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Abstract: Inertial sensor-based measurements of lower body kinematics in football players may
improve physical load estimates during training sessions and matches. However, the validity of
inertial-based motion analysis systems is specific to both the type of movement and the intensity at
which movements are executed. Importantly, such a system should be relatively simple, so it can
easily be used in daily practice. This paper introduces an easy-to-use inertial-based motion analysis
system and evaluates its validity using an optoelectronic motion analysis system as a gold standard.
The system was validated in 11 football players for six different football specific movements that
were executed at low, medium, and maximal intensity. Across all movements and intensities, the root
mean square differences (means ± SD) for knee and hip flexion/extension angles were 5.3◦ ± 3.4◦ and
8.0◦ ± 3.5◦, respectively, illustrating good validity with the gold standard. In addition, mean absolute
flexion/extension angular velocities significantly differed between the three movement intensities.
These results show the potential to use the inertial based motion analysis system in football practice
to obtain lower body kinematics and to quantify movement intensity, which both may improve
currently used physical load estimates of the players.

Keywords: inertial measurement units; lower body kinematics; soccer; physical load; movement
intensity; exercise

1. Introduction

The analysis of lower body kinematics of a football player throughout a training or match can
become a useful tool to improve currently used physical load estimates. Presently, radio frequency-based
local positioning measurement systems (LPM) and satellite-based global positioning systems (GPS),
which measure a player’s position on the field continuously, are widely used to quantify physical load
during practice and competition [1–3]. However, many explosive actions associated with high muscle
loads, such as accelerations, decelerations, kicking, jumping, and side-cutting, do not necessarily
involve large or fast global displacements [4–6]. Even LPM, which is considered to be more accurate
compared to GPS-based systems, does not provide accurate estimations of instantaneous acceleration
during explosive movements [7], while such movements place extensive mechanical loads on muscles,
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tendons, and joints. This is highly relevant because mechanical muscle loading is thought to be an
important cause of muscle injuries in football, especially for muscles around the hip [3,8]. Consequently,
a considerable amount of external training load may be missed using LPM or GPS systems only.
Therefore, external training load estimates in football may be improved by inclusion of lower body
kinematics, which also opens the possibility for the quantification of football specific actions, like ball
kicking, cutting movements, or explosive short distance sprints.

Movement kinematics have traditionally been obtained using optoelectronic motion analysis
systems. However, these systems are restricted to a laboratory setting, have a limited measurement
volume, and involve extensive start-up procedures, which make them unsuitable for use in daily
football practice. Moreover, optoelectronic motion analysis requires a clear line-of-sight between
cameras and markers, which may be obstructed by the ball or other players. Wearable inertial-based
motion analysis systems have recently gained popularity because these systems allow for registration
of movement kinematics without these limitations [9,10]. Inertial-based motion analysis systems
consist of inertial magnetic measurement units (IMUs) attached to body segments. These sensors
directly measure linear acceleration, angular velocity, and magnetic field strength in three orthogonal
axes. The orientation of each IMU is obtained by combining these sensor readings in sensor fusion
algorithms [11]. In combination with a biomechanical model, joint and body segment kinematics can
be obtained [12]. A sensor-to-segment calibration needs to be performed to construct the biomechanical
model. A variety of methods have been used to do so. However, most of these methods require
external devices or take up a considerable amount of time [13]. To use an inertial-based motion analysis
system to quantify lower body kinematics on a daily basis, sensor-to-segment calibration should be
quick and easy to perform.

Inertial-based motion analysis systems have been applied successfully to estimate movement
kinematics in sports such as marathon running [14] and swimming [15,16]. Such systems have
also shown good agreement with gold standard optoelectronic systems in quantifying lower body
kinematics during various football related activities studied in isolation, such as walking [17,18],
running [13], and kicking [19]. However, the accuracy of inertial motion analysis systems depends
on the type of movement and the intensity at which a movement is performed [10,20]. Moreover,
soft tissue artefacts can be expected to increase in higher intensity movements. To the best of our
knowledge, no studies have assessed the validity of an inertial based motion analysis system for a
variety of common football specific movements, such as accelerating, decelerating, cutting movements,
and turning. Moreover, the maximum running speed for which an inertial-based system has been
validated is ~3.9 m/s [21], while running speeds above 5.5 m/s frequently occur during professional
football matches [22]. Therefore, the validation of an inertial motion analysis system for football should
include a wide variety of football-specific movements performed at high intensities.

The intensity of a movement may be estimated by measuring the angular velocity of the joints
involved in a similar way to how exercise intensity is now determined from velocity measures obtained
by LPM and GPS [1]. In sprinting, for example, joint angular patterns are shown to be relatively
invariable across a range of speeds. As a consequence, the energy associated with the lower limbs is
approximately proportional to the joint angular velocities of legs [23]. Therefore, movement intensities
may be estimated by measuring joint angular velocities.

Considering the potential additional value of quantifying lower body kinematics to physical
load estimates in daily football practice, this paper proposes a relatively simple inertial-based system.
Especially, the sensor-to-segment calibration procedure is straightforward, fast, and does not require
an experienced operator. The primary aim of the study was to assess the concurrent validity of the
inertial-based system with an optoelectronic motion analysis system for a variety of football specific
movements performed at submaximal and maximal intensities. Knee and hip flexion/extension angles
and angular velocities were evaluated because most muscle injuries in football affect the muscles around
the hip and knee [8]. The secondary aim of the study was to establish whether movement intensities can
be distinguished based on joint flexion/extension (FE) angular velocities obtained by the inertial-based
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system. We hypothesized that the inertial motion analysis system would show good concurrent
validity with the optoelectronic system. However, we expected larger differences between the systems
for movements performed at maximal intensities. Moreover, we anticipated that we would be able to
differentiate between movement intensities based on joint angular (flexion/extension) velocities.

2. Materials and Methods

2.1. System Setup

2.1.1. System Hardware

The inertial motion analysis system consisted of five 9-DOF IMUs (MPU-9150, Invensense, San Jose,
CA, USA). Each of these IMUs measured 3D acceleration, 3D angular velocity, and 3D magnetic field
strength in a local coordinate frame attached to the sensor. Every sensor was embedded in a protective
casing together with a battery and SD-card (total weight = 11 g), onto which the data was logged at
a sample frequency of 500 Hz. This allowed for offline analysis after a measurement period. Before
measurements, the sensors were placed in a small box, which was tapped on a table. This introduced a
mechanical peak in the accelerometer signals, to which the sensors were time-synchronized [24].

Subsequently, and as described in detail elsewhere [25], the sensors were placed on the pelvis,
thighs, and shanks. They were rigidly attached to each body segment using pretape adhesion spray
(Mueller Tuffner Pre-Tape Spray, Mueller sports medicine, Prairie du Sac, Wisconsin, United States of
America) and double-sided adhesive tape (Begasoft-Airband, Bergmann GmbH & Co. KG, Laupheim,
Germany). An adhesive plaster (Fixomull stretch, BSN Medical, Zeist, The Netherlands) was put over
each IMU for extra fixation of the sensors to the skin. In an attempt to minimize soft tissue artefacts,
the sensors were placed where underlying tissue was expected to show the least deformation. The
pelvis sensor was placed at the sacrum, the thigh sensors were placed at the iliotibial tract, and the
shank sensors were placed on the shin (Figure 1). Gyroscope measurements were low-pass filtered
using a second-order zero-lag Butterworth filter with a cutoff frequency of 12 Hz to eliminate soft
tissue artefacts. The orientation of each sensor throughout a measurement period was obtained using
a gradient descent Madgwick algorithm [11].

2.1.2. System Calibration

When the sensors are attached to the body segments, their orientation relative to these segments is
still unknown. Consequently, a calibration procedure is necessary to align the coordinate frame of each
sensor with its corresponding body segment frame. The calibration procedures ensure that the sensors
can be placed in any orientation on each body segment. The coordinate frames corresponding to the
body segments are defined following ISB recommendations [26]. Moreover, the global reference frame
is defined as follows: The y-axis is pointing upward, parallel to the direction of gravity; the x-axis is
pointing in the direction of the horizontal component of the earth magnetic field vector; and the z-axis
forms a right-handed Cartesian coordinate system.

The calibration procedure consists of two consecutive steps. The first step involves a five-second
static calibration, during which a participant is required to stand still in a neutral upright pose. It
is assumed that, during this period, the longitudinal axis of each body segment is aligned with the
direction of gravity. The orientation of each sensor is rotated to a temporary frame associated with the
sensor’s corresponding body segment. The temporary frame of each body segment is equal to the
global reference frame during the static calibration. The average orientation of each sensor during the
static calibration period is used to rotate the orientation of each sensor to the temporary frame:

SF−B
TF−Bqcal =

1
n
∑n

i=1
SF−B
GF qcal,n

1
n
∑n

i=1
SF−B
GF qcal,n

, (1)
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TF−B
GF qt =

SF−B
GF qt ⊗

SF−B
TF−Bq∗cal , (2)

where SF-B denotes the sensor frame corresponding to body segment B, GF denotes the global reference
frame, TF-B denotes the temporary frame of body segment B, SF−B

TF−Bqcal is the normalized average
orientation of the TF-B relative to SF-B, subscript cal denotes the calibration period, n represents
the number of data samples within the calibration period, subscript t denotes the time index of the
orientation quaternion, ⊗ denotes a quaternion multiplication, and * denotes the complex conjugate of
a quaternion [27].

Figure 1. Sensor placement. The sensors were placed at the sacrum, iliotibial tracts, and shins. For
clarity, the covering adhesive plaster was left out of the picture.

The second step of the calibration procedure involves three functional calibration movements in
order to determine the frontal axis of each segment. The calibration movements include a rise of the
right upper leg (Figure 2A), a rise of the left upper leg (Figure 2B), and a bow forward of the trunk
(Figure 2C). It is assumed that the rotation of the body segments in these movements are purely about
the frontal axis (in the sagittal plane) of the body frames. When the calibration movements are executed
correctly, that is, without rotations about the longitudinal axis, the calibration movements are about
the sagittal and frontal axes of the temporary frames. Therefore, the rotation of the temporary frame,
with respect to the body frame, about the longitudinal axes, is determined by the ratio between the
magnitudes of rotation about the frontal and sagittal axes of the temporary frame. These magnitudes
are obtained by simply integrating the angular rate measurements from the start of movement to the
point where maximal rotation is reached:

θTF−B
x,cal =

1
n

∑n

i=1
ωTF−B

x,cal , (3)

θTF−B
z,cal =

1
n

∑n

i=1
ωTF−B

z,cal , (4)

where θTF−B
x,cal is the rotation of the temporary frame about its sagittal axis, θTF−B

z,cal is the rotation of the
temporary frame about its frontal axis, and n is the number of data samples within the calibration
movement. Since the duration of the calibration movement is very short (about one second), errors
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due to integration drift will be minimal. The rotation of the temporary frame, with respect to the body
frame, can now be calculated as follows for the leg sensors:

φcal,leg = arctan

θTF−B
z,cal

θTF−B
x,cal

− π2 , (5)

Figure 2. Calibration movements. Photographic representation of functional calibration procedures:
(A) Rise of right leg, (B) rise of left leg, (C) bow forward.

The relative orientation of the body frame, with respect to the temporary frame, is assumed to be
equal for the shank and thigh sensor within each leg, because the knee acts as a pure hinge joint in
the calibration movement. Since the calibration movement of pelvis (bow forward) is in the opposite
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direction, the following formula applies to obtain the relative angle between the body frame and the
temporary frame of the pelvis:

φcal,pelvis = arctan

θTF−B
z,cal

θTF−B
x,cal

+ π
2

, (6)

The rotation quaternions to rotate sensor data from the temporary frame to the body frame can
then be constructed for each sensor:

BF−B
TF−Bqcal =

[
cos

φcal

2
0 sin

φcal

2
0
]∗

, (7)

Consequently, this quaternion can be used to rotate sensor data from the temporary frame to the
body frame:

BF−B
GF qt =

TF−B
GF qt ⊗

BF−B
TF−Bqcal , (8)

2.1.3. Joint Kinematics

Once the system is calibrated, joint orientations can be extracted throughout a measurement
period by calculating the orientation of a distal segment relative to its proximal segment:

BF−PB
BF−DBq joint,t =

GF
BF−DBqt ⊗

BF−PB
GF qt , (9)

where BF-PB denotes the body frame of the proximal body segment, and BF-DB denotes the body
frame of the distal body segment. These joint orientation quaternions are then decomposed into ‘ZXY’
Euler angles in order to provide anatomically relevant joint angles [27]. The joint angular velocities are
obtained by expressing the directly measured angular velocity of the distal segment in the coordinate
frame of the proximal segment minus the angular velocity of the proximal segment expressed in the
same coordinate frame:

ωBF−PB
joint,t = BF−PB

BF−DBq joint,t ⊗ω
BF−DB
t ⊗

BF−PB
BF−DBq∗joint,t −ω

BF−PB
t , (10)

2.2. Experimental Validation

2.2.1. Participants

Eleven male amateur football players (age: 21.8 ± 3.2 years, height: 181 ± 6 cm, weight:
76.3 ± 11.4 kg), performing at least one training session and one match per week, participated in
the validation study. The participants were free of injuries at the time of testing. All participants
were informed about the experimental procedures by letter before testing and verbally on the day of
testing. All participants gave their written consent. The study was conducted in accordance with
the Declaration of Helsinki, and was approved by the local ethics committee of the VU Amsterdam
(VCWE-2019-070R1). The study was conducted at the campus of the Royal Dutch Football Association
in the spring of 2019.

Before the testing session, participants performed 15-min football specific warm-up on an outdoor
artificial turf football pitch. The warm-up comprised their usual pretraining warm-up and the
possibility to stretch (to own preference).

2.2.2. Equipment

The participants were equipped with the inertial motion analysis system described above.
Concurrent validity was assessed using eight optoelectronic motion cameras (Vicon V5 cameras, Vicon
Motion Systems Ltd., Oxford, UK) sampling at 250 Hz as gold standard reference. The cameras were
mounted at an approximate height of 2.3 m around the testing area. The optoelectronic motion analysis
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system was calibrated according to the manufacturer’s recommendations. Twenty retro-reflective
markers were placed on the following anatomical landmarks; medial and lateral malleoli, the medial
and lateral femoral epicondyles, the posterior and anterior superior iliac spines, the lateral and posterior
side of each thigh half way the length hip to knee, and the lateral and anterior side of each shank halfway
the length knee to ankle. The inertial-based motion analysis system was calibrated as described above.

2.2.3. Protocol

Six different football specific movements were performed in an indoor laboratory, equipped with
artificial turf on the floor (width × length: 5 m × 15 m) and a 5 m × 5 m optoelectronic motion capture
area. One side (5-m width) of the laboratory could be opened to the outside, such that participants
were able to run from inside to the field outside the laboratory and to kick balls from the motion
capture area onto the field. The chosen football specific movements (Figure 3) are frequently executed
in training sessions and matches and included an acceleration run, a deceleration run, a run with a
±60/75o side-step cut, a run with an 180o turn, a jump, and a kick [22]. Each movement was performed
at three different intensities: Low, medium, and maximal. Participants were instructed to perform
the running tasks at about 50% of maximum effort (low intensity), about 80% of maximum effort
(medium intensity), and at maximum effort (maximal intensity). The three intensities for the jumping
task were defined as a jump from standstill at 80% of maximum effort (low intensity), a jump with a
small run up at 80% of maximum effort (medium intensity), and a jump with a small run up performed
with maximal effort (maximal intensity). All kicks were preceded by a few steps and the intensities
were as follows: A short pass (low intensity), a long pass (medium intensity), and a maximum instep
kick (maximal intensity). After each movement, the participants rested for about 10 s. Following the
execution of a movement at the three intensities, the participants had approximately 60 s of rest. Four
trials were recorded per movement and intensity. The trial with the best marker visibility in Vicon was
selected for further processing. All movements were measured as one single continuous recording
for the inertial motion analysis system, whereas, for the optoelectronic system, each movement was
recorded separately.

2.2.4. Data Processing

Raw marker trajectory data obtained by the optoelectronic motion analysis system were processed
in Vicon Nexus (version 2.7.1, Vicon Motion Systems Ltd., Oxford, UK). Gaps in marker trajectories
were filled using Nexus’ Woltring gap fill algorithm and rigid body gap fill. Thereafter, marker
data was exported to Matlab (version 2018a for mac, The MathWorks, Inc., Natick, MA, USA).
Marker trajectories were smoothed using a second-order Butterworth low-pass filter with a cutoff

frequency of 12 Hz. This cutoff frequency was chosen based on visual inspection and is similar to
what others used [19]. The location of the hip joint center was calculated according to the Vicon
Plug-in-Gait model [28]. Furthermore, joint coordinate systems were constructed following ISB
recommendations [29,30]. Three-dimensional kinematics of the knees and hips were directly calculated
from these joint coordinate systems.

The data of the inertial motion analysis system was cut into smaller sections, with each section
representing one movement executed at one intensity. Kinematic data obtained by the optoelectronic
motion analysis system was up sampled to 500 Hz to match the sample frequency of the inertial data.
Kinematic data of both motion capture systems were then synchronized by cross-correlating the angles
of the knees and hips during the movements. To be able to compare the movement intensities of the
acceleration runs with previous literature, mean running speeds were computed by differentiating
the horizontal pelvis position obtained by the optoelectronic motion analysis system. Mean absolute
joint angular velocities, from here on referred to as absolute angular velocities for readability, were
obtained from the inertial data as a measure of movement intensity. Moreover, absolute and relative
(percentage of gold standard optoelectronic motion analysis system) errors in absolute joint angular
velocities were calculated.
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Figure 3. Football specific movements. Schematic representation of the performed football
specific movements.

2.2.5. Statistical Analysis

The statistical analyses were performed in Matlab (version 2018a for Mac, The MathWorks, Inc.,
Natick, MA, USA) and SPSS (IBM SPSS Statistics for Mac, Version 26.0, IBM Corp., Armonk, NY, USA).
The validity of the inertial-based system was assessed by computing the root mean square differences
(RMSD) and coefficients of multiple correlation (CMC) [31] between knee and hip joint angles and
angular velocities for each movement obtained by the optoelectronic system and inertial-based system.
Opposed to traditional correlation coefficients, CMC also accounts for differences in offsets between the
two systems. CMC values were interpreted as follows: Weak (<0.650); moderate (0.650–0.750); good
(0.750–0.850); very good (0.850–0.950); excellent (>0.950) [32]. Differences in validity measures, absolute
angular velocities, and errors in absolute and relative (percentage optoelectronic motion analysis
system) angular velocities were assessed using repeated measures analysis of variance (ANOVA)
with movement, movement intensity, joint (hip and knee), and body side (left and right) as factors
(6 × 3 × 2 × 2). A Greenhouse-Geisser correction was applied if the assumption of sphericity was
not met. Moreover, Bonferroni post-hoc tests were executed to determine differences between the
different conditions. All tests were performed with a significance level of p < 0.05 and effect sizes were
computed as partial ETA squared (η2). All data are presented as means ± standard deviations.
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3. Results

3.1. Overall

The repeated measures ANOVAs did not reveal any significant effects of body side on any of the
analyzed variables (RMSD angles: p = 0.128, η2 = 0.237, CMC angles; p = 0.197 η2 = 0.160, RMSD
angular velocities; p = 0.540, η2 = 0.039, CMC angular velocities; p = 0.824, η2 = 0.005, absolute angular
velocity; p = 0.618, η2 = 0.026). Therefore, we chose to only present the results of the left leg for clarity.
Please refer to the Supplementary Materials for the results of the right leg.

Examples of the joint angles and angular velocities of all movements performed at maximal
intensity by one of the participants are shown in Figures 4 and 5, respectively. Mean RMSDs and
CMC values of angles and angular velocities of all movements and movement intensities across
the participants are shown in Tables 1 and 2, respectively. Furthermore, the mean absolute angular
velocities for each movement and intensity are presented in Table 2. There was a significant main effect
of movement-type on RMSDs in joint angle (p = 0.015, η2 = 0.347), as well as on joint angular velocity
RMSDs (p < 0.001, η2 = 0.960) and CMC’s (p = 0.001, η2 = 0.939). Moreover, significant effects of joint
on joint angle CMCs (p < 0.001, η2 = 0.774), and on angular velocity RMSDs (p < 0.001, η2 = 0.989) and
CMCs (p < 0.001, η2 = 0.779) were found. Higher CMCs were observed for the hip joint compared to
the knee joint (p < 0.001), while respective RMSDs were lower (p < 0.001). Finally, movement intensity
showed significant effects for RMSDs of joint angular velocities (p < 0.001, η2 = 0.982), but not on
angular velocity CMCs (p = 0.077, η2 = 0.435).

Table 1. Results joint flexion/extension angles. Root mean square differences (RMSD) and coefficients
of multiple correlation (CMC) between knee and hip flexion/extension angles of the left leg obtained by
the optoelectronic and inertial-based motion analysis systems.

Left Knee Left Hip

Movement-type Intensity RMSD (o) CMC RMSD (o) CMC

Acceleration
low 4.7 ± 3.2 0.992 ± 0.009 7.4 ± 2.3 0.954 ± 0.047

medium 5.1 ± 3.2 0.993 ± 0.009 7.5 ± 2.3 0.978 ± 0.014
high 6.0 ± 2.7 0.990 ± 0.011 7.5 ± 2.4 0.985 ± 0.011

Deceleration
low 4.4 ± 2.7 0.991 ± 0.010 7.4 ± 2.1 0.906 ± 0.063

medium 4.5 ± 3.1 0.992 ± 0.009 6.5 ± 3.6 0.888 ± 0.155
high 5.1 ± 3.5 0.987 ± 0.018 7.9 ± 3.9 0.854 ± 0.184

Turn
low 5.1 ± 2.7 0.989 ± 0.012 8.5 ± 3.3 0.951 ± 0.034

medium 6.2 ± 2.9 0.985 ± 0.015 10.4 ± 4.0 0.928 ± 0.052
high 6.4 ± 3.2 0.979 ± 0.024 10.9 ± 5.9 0.913 ± 0.074

Cut
low 6.6 ± 3.5 0.982 ± 0.014 7.6 ± 3.3 0.953 ± 0.040

medium 6.2 ± 2.4 0.987 ± 0.007 8.5 ± 2.8 0.951 ± 0.040
high 6.4 ± 3.2 0.981 ± 0.018 8.6 ± 3.0 0.928 ± 0.052

Jump
low 3.7 ± 2.9 0.994 ± 0.007 7.8 ± 3.8 0.952 ± 0.045

medium 3.9 ± 2.5 0.992 ± 0.010 7.4 ± 3.7 0.943 ± 0.054
high 4.2 ± 2.6 0.990 ± 0.013 8.3 ± 4.8 0.948 ± 0.058

Kick
low 5.3 ± 4.9 0.970 ± 0.046 7.5 ± 3.7 0.957 ± 0.032

medium 6.0 ± 5.7 0.964 ± 0.056 6.7 ± 2.6 0.971 ± 0.016
high 6.2 ± 4.6 0.973 ± 0.028 7.6 ± 2.5 0.965 ± 0.042

Overall All 5.3 ± 3.4 0.985 ± 0.022 8.0 ± 3.5 0.940 ± 0.075
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Figure 4. Typical results joint flexion/extension angles. Example of joint flexion/extension angles of the
inertial-based motion analysis system (blue line) and the optoelectronic motion analysis system (red
line) of all movements performed at maximum intensity by one participant. The black line indicates
when the foot is in contact with the ground. For each joint and movement, the coefficient of multiple
correlation (CMC) and root mean square difference (RMSD) is indicated in the respective graph. The
arrows indicate events and have the following meanings: A = turn initiation, B = turn completion,
C = cut initiation, D = cut completion, E = push-off, F = landing, G = moment of ball contact.
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Figure 5. Typical results joint flexion/extension angular velocities. Example of joint flexion/extension
angular velocities for the inertial-based motion analysis system (blue line) and the optoelectronic
motion analysis system (red line) of all movements performed at maximum intensity by one participant.
The black lines indicate when the foot is in contact with the ground. For each joint and movement, the
coefficient of multiple correlation (CMC) and root mean square difference (RMSD) is indicated in the
respective graph. The arrows indicate events and have the following meaning: A = turn initiation,
B = turn completion, C = cut initiation, D = cut completion, E = push-off, F = landing, G = moment of
ball contact.
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Table 2. Results flexion/extension joint angular velocities. Mean absolute joint flexion/extension
angular velocities of the left leg obtained by the inertial motion analysis system, and the root
mean square differences (RMSD) and coefficients of multiple correlation (CMC) between knee and
hip flexion/extension angular velocities obtained by the optoelectronic and inertial based motion
analysis systems.

Left Knee Left Hip

Movement-Type Intensity
Absolute
Angular

Velocity (o/s)

RMSD
(o/s) CMC

Absolute
Angular

Velocity (o/s)

RMSD
(o/s) CMC

Acceleration
low 271 ± 40 193 ± 31 0.902 ± 0.035 147 ± 21 67 ± 19 0.964 ± 0.019

medium 394 ± 52 278 ± 49 0.893 ± 0.028 225 ± 40 73 ± 17 0.981 ± 0.008
high 449 ± 43 373 ± 48 0.858 ± 0.034 310 ± 48 93 ± 19 0.983 ± 0.005

Deceleration
low 214 ± 33 135 ± 25 0.935 ± 0.030 104 ± 14 58 ± 17 0.940 ± 0.037

medium 264 ± 53 165 ± 41 0.935 ± 0.023 129 ± 27 82 ± 28 0.918 ± 0.064
high 313 ± 101 174 ± 63 0.945 ± 0.026 140 ± 40 97 ± 32 0.882 ± 0.068

Turn
low 187 ± 27 158 ± 30 0.900 ± 0.038 120 ± 22 68 ± 12 0.942 ± 0.029

medium 195 ± 45 180 ± 21 0.836 ± 0.211 138 ± 14 76 ± 14 0.947 ± 0.022
high 205 ± 45 190 ± 39 0.897 ± 0.028 154 ± 29 94 ± 28 0.925 ± 0.050

Cut
low 253 ± 48 182 ± 27 0.896 ± 0.041 140 ± 22 63 ± 29 0.925 ± 0.042

medium 316 ± 66 250 ± 42 0.873 ± 0.031 191 ± 31 85 ± 29 0.956 ± 0.028
high 339 ± 55 253 ± 54 0.884 ± 0.042 202 ± 31 108 ± 36 0.958 ± 0.055

Jump
low 75 ± 15 104 ± 17 0.894 ± 0.018 75 ± 17 56 ± 16 0.932 ± 0.025

medium 106 ± 18 119 ± 23 0.890 ± 0.030 88 ± 19 54 ± 10 0.939 ± 0.024
high 112 ± 20 133 ± 15 0.878 ± 0.021 99 ± 12 63 ± 17 0.945 ± 0.038

Kick
low 124 ± 66 116 ± 65 0.889 ± 0.084 77 ± 50 78 ± 29 0.814 ± 0.158

medium 155 ± 69 151 ± 79 0.887 ± 0.036 101 ± 61 106 ± 20 0.824 ± 0.105
high 162 ± 63 177 ± 70 0.875 ± 0.039 116 ± 56 121 ± 22 0.851 ± 0.089

Overall All 230 ± 113 185 ± 81 0.893 ± 0.064 142 ± 66 80 ± 29 0.925 ± 0.076

3.2. Running Tasks

Mean running speeds during the acceleration runs were 3.5± 0.5 m/s, 5.1± 0.6 m/s, and 6.6± 0.3 m/s
for the low, medium, and maximal intensity trials, respectively. Across the running tasks and intensities,
mean CMC values of knee angles were excellent and ranged 0.979 to 0.993, whereas corresponding
mean RMSDs ranged from 4.4◦ to 6.4◦. Mean CMC values of hip angles were between 0.854 and 0.985,
with corresponding mean RMSDs between 6.5◦ and 10.9◦.

3.3. Jumping and Kicking

In the jumping task, mean RMSDs in knee angles ranged 3.7◦ to 4.2◦, whereas mean RMSDs in
hip angles ranged from 6.7◦ to 7.6◦. Over all intensities, mean CMC values were excellent for the knees
(0.990–0.994) and ranged from very good to excellent for the hips (0.943–0.952). Mean RMSDs in joint
angular velocities were between 104◦/s and 133◦/s for the knees, and between 54◦/s and 63◦/s for the
hips. Moreover, CMC values for joint angular velocities ranged 0.878 to 0.894 and 0.932 to 0.945 for the
knees and hips, respectively.

In the kicking tasks, mean RMSDs in joint angles were between 5.3◦ and 6.2◦ for the knees and
between 7.4◦ and 8.3◦ for the hips. Mean corresponding CMC values were between 0.964 and 0.973
for the knees and between 0.957 and 0.971 for the hips, respectively. Mean CMC values for knee
angular velocities ranged from 0.875 to 0.889 with mean RMSDs between 116◦/s and 177◦/s. For angular
velocities of the hips, mean CMC values were ranged from 0.814 to 0.851, whereas mean RMSDs were
between 78◦/s and 121◦/s.

3.4. Movement Intensity

Significant main effects of joint (p < 0.001, η2 = 0.975), intensity (p < 0.001, η2 = 0.935), and
movement type (p < 0.001, η2 = 0.941) on absolute angular velocities were found. Absolute angular
velocities were significantly higher for the knees compared to the hips (p < 0.001). All three movement
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intensities were significantly different from each other (p < 0.001), whereas absolute angular velocities
were highest in the maximum intensity movements and lowest in the low intensity movements. All
movements significantly differed from each other in terms of absolute angular velocity (p = 0.000–0.019),
except the deceleration, which did not differ from the turn (p = 1.000) or the cut (p = 0.135).

Significant main effects of joint (p < 0.001, η2 = 0.767), intensity (p < 0.001, η2 = 0.659), and
movement type (p = 0.021, η2 = 0.295) on absolute errors in absolute angular velocities were observed.
However, when these errors were expressed as a percentage of the absolute angular velocities measured
by the optoelectronic system, all main effects disappeared (joint: p = 0.708, η2 = 0.015, intensity:
p = 0.600, η2 = 0.045), except for the effect of movement-type (p = 0.001, η2 = 0.552). Overall, relative
errors of absolute angular velocity were 16.5% ± 1.3%.

4. Discussion

The main aim of present study was to introduce and evaluate a simple inertial-based motion
analysis system by assessing its concurrent validity with a gold standard optoelectronic motion analysis
system during a variety of football specific movements performed at a range of intensities. The
secondary aim was to establish whether different movement intensities could be distinguished based
on joint flexion/extension angular velocities. The results showed very good to excellent correlations for
knee angles over the range of movements and intensities performed, whereas the correlations for hip
angles were good to excellent. Good to excellent correlations were found for knee and hip angular
velocities. Moreover, mean absolute angular velocities clearly differed between low, medium, and
maximal movement intensities.

RMSDs in knee angles (4–6◦) during running were slightly larger than what has previously been
found with inertial based motion analysis during walking [13,17,33] and running [13] (knee angle:
RMSD < 3.4◦). However, all these studies used marker data obtained by optoelectronic cameras to
construct the biomechanical model of the inertial sensor system. Clearly, this is not possible when
the inertial based motion analysis system is used as stand alone. Consequently, the results of these
previous studies do not translate directly to on-field use of inertial-based motion analysis systems. In
the independent use of inertial-based motion analysis systems, the biomechanical model is generally
constructed based on pre-known postures, functional calibration procedures, or, as in our study, on
a combination of both, rather than on the position of anatomical bony landmarks obtained with an
additional system [19,21,32,34]. This inevitably leads to differences between the biomechanical models
of the inertial sensor and the optoelectronic system, which are dependent on marker placement for
the optoelectronic system and on the execution of the calibration movements for the inertial based
system. This effect probably contributed to the somewhat larger RMSDs in joint angles in comparison
to these earlier studies [13,17,33]. RMSDs in joint angular velocities were not previously reported but
are likely to have been partially determined by this same effect. Although RMSDs in joint angular
velocities appear to be relatively high (Table 2), good to excellent correlations indicate that the course
of angular velocity signals was similar between the optoelectronic motion analysis system and inertial
based system.

The RMSDs and CMCs of joint angles found in the present study across a range of movements
and intensities are comparable to results of walking, running, and kicking found in other studies that
used independent biomechanical models [19,21,32,34]. However, the maximum running speed that
has been reported in these studies was ~3.9m/s [21], whereas, in our study, participants had a mean
running speeds of 3.5 ± 0.5 m/s, 5.1 ± 0.6 m/s, and 6.6 ± 0.3 m/s during the acceleration runs at low,
medium, and maximal intensity, respectively. This indicates that our inertial-based motion analysis
system still provides valid measures of joint angles at movements intensities that are considerably
higher compared to previous research.

However, we expected that a relatively high movement intensity would affect the inertial-based
motion system’s accuracy in the two following ways. First, the accuracy of an inertial-based system
relies upon the performance of the orientation estimation of each individual sensor. One of the
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assumptions of sensor fusion algorithms is that the measured direction of the acceleration is equal
to the direction of the gravitational acceleration [11]. Therefore, the performance of orientation
estimation is negatively influenced in presence of linear accelerations. As a result, the accuracy of
inertial-based system may be lower during high intensity movements. Second, the presence of soft
tissue between the bones and sensors on the skin can lead to soft tissue artefacts in sensor-derived
segment orientations. Any deformation in soft tissue between a sensor and bone leads to errors in the
estimated segment orientation. High-impact forces and strong muscle contractions associated with
high-intensity movements may mean larger soft tissue deformations, which may result in a lower
inertial-based system accuracy [35]. Unexpectedly, we did not find an effect of movement intensity
on CMC or RMSD in joint angles. An explanation could be that our low intensity movements were
performed at about 50% of maximal intensity, which may have already been high enough to introduce
substantial soft tissue deformations. As a consequence, differences in soft tissue artefacts between the
movement intensities may have been too small to result in significant effects of movement intensity on
the validity measures.

To the best of our knowledge, no previous studies have reported statistics on the similarity between
complete joint angular velocity signals obtained by optoelectronic and inertial-based motion analysis
systems. We found lower CMCs of joint angular velocities compared to angles, indicating a lower
accuracy of the inertial-based motion analysis system in determining angular velocities compared to
angles. Movement intensity had a significant effect on RMSDs in angular velocities and on absolute
errors in absolute angular velocities. However, there were no main effects of movement intensity on the
corresponding CMCs and relative errors in absolute angular velocities. These results suggest that the
absolute errors in angular velocity measurements are proportional to the magnitude of joint angular
velocity. This proportionality, as well as the error margins, should be considered when interpreting
joint angular velocities in daily football practice situations.

Movement intensity measures are frequently used in football practice to estimate training load [1,3].
However, previously available methods to measure movement intensity are unable to estimate intensity
of movements with small global displacements that may still be accompanied by the high mechanical
loading of ligaments, tendons, and muscles, such as kicking, jumping, and short sprints. The significant
effect of movement intensity on absolute angular velocities in the present study shows that the
intensity of all six investigated movements, including kicking and jumping, can be estimated by
measuring joint angular velocities. Yet, it should be noted that the type of movement also largely
determined the presented joint angular velocities. Therefore, the effects of movement intensity on
angular velocities cannot be directly compared among different movements. Consequently, automatic
movement recognition algorithms may have to be included in the estimations of training load.

The sensor setup used in present study does not allow football players to make slide tackles
because the sensors may come off and/or bruise the player. In addition, equipping many individual
players with five separate sensors is not feasible in daily practice. Therefore, we are currently working
on integration of the sensors into tights or shorts, which have a centralized power supply placed at the
lower back where it has less impact with the ground during slide tackles. This also makes it possible to
further miniaturize the individual sensor units, since the battery is, by far, the largest component of the
units used in the present study.

5. Conclusions

This paper introduced a simple method to obtain hip and knee joint kinematics using IMUs. The
method showed good validity with a gold standard optoelectronic motion analysis system for six
different football specific movements, even when these were performed at maximal intensity. These
findings open the possibility to improve quantification of the player’s physical load during football.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/9/2527/s1,
Table S1: Results joint flexion/extension angles right leg, Table S2: Results flexion/extension joint angular velocities
right leg, Software S1: Inertial based motion tracking example.

http://www.mdpi.com/1424-8220/20/9/2527/s1
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