 
in the external environment (Lande, 1988; Lande & Shannon, 1996; 
Wright, 1946). Inbreeding, particularly in smaller populations, also 
drives differentiation among populations, in parallel with patterns 
expected for geographically isolated populations (Lowe et al., 2005; 
Toczydlowski & Waller, 2019; Wright, 1965). Despite the potential 
importance of plant reproduction in driving patterns of genetic 

diversity and connectivity, this feature of species is still poorly un-
derstood in the context of population genetics at large spatial scales 
in wild populations.

Among populations, a common explanation for spatial patterns 
of genetic diversity is isolation-by-distance (IBD), where popula-
tions that are geographically isolated exhibit greater genetic differ-
entiation via attenuated gene flow and genetic drift (Wright, 1943, 
Slatkin, 1993, e.g., Toczydlowski & Waller, 2019, Hellwig et al., 2021). 
While greater inbreeding may drive genetic isolation at a local scale, 
IBD often has a greater influence at broad spatial scales. Larger pop-
ulations are typically less susceptible to drift, but founder effects 
and population bottlenecks can still drive genetic differentiation 
in isolated populations, especially following colonization events 
(Toczydlowski & Waller,  2019; Wright,  1977). In addition to IBD, 
many studies invoke key roles for variation in topography and cli-
mate in mediating spatial distribution patterns, which either restrict 
dispersal (e.g., mountains, rivers, etc.), or act as suitable corridors for 
gene flow (isolation by the environment; McRae, 2006). Species also 
exhibit specific ecological tolerances that dictate spatial patterns 
of gene flow and migration (Chan et al., 2011; Sexton et al., 2014; 
Wang & Summers, 2010). Across heterogeneous landscapes, areas 
of ecological tolerance for a species may be more limited, resulting 
in increased genetic divergence among populations by reducing 
dispersal corridors (Wang & Bradburd,  2014). Incorporating esti-
mates of environmental tolerance with IBD provides a more real-
istic framework for understanding population connectivity across 
landscapes (e.g., Alvarado-Serrano & Hickerson,  2018; Cruzan & 
Hendrickson,  2020; Cushman et al.,  2009; Hevroy et al.,  2018; 
Toczydlowski & Waller, 2019; Wang & Bradburd, 2014).

Integrating genetic data with landscape and environmen-
tal parameters can better describe the range of factors driving 
or maintaining patterns of genetic diversity among populations 
(e.g.Alvarado-Serrano & Hickerson, 2018; Chan et al., 2011; Cruzan 
& Hendrickson,  2020). Here we explicitly examine how breeding 
system variation, geographic distance, and habitat suitability may be 
integrated to explain spatial patterns of genetic diversity in 18 popu-
lations of Triodanis perfoliata (Campanulaceae), a widespread, annual 
native to North and South America (Weakley, 2010). All individu-
als of this species exhibit dimorphic cleistogamy, consisting of both 
obligately self-fertilizing flowers and flowers that can either self- or 
cross-fertilize (Gara & Muenchow, 1990; Trent,  1942). Because of 
the high potential for inbreeding in populations of T. perfoliata, we 
also examine how breeding system may correlate to metrics of ge-
netic diversity and influence overall patterns of genetic structure. 
At broad geographic scales we predict high levels of population 
structure and relatively high population genetic divergence; at this 
scale we predict that both isolation by distance (IBD) and isolation 
by environment (IBE) will be the strongest factors structuring ge-
netic diversity. Both geographic distance and variance in biotic and 
abiotic factors can limit gene flow or shape the potential for gene 
flow through particular corridors. Therefore, we explicitly discern 
the roles of geographic isolation (IBD) and environment (IBE) in 
shaping observed patterns. At local spatial scales, we predict that 
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populations with a greater allocation to cleistogamy will exhibit re-
duced genetic diversity and high population genetic structuring (av-
erage Fst) due to increased inbreeding and that the breeding system 
will be a more important factor influencing population-level genetic 
patterns. Finally, we use habitat suitability models to predict routes 
of dispersal among contemporary populations. Incorporating ge-
netic data into these analyses provides a framework for understand-
ing corridors of gene flow among our study populations.

In concert with our other predictions, we expect the models to 
reflect limited gene flow among geographically or environmentally 
isolated population genetic clusters and phylogenetic clades; and 
that some genetic groups may appear genetically isolated despite 
the potential for gene flow through these corridors, due to increased 
selfing or other ecological factors. We analyze both population- and 
evolutionary genetic relationships to better understand the contem-
porary and historical connectivity among populations. Overall, we 
aim to outline a thorough framework of factors driving observed 
population genetic patterns at both broad and narrow scales.

2  |  METHODS

2.1  |  Study species & breeding system

Triodanis perfoliata (L.) Nieuwl. (Campanulaceae) is a small, com-
mon, annual herb native to North and South America. This weedy 
annual grows in a variety of conditions including disturbed areas, 
along rocky outcrops, dry open habitats, and prairies (Gleason & 
Cronquist,  1991; Weakley,  2010). Seeds of this species are quite 
small (approx. Length =  0.5 mm, width =  1.3 mm) and may be dis-
persed by ants (McVaugh, 1948; Shetler & Morin, 1986). Individuals 

exhibit a mixed mating system via dimorphic cleistogamy that in-
cludes two distinct floral types. Chasmogamous (CH) flowers are 
purple, five-petaled, ~1.5 cm in diameter, and can either outcross or 
self-fertilize; cleistogamous (CL) flowers completely lack a corolla and 
are obligately self-fertilizing (Gara & Muenchow, 1990; Goodwillie 
& Stewart, 2013; Trent, 1940). All individuals of T. perfoliata exhibit 
both floral types and there is considerable variation among popula-
tions in the relative production of CH to CL flowers (Ansaldi, Franks, 
& Weber, 2018). Some of this breeding system variation is driven 
by variation in pollination visitation and abiotic conditions (Ansaldi, 
Franks, & Weber, 2018; Ansaldi, Weber, & Franks, 2018).

2.2  |  DNA collection, extraction, and sequencing

In late spring and early summer 2017, leaf tissues were collected in 
the field from 18 populations of T. perfoliata (total =  76 individu-
als; range  =  1–6 individuals/population) spanning the contiguous 
US (Figure  1a), and from 6 individuals of T. biflora from southeast 
Missouri (Midwestern US) to serve as an outgroup for phylogenetic 
analyses. We used a CTAB protocol (Doyle & Doyle, 1987) to extract 
high quality genomic DNA from silica dried leaf tissue. Subsequently, 
RADSeq (Restriction site Associated DNA Sequencing) was per-
formed at Floragenex, Inc. to identify genetic variants (Eaton, 2014). 
The restriction enzyme Sbf1 generated short fragments prior to the 
addition of sequencing adapters, and all samples were analyzed on 
the same flow cell with Illumina 1x91bp sequencing. After sequenc-
ing, quality control and sequence alignment were conducted using 
Bowtie (Langmead & Salzberg,  2012), BWA (Li,  2011) and Velvet 
(Zerbino, 2010) and variant calling were performed using Samtools 
(Li et al.,  2009). The final dataset consists of variant calls with a 

F I G U R E  1 Sample localities and models of population connectivity. (a) Study site localities (n = 18); filled markers indicate sites for 
which breeding system traits were estimated (n = 9). (b) Population connectivity among all sites (c) population connectivity among genetic 
clusters (k = 4). (d) Population connectivity among major phylogenetic clades. Dark lines depict least-cost paths. Groups with no connections 
represent either clades or cluster groups that exist only at that locality.
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minimum sequencing depth of 15x, minimum Phred score of 20, and 
no more than 10% of missing genotypes.

A total of 9,716,774 raw reads were generated, of which 
9,657,413 passed quality filters. These were used to build 5,646,126 
provisional clusters, i.e., groups of sequencing read that likely cover 
the same position in multiple samples, each with a minimum clus-
ter depth of 5x and maximum cluster depth of 1500x. After reading 
alignment and quality assessment, this yielded a final assembly that 
was approximately 5.2 Mb in length, consisting of 56,6649 contigs, 
each with a length of 92 bp. An average of 38.9% of the sequence 
reads from each sample aligned to a single position in this assem-
bly. Variant calling yielded 4705 single nucleotide polymorphic (SNP) 
sites observed >90% of the sequenced individuals of T. perfoliata.

2.3  |  Genetic diversity & population structure

Bayesian cluster analyses were performed using STRUCTURE v2.3.4 
(Pritchard et al., 2000). Ten independent runs were performed for each 
potential number of genetic clusters (K) [value 3–22] using a burn-in 
period of 40,000 and followed by 80,000 iterations per K; analyses 
were run under the admixture model and assuming correlated allele 
frequencies. To determine the most likely value for K, we assessed 
values of ΔK (evaluating the second-order rate of change of the like-
lihood function), as per the Evanno et al., 2005 method in Structure 
Harvester v.6.0 (Earl & vonHoldt,  2012). Global FST was calculated 
via the R packages Adegenet (Jombart & Ahmed, 2011) and Hierfstat 
(Goudet, 2005); the R package vcfR (Knaus & Grünwald, 2017) was 
used for file conversion. Genetic divergence between populations and 
genetic clusters (pairwise FST, Tajima & Nei, 1984) and population level 
statistics (i.e., number of private alleles, π [mean number of pairwise 
differences per site], number of polymorphic sites) were calculated 
using Arlequin 3.5.2.2 (Excoffier & Lischer, 2010).

2.4  |  Phylogenetic tree estimation

We used RAxML V8 (Stamatakis, 2014) to create a maximum like-
lihood phylogeny from over 6000 SNPs. Phylogenetic trees were 
generated using ASC_GTRGAMMA model of nucleotide evolu-
tion, which is an ascertainment bias general-time-reversible model 
(Lewis, 2001). Phylogeny support was estimated by using 10,000 
rapid bootstrapped trees. Direct confirmation was conducted by 
splitting the data set into five subsets, each consisting of 1200 
SNPs, and generating phylogenies using the same parameters as the 
complete data set to ensure the absence of major deviations in the 
resulting inferences.

2.5  |  Reproductive system assessment

Following methods in Ansaldi, Franks, & Weber, 2018, we quanti-
fied the breeding system (i.e., extent of cleistogamy) in a subset of 

populations included in our genetic analyses (Figure  1a: filled cir-
cles). Because these analyses aimed to estimate the total floral input 
of each flower type in a population (total CH and CL), we used only 
individuals with fully mature stems (flowering completed), and pop-
ulations for which we had access to N ≥ 20 vouchered individuals. 
With these limitations, we assessed the breeding system for N = 9 
of our 18 overall populations with samples from 2017 (the same year 
as tissue collections for population genetic analyses). Breeding sys-
tem data for the OCN population (Otter Creek North Carolina) were 
derived from Ansaldi, Franks, & Weber,  2018. The total average 
production of each flower type in each population was estimated 
by collecting whole individual, fully mature plants (range = 20–50; 
33 = mean individuals per population). For each population, we as-
sessed the average number of CH flowers, number of CL flowers, 
total flower number and the proportion of flowers that were CH out 
of the total flower number (pCH). To test the hypothesis that popula-
tions with a greater allocation to CL flowers will exhibit greater over-
all population structuring, we performed a linear model between 
pCH and mean population pairwise FST and to test the hypothesis 
that populations exhibiting greater proportional production of CL 
flowers may maintain less genetic diversity, we performed linear re-
gressions between metrics of genetic diversity (e.g., π, number of 
polymorphic sites) and pCH via a linear regression using the lm func-
tion in R statistics v 4.1.1 (R Core Team, 2021).

2.6  |  Predicting dispersal networks

2.6.1  |  Creating the SDM

Likely routes of dispersal among populations or genetic groups 
were predicted via least-cost corridor analyses, an approach that 
incorporates species distribution models (SDMs; Chan et al., 2011). 
SDMs were generated using occurrence records collected be-
tween the years 2000–2019 obtained from digital herbarium 
vouchers, primary literature, our lab fieldwork, and open-source 
occurrence data (n  =  4503 initial records; GBIF.org 2020; addn. 
Data and citations available in Berg et al., 2019). Data were first 
vetted for taxonomic assignment as well as apparent labeling er-
rors (e.g., data points in oceans). Spatial clusters of localities can 
cause models to over-fit toward environmental biases and inflate 
model performance values (Boria et al.,  2014; Hijmans,  2012; 
Veloz, 2009). Spatial biases were addressed by randomly select-
ing points clustered within a 10-km radius using SDMtoolbox 
2.4 (Brown, 2014). The final vetted dataset consists of 1735 oc-
currence records. Nineteen bioclimatic layers at a 30 arc-minute 
resolution from WorldClim v2.0 (Hijmans et al., 2005) were used 
to generate species distribution models (SDM) in MaxEnt 3.3.3k 
(Phillips et al., 2020). SDMs were parameterized with SDMtoolbox 
v2.4 (Brown, 2014), to evaluate the performance of various combi-
nations of five feature classes (linear; linear and quadratic; hinge; 
linear, quadratic and hinge; and linear, quadratic, hinge, product 
and threshold), and five regularization multipliers (0.5, 1, 2, 3, 4; 

http://gbif.org
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Radosavljevic & Anderson, 2014). SDM performance built under 
each combination of parameters was assessed through a geo-
graphically structured k-fold cross-validation (i.e., the occurrence 
records were partitioned into k equal geographically clustered 
subsamples, here k  =  3, and the models were trained with two 
of the groups and then evaluated with the excluded group until 
all group combinations were run). Model fit was assessed via the 
omission rate, area under the curve (AUC), and model feature class 
complexity (Brown, 2014). After optimum model parameters were 
determined (those leading to the lowest omission rate, highest 
AUC, and lowest complexity, in the order listed), a final SDM was 
built with all occurrence sites and projected into the current cli-
mate across the contiguous US, southern Canada, as well as north-
ern Mexico.

The final SDM estimates contemporary habitat suitability and 
was used to estimate potential dispersal networks among popu-
lations and genetic groups of T. perfoliata in our genetic analyses. 
These Least-Cost Corridors (LCCs) are estimated by inverting the 
SDM (one minus SDM suitability values) to function as a friction 
layer, characterizing the cost of dispersal through each pixel in 
the landscape; areas of high suitability have a lower dispersal cost 
compared to areas of low suitability (Chan et al., 2011). We ex-
amined multiple separate scenarios to understand how connec-
tivity among these populations may influence patterns of genetic 
diversity.

2.6.2  |  Population connectivity (SDM only)

In the first scenario, dispersal networks were estimated between 
all 18 populations included in our genetic analyses. This model 
serves as a null hypothesis by solely considering how habitat suit-
ability predicts population connectivity in the absence of genetic 
data. Connectivity among genetic clusters. In the second scenario, 
dispersal networks were estimated among the genetic groups de-
scribed in analyses of genetic structure (most likely K value). This 
scenario describes the role of likely dispersal corridors in shap-
ing the genetic structure seen across the sampled landscape. 
Connectivity among clades. In the third scenario, dispersal net-
works were estimated among major phylogenetic clades. Here we 
subjectively split the phylogeny into subclades by placing a vertical 
line near the base of the tree (see dashed line in Figure 3), which 
split the phylogeny into 8 evolutionary groups that each share 
common ancestry with clade members. These sub-clade groupings 
were chosen, in part, because they matched our structure groups 
(though sub-divided due to discordance in our results) and each 
sub-clade was assigned entirely to the same cluster group (with 
the exception of the clade containing the NY cluster). Decreasing 
the sub-clade group number (by moving the vertical line toward 
to most-recent common ancestors) would have resulted in more 
clades containing mixed cluster groups, whereas increasing group-
number would have removed deeper evolutionary relationships 
into dispersal corridors calculation.

2.7  |  Examination of IBD and IBE

To quantitatively test the relationships between the observed ge-
netic divergence and both IBD and IBE, we used Multiple Matrix 
Regression with Randomization (MMRR) analyses in R (see Wang 
et al., 2013 for scripts to perform analysis). For these analyses, we 
first generated the following four distance matrices: genetic dis-
tance, geographic distance, environmental least-cost path distance, 
and environmental least-cost path total resistance. Genetic dis-
tance was quantified by measuring the inter-population FST among 
the 18 research sites in Arlequin v3.5 (Excoffier & Lischer, 2010). 
Geographic distance was calculated by measuring the Euclidian dis-
tance between the research sites. To investigate the explicit role of 
IBE, we calculated the least-cost paths among the 18 research sites 
using our final SDM, a friction layer where the suitability values were 
inverted (Chan et al., 2011). This analysis resulted in the creation of 
two distance matrices: (1) a matrix measuring the path length of the 
least-cost paths and (2) a matrix measuring the total resistance cost 
of the least-cost paths among the research sites. All spatial meas-
urements and analyses were performed in ArcGIS 10.7 (ESRI, 2021) 
using SDMtoolbox v2.4 (Brown et al., 2017). The two raw IBE matri-
ces, distance and resistance values, were highly correlated with the 
IBD matrix (R2 =  .988 and R2 =  .914, respectively). To remove the 
explicit effects of geographic distance from our two IBE matrices, 
we performed a linear regression in which each IBE distance matrix 
was a response variable and our geographic distance matrix was the 
predictor variable (Davies et al., 2007; Fritz & Rahbek, 2012; Vale 
et al., 2018). We used the resulting residuals output from each linear 
regression, one where environmental least-cost path (LCP) distance 
was input and a second where the environmental LCP total resist-
ance was input (correlation to IBD matrix: R2 = .156 and R2 = .406, 
respectively), as our corresponding IBE distance matrices in sepa-
rate MMRR analyses. In each MMRR analysis, genetic distance was 
used as a response variable, whereas the IBD and IBE matrices were 
each considered individually as a single predictor variable. To as-
sess the statistical significance of each MMRR analysis and predic-
tor variables, we used 10,000 permutations in each analysis (Wang 
et al., 2013).

3  |  RESULTS

3.1  |  Genetic diversity and population structure

RADSeq yielded approximately 3.8 million bases and n = 631,465 
total genotypes. We found n  =  4705 single nucleotide polymor-
phisms (SNPs) in aligned sequence sites for T. perfoliata. These SNPs 
were presumably random except for their proximity to the Sbf1 re-
striction site that was used to generate the library. There is no rea-
son to believe there is systematic selection occurring on the eight 
bases that constitute the Sbf1 target sequence (CCTGCAGG). The 
final, stringent list of variants contained data for 97% of genotypes; 
3% of genotypes were not sequenced or found to have low quality, 
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and therefore were considered missing. Total heterozygosity was 
relatively low (16%) and a potential signature of high inbreeding 
in this species. The number of private alleles, π, and polymorphic 
sites varied widely among the 18 populations, indicating consider-
able variation in genetic diversity (Table 1). Pairwise FST revealed a 
considerable range in genetic differentiation between populations 
and genetic clusters; population pairwise FST range (0.01–0.80) 
(Tables S1 and S2). In addition, global FST = 0.48 was quite high sug-
gesting substantial overall population genetic differentiation which 
may be driven by the capacity for inbreeding in this species.

Analyses of the genetic structure revealed high support for both 
K = 4 and K = 17 genetic clusters among the 18 populations of T. 
perfoliata (Figure 2). For K = 4 genetic clusters, which had the high-
est likelihood support values (e.g., ΔK = 7.68), populations generally 
segregated into broad geographic regions of the US including (1) the 
central Midwest and Western states, (2) the southern Midwest and 
Gulf states, (3) Eastern states and (4) populations from NY that form 
a separate cluster (Figure 2a; Figure S2b). At K = 17 genetic clusters 
(ΔK = 6.28), individuals generally segregated into clusters by popula-
tion (Figure 2b; Figure S2c). But similar to the K = 4 profile, within the 
K = 17 structure profile, some populations from the central Midwest 
and Western US shared genetic clusters (i.e., CA, CO, KS1, KS2), 
and some populations from the Eastern US also clustered together 
(e.g., SC, NC2, NJ Figure 2b). We also accessed genetic clustering 
using the package sMNF (Frichot et al., 2014). sMNF is robust to 

departures from population genetic assumptions; results were over-
all very similar to our results from STRUCTURE (Figure S1).

3.2  |  Phylogenetic tree estimation

Phylogenetic analyses revealed three major geographic clades of 
T. perfoliata within the US (Figure 3). A couple of interesting phylo-
genetic patterns concur with specific results from genetic clusters 
from STRUCTURE: populations from KS and CO share a clade with 
populations from CA and WA, despite the significant geographic dis-
tance between these sites. In addition, individuals from a population 
in VA appear in both the clade consisting primarily of Eastern state 
populations and the clade of Midwestern and Gulf state populations. 
But overall, our phylogeny shows discordance with results from 
STRUCTURE (see colored boxes in Figure 3 correspond to colors as-
sociated with K  =  4 cluster Figure  2a). Only two genetic clusters, 
NY and the KS, CO, CA, WA cluster form monophyletic groups. 
We acknowledge that some bootstrap support values are relatively 
low, particularly among individuals from the Midwest, whereas the 
coastal populations generally have higher support. In general, clus-
ter groups with mixed group assignment (K = 17 Figure 2b) also had 
much lower support in our phylogenetic trees (e.g., compare the 
mixed cluster groups KS2 and NC2 with their corresponding phylo-
genetic support values).

TA B L E  1 Characteristics of 76 individuals from 18 populations from across the contiguous US

Pop No private alleles π No poly sites Individuals pCH Long (DD) Lat (DD)

CA 35 403.30 379 415 −116.614 33.680

CO 90 509.62 728 323, 324 −105.112 40.352

IL 221 555.92 1149 158, 161, 163, 165, 170, 173 0.53 −91.242 40.218

KS1 66 552.69 1056 176, 179, 180, 183, 191 0.76 −96.593 39.095

KS2 225 660.53 1480 196, 200, 201, 205, 209, 240 0.74 −96.617 39.095

KY 304 655.96 1229 101, 105, 111, 112, 118 0.52 −88.117 36.734

MO 66 220.82 352 446, 448, 450 0.27 −90.023 37.358

NC1 79 381.45 999 81, 84, 88, 91, 92, 94 −83.431 35.060

NC2 393 709.87 1592 226, 227, 230, 233, 234, 239 0.58 −77.310 35.431

NJ 103 448.20 906 242, 243, 245, 246, 250 −75.112 40.361

NY 16 195.77 352 440–445 −73.574 41.208

OH 17 245.34 353 313, 318 0.40 −83.852 41.555

PA 16 196.79 347 219–222, 224 0.16 −77.501 39.732

SC 20 377.58 356 373 −80.040 32.788

TX 238 493.56 863 39, 40, 43, 44, 47 0.33 −97.466 30.170

VA 61 468.26 882 65, 67, 71, 75, 77, 78 −78.065 39.063

WA1 61 205.59 345 405–407, 409 −122.444 47.144

WA2 103 243.34 346 330, 336 −122.903 48.447

Note: By population: Number of private alleles, π, number of polymorphic sites generated in Arlequin. For nine populations, pCH indicates an estimate 
of the population breeding system (average proportion of CH flowers to CL flowers); addn. Breeding system information: Table S3. Longitude and 
latitude measured in decimal degrees.



    |  7 of 14TACKETT et al.

3.3  |  Reproductive system assessment

Similar to previous work, we found that breeding systems are highly 
variable across populations of T. perfoliata (i.e., mean relative chas-
mogamy (pCH) was 0.48 ± 0.07 [N  =  9; mean ± 1 SE; Table  S3]). 
Across these nine populations, mean population pairwise FST was 
significantly negatively correlated with pCH; populations produc-
ing relatively more CL flowers exhibited greater overall population 
substructuring (p = .0015, multiple R2 = .78, F = 25.19; Table S4). 
In addition, the relative proportion of CH flower production (pCH) 
is significantly positively correlated to multiple metrics of genetic 
diversity (π: R2 =  .63, p =  .01, Figure 4a; number of polymorphic 
sites: R2  =  .63, p  =  .01). These strong associations support the 
hypothesis that breeding system strongly influences population 
genetic patterns. Populations with a greater allocation to CL flow-
ers exhibit reduced genetic diversity and increased population 
substructuring, as predicted by reduced gene flow among highly 
selfing populations.

3.4  |  Predicting dispersal networks

Our final SDM had a high predictive performance with an Omission 
Rate (OR) < 0.01 and a moderate discriminatory ability with an 
AUC  =  0.62 (Supp. Figure  2). The resulting distribution predic-
tion matches our expert knowledge of the species' distribution. 
Population connectivity (SDM only). Our first LCC model considered 
only the role of habitat suitability in influencing dispersal corridors 
among our study populations (Figure  1b). Without the inclusion 
of genetic data, the LCC model assumes an equal probability of 

connectivity among all of our 18 populations. In this model, we ob-
serve many potential dispersal corridors among Midwestern, Gulf, 
and Eastern states within the US; and multiple potential disper-
sal corridors between the Western US and the Midwest and Gulf 
states, but the most highly predicted corridor goes through the 
Southwestern US (Figure 1b).

3.4.1  |  Incorporating genetic information in LCCs

To better visualize the likely dispersal corridors among groups, 
we incorporated genetic data into the LCC corridor calcula-
tions using two methods. Connectivity within population 
genetic clusters. The first method, the analysis of potential cor-
ridors among K  =  4 genetic clusters, differs greatly from the 
null model (which compared all populations in LCC creation). 
Using genetic clusters imposes key roles for factors such as 
demography and lineage history in shaping the genetic land-
scape in addition to IBD and IBE (Figure 1c). In this model, the 
NY population becomes isolated, and no dispersal corridors are 
predicted between the Eastern states and Midwest and the 
Western US states. In this same model, multiple dispersal cor-
ridors between the Midwest and Western US are predicted as 
suitable, but the Southwestern corridor route still appears most 
likely. Interestingly, this model strongly predicts suitable dis-
persal between the Gulf states and several Midwest states (e.g., 
IL, OH, KY, MO). (Analyses of dispersal corridors among K = 17 
genetic clusters were not logical because individuals from pop-
ulations frequently belonged to multiple genetic clusters, re-
sulting in relatively few localities to model.) Connectivity within 

F I G U R E  2 Results from population structure analyses showing (a) K = 4 and (b) K = 17; two scenarios of sub-structuring with the highest 
likelihood values using the Evanno et al. (2005) method in STRUCTURE Harvester. Letters above the bars indicate the population (by US 
state, numbers for multiple populations in a single state); numbers below the bars indicate the individual identifier. Colors from the K = 4 
plot are replicated in Figure 3 to show discordance between structure analyses and phylogenetic results.
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clades. Our second genetic-based LCC analysis incorporated 
phylogenetic relationships in the LCCs calculation. To do this 
we estimated likely dispersal corridors among major phyloge-
netic clades from our RaxML analyses (see vertical dashed line 
Figure  1d). This LCC model highly predicts dispersal between 
the Midwest and Western US States.

3.5  |  Examination of IBD and IBE

Geography (or IBD) was the strongest predictor of our observed 
genetic diversity across the sampled distribution (R2 = .189, p < .01; 
Figure  4b). However, environment with the signal of IBD re-
moved, also significantly predicted the observed genetic diversity 

F I G U R E  3 RaxML maximum likelihood phylogenetic tree. Colors boxes indicate primary individual identity to genetic clusters 
corresponding to the plot K = 4, (Figure 2). Letters indicate the population (by US state, numbers for multiple populations in a single state); 
numbers indicate the individual identifier. Truncated branch length at base has a length of 0.0603. Small inset tree is a tree without basal 
nodes trimmed. Branch lengths and scale bar refer to the number of nucleotide substitutions per site. Inset image is modified from a hand-
colored lithograph by Endicott based on an illustration from John Torrey's a Flora of the state of New York (Torrey, 1843).
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(IBE distance, R2 < .001, p  =  .945, Figure  4c; IBE total resistance 
R2 = .058, p = .048, Figure 4d), however with a lower R2 when com-
pared to IBD.

4  |  DISCUSSION

Here we explicitly demonstrate how a variety of factors, both in-
trinsic (i.e., breeding system variation) and extrinsic (i.e., IBD, IBE), 
drive patterns of genetic diversity and population divergence in 
the mixed-mating annual, Triodanis perfoliata (Campanulaceae). 
Specifically, we found that populations with a greater proportion 
of cleistogamous (obligately selfing) flowers had reduced genetic 
variation compared to populations with relatively more open flow-
ers (π: R2 = .63, p = .01). Greater inbreeding also tends to increase 
population structure and reduce gene flow among populations 
(Lande,  1988; Lande & Shannon,  1996; Wright,  1946). In concert 
with these predictions, we also found a strong negative associa-
tion between mean population pairwise FST and the extent of open 
flowers (CH) produced in populations; suggesting greater gene flow 
among populations with a greater allocation to CH compared to CL 
(closed) flowers. Overall this species exhibits a relatively high global 

FST (0.48), a wide range of population pairwise FST values among 
populations and genetic clusters (Tables S1 and S2), and significant 
genetic sub-structuring (highest likelihood K = 4 out of 18 popula-
tions). Genetic divergence among populations of T. perfoliata is also 
influenced by both geographic distance and environmental factors. 
Therefore, we also explored models of population connectivity to 
better understand the factors shaping the genetic landscape of this 
widespread, mixed-mating species.

Reproductive systems can influence population dynamics in 
complex ways, driving patterns of genetic diversity, gene flow, 
and demographics, and influencing fitness (e.g., Charlesworth & 
Charlesworth,  1987; Lande & Shannon, 1996; Wright, 1946). Our 
findings are consistent with some studies that have also found sig-
nificant population genetic structuring in dimorphic cleistogamous 
species (e.g., Lesica et al.,  1988; Schoen,  1984; Sun et al.,  2002; 
Toczydlowski & Waller, 2019). However, some cleistogamous spe-
cies can also exhibit relatively high levels of genetic diversity and 
low population genetic structure (e.g., Cortés-Palomec et al., 2006; 
Culley & Wolfe, 2001). These patterns demonstrate that the impact 
of cleistogamy on population genetic patterns is context-dependent 
because some populations can still exhibit high levels of outcrossing 
in chasmogamous flowers (Culley & Wolfe, 2001).

F I G U R E  4 (a) Correlation between breeding system (estimated as the average proportion of cleistogamous to chasmogamous flowers 
produced among individuals in a population: pCH) and genetic diversity (π: The number of nucleotide differences per site between two 
randomly chosen sequences from a population) in n = 9 populations. MMRR correlations between genetic distance and: (b) Euclidian 
distance (in decimal degrees), (c) environmental least-cost path distance, (d) environmental LCP total resistance. *For both (c) and (d), the 
matrices analyzed represented residuals of a lineage regression of the raw environment matrix and geographic distance. This removed the 
effect of geographic distance from these MMRR analyses.
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Another important feature of cleistogamous species, including 
T. perfoliata, is plasticity in reproductive allocation to cleistogamy 
due to abiotic and biotic factors (Ansaldi, Franks, & Weber, 2018; 
Ansaldi, Weber, & Franks, 2018; Jones et al., 2013). In this study, 
we took advantage of population-level variation in the breeding 
system to address if greater average cleistogamy impacts popula-
tion genetic diversity in T. perfoliata. We acknowledge that in this 
study we did not directly link the breeding system to quantitative 
estimates of inbreeding (FIS). However, strong correlations between 
the extent of cleistogamy at the population level and metrics of 
genetic diversity suggest a meaningful relationship that warrants 
subsequent investigation. Inbreeding depression is an obvious po-
tential negative consequence of greater inbreeding (Charlesworth 
& Charlesworth, 1987; Culley & Klooster, 2007), but our previous 
work demonstrated relatively low inbreeding depression for three 
populations of T. perfoliata under greenhouse conditions (Ansaldi 
et al.,  2019). Nonetheless, here we demonstrate that populations 
with more average cleistogamy harbor less genetic diversity and 
reduced genetic diversity may result in long-term demographic con-
sequences that are more difficult to quantify on short time scales 
(Hobbs & Humphries, 1995; Jump et al., 2009; Lai et al., 2019; Lande 
& Shannon, 1996). Variation in relative production of cleistogamy 
in T. perfoliata is influenced by a variety of factors including soil 
type, water availability and pollinator environment (Ansaldi, Franks, 
& Weber, 2018; Ansaldi, Weber, & Franks, 2018). Taken together, 
dimorphic cleistogamy presents a novel opportunity to understand 
the multifaceted nature in which reproductive systems and ecology 
influence population genetic patterns.

Increased inbreeding, geographic distance, and environmental 
resistance will all lead to population divergence and strong patterns 
of population sub-structuring. For T. perfoliata, we found evidence 
of high population sub-structuring and strong geographic signals 
describing regional connectivity among our study populations. 
Mixed-matrix models revealed that both geographic distance and 
environmental resistance describe significant patterns of population 
genetic divergence. Sexton et al.  (2014) surveyed a wide range of 
taxa and found that IBE was the strongest pattern observed among 
animals, but both IBD and IBE were the strongest patterns among 
plants. Geographic distance is likely to incorporate multiple envi-
ronmental factors, whereas IBE is typically limited to the scope of 
factors included in analyses. We explicitly accounted for IBD in our 
analyses of IBE and found that isolation by environment and genetic 
distance were correlated, suggesting that environmental resistance 
can lead to increased genetic divergence between populations, likely 
through a combination of drift and local adaptation. The variety of 
mechanisms potentially driving IBE are quite diverse (e.g., natural 
selection, phenology), but our data suggest that suitable corridors 
of population connectivity play a key role in facilitating gene flow 
between populations of T. perfoliata.

We modeled connectivity among all populations, as well as ge-
netic groups to elucidate how various factors interplay to shape 
broader landscape genetic patterns for T. perfoliata. For these mod-
els, routes of dispersal are predicted using least-cost corridor (LCC) 

analyses, a method that uses SDMs to find predicted corridors (Chan 
et al., 2011). As a null model, we first predicted dispersal corridors 
among all of our 18 study populations in the absence of additional 
genetic information (Figure 1b). This type of model upweights the 
relationships among distantly related individuals, which typically are 
more geographically isolated. Because of the indiscriminate nature 
of these types of analyses, a landscape can be hyper-connected, 
with all populations being connected via corridor pathways. Such 
a landscape ignores spatial-temporal dynamics associated with 
historical habitat and climate change (i.e., glacial cycles or climatic 
refugia). To build a more realistic model of landscape connectiv-
ity, we next incorporated genetic relationships into our landscape 
connectivity model. We modeled population connectivity among 
K = 4 genetic clusters, and this model was markedly different from 
the null model (Figure 1c). In the genetic cluster model, no disper-
sal corridors are predicted to connect with the NY population, even 
with geographically close populations. In other areas, we see broad 
patterns, predicting high connectivity in areas of high habitat suit-
ability (Midwestern US) and reduced connectivity for geographically 
distanced localities, likely due to isolation by distance. This model 
also seems to account for barriers to dispersal, particularly the 
Appalachian and the Rocky Mountains, which either limit or reduce 
connectivity to the Midwestern US. We further explored how de-
mographic and lineage history can influence genetic connectivity by 
integrating phylogeny into our analyses (Figures 1d and 3).

Due to methodological differences between our phylogenetic 
analyses and genetic clusters, the phylogenetic results aim to eluci-
date evolutionary relationships among populations and should clar-
ify geographic regions that were historically connected at deeper 
timescales. In most cases, discordance between our structure and 
phylogenetic results (Figures 2 and 3) seem to reflect cases in which 
recent and frequent gene flow is likely between geographically close 
sites (i.e., admixture). Some of this discordance between our popu-
lation genetic analyses and our phylogenetic analysis might be in-
dicative of more complicated evolutionary histories, with isolated 
evolutionary lineages coming back into contact periodically. The 
low observed phylogenetic support values in the Midwest could 
be a result of such phenomena, though such hypotheses require 
proper statistical and population genomic analyses (see Figure  3; 
e.g., TreeMix, Pickrell & Pritchard, 2012). This is further reinforced 
by the differences between our phylogenetic LCC (Figure  1d) and 
our genetic cluster LCC (Figure 1c). Most notable is a lack of con-
nection between Midwestern US populations on either side of the 
Mississippi River in the phylogenetic analyses, whereas populations 
are connected in the cluster LCC.

Our study encompasses a wide geographic area, and our data 
reflects both the implications of factors more predominant at 
the population level (e.g., breeding system) and factors affecting 
landscape-scale patterns such as geographic distances (Husband 
& Barrett,  1996; Slatkin,  1987). For these reasons, future work 
will explore how current landscape genetic patterns may have 
been influenced by historic climatic patterns that may limit or 
facilitate population connectivity. For example, research will 
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incorporate paleoclimate data with time-calibrated phylogenies to 
estimate temporally relevant connections (for example see Guillory 
& Brown, 2021; French & Brown, 2022 in preparation). In addition, 
ongoing work aims to quantify how the breeding system explicitly 
influences patterns of demography and fitness among populations. 
Overall, our analyses of T. perfoliata illustrate the influence of the 
breeding system, geography, and the environment in shaping popu-
lation genetic patterns in this widespread, mixed mating wildflower.
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