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Abstract

Objective

To assess potential effects of variants in six lipid modulating genes (SORT1, HMGCR,
MLXIPL, FADS2, APOE andMAFB) on early development of dyslipidemia independent of

the degree of obesity in children, we investigated their association with total (TC), low den-

sity lipoprotein (LDL-C), high density lipoprotein (HDL-C) cholesterol and triglyceride (TG)

levels in 594 children. Furthermore, we evaluated the expression profile of the candidate

genes during human adipocyte differentiation.

Results

Expression of selected genes increased 101 to >104 fold during human adipocyte differenti-

ation, suggesting a potential link with adipogenesis. In genetic association studies adjusted

for age, BMI SDS and sex, we identified significant associations for rs599839 near SORT1
with TC and LDL-C and for rs4420638 near APOE with TC and LDL-C. We performed

Bayesian modelling of the combined lipid phenotype of HDL-C, LDL-C and TG to identify

potentially causal polygenic effects on this multi-dimensional phenotype and considering

obesity, age and sex as a-priori modulating factors. This analysis confirmed that rs599839

and rs4420638 affect LDL-C.

Conclusion

We show that lipid modulating genes are dynamically regulated during adipogenesis and

that variants near SORT1 and APOE influence lipid levels independent of obesity in chil-

dren. Bayesian modelling suggests causal effects of these variants.
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Introduction
Alterations in blood lipid phenotypes culminating in dyslipidemia are important risk factors
for the development of cardiovascular disease [1]. Elevated blood low-density lipoprotein cho-
lesterol (LDL-C) and triglycerides (TG) are strongly related to the likelihood of existing or
future coronary heart disease [2, 3], whereas elevated blood high-density lipoprotein choles-
terol (HDL-C) has a protective effect [4]. The most common cause of dyslipidemia is obesity
[5]. However, a relevant proportion of patients with elevated blood lipid levels does not show
an abnormal BMI [6].

Meta-analyses of genome-wide association (GWA) studies revealed many genetic loci influ-
encing blood lipid levels underlying the polygenic cause of dyslipidemia and thereby identified
suspected as well as unsuspected new candidate genes [7–10]. However, these meta-analyses
concern adult cohorts. So far, there are only very few data on selected genes associated with
altered blood lipid phenotypes in children and adolescents [11–14].

Investigation of childhood cohorts has several advantages though. They are much less
biased by chronic disease and treatments but already show considerable heterogeneity regard-
ing blood lipid levels. Also, considering future prediction of developing dyslipidemia, it is
important to assess whether associations between genetic variants and blood lipid phenotypes
observed in adults are already evident in children and adolescents [15]. Due to the lower influ-
ence of co-morbidities and other life-style related factors, we suppose that primary genetic
effects are stronger in children than in adults. Thus, we hypothesize that we can detect at least
some of the variants even with the lower number of individuals available for childhood
cohorts.

In the present study, we aimed at assessing associations of six variants with lipid traits in a
sample of mainly obese children. Selected variants are located in or near the genes SORT1 (sor-
tilin 1),HMGCR (3-hydroxy-3-methylglutaryl-Coenzyme A reductase),MLXIPL (MLX inter-
acting protein), FADS2 (fatty acid desaturase 2), APOE (apolipoprotein E) andMAFB (V-maf
musculoaponeurotic fibrosarcoma oncogene homolog B) for which high effect-sizes regarding
lipid phenotypes were reported. Going beyond classical association analysis, we additionally
performed a Bayesian modelling approach to identify unconfounded relationships between
genetic and non-genetic covariables and lipid phenotypes. Considering that obesity is a risk
factor for dyslipidemia per se and that adipose tissue is an important tissue for lipid metabo-
lism, we also assessed a potential relationship of the candidate gene expression for adipogenesis
by studying time-series of gene-expression during human adipocyte differentiation.

Methods

Selection of Candidate Genes and Variants
Genes were selected according to evidence of genotype-phenotype-associations established in
meta-analyses of adult cohorts [8–10, 16, 17]. We prioritized genetic variants by applying a
score integrating (i) GWAS for lipid genes and obesity (p-value), (ii) gene expression data
from adipocytes, (iii) minor allele frequency and effect size, (iv) verification in replication anal-
yses,. Based on these criteria, we selected six variants rs6102059 (MAFB), rs4420638 (APOE),
rs599839 (SORT1), rs3846663 (HMGCR), rs174570 (FADS2) and rs3812316 (MLXIPL). We
excluded well-known SNPs in genes like LDL-receptor because we were interested in new can-
didate genes influencing blood lipid levels.

Cis-eQTL effects of SNPs in linkage disequilibrium with our variants were observed for
SORT1 [18–20],HMGCR [21] and FADS2 [21–23].
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Sample
A total of 683 children were recruited from the Leipzig area via our out-patient obesity clinic.
We applied German reference data for the calculation of the SDS as suggested by the National
German Guidelines for Pediatric Obesity [24]. Obesity was defined as BMI SDS>1.88 corre-
sponding to the 97th percentile.

White children were phenotyped by age, sex, height, weight, pubertal state, laboratory
parameters and other clinical characteristics. Assessment of pubertal stage was performed by
clinical examination according to Tanner [25, 26]. Blood lipid levels (triglycerides, total choles-
terol, HDL and LDL) were determined with direct enzymatic colorimetric assays by the certi-
fied laboratory at the Institute of Laboratory Medicine, Clinical Chemistry and Molecular
Diagnosis at the University of Leipzig. Written informed consent was obtained from all parents
and from participants �12 years of age. This study has been approved by the ethics committee
of the University of Leipzig and has been conducted according to the principles expressed in
the Declaration of Helsinki (October 2000).

We excluded children with chronic inflammatory diseases, metabolic diseases, genetic dis-
orders and diseases that required medication influencing lipid metabolism (N = 89).

For the remaining 594 children, data on glucose metabolism and lipid phenotypes (TC,
LDL-C, HDL-C, TG) were available. Anthropometric and metabolic characterisation of
included samples is presented in Table 1.

Gene expression analysis during human adipocyte differentiation
Gene expression profiles of selected genes were determined via qRT-PCR for human preadipo-
cyte SGBS (Simpson-Golabi-Behmel syndrome) cells during differentiation into mature adipo-
cytes. Adipocyte differentiation was induced as described previously [27].

RNA extraction was performed using the RNeasy MiniKit (Qiagen, Hilden, Germany)
including DNase digestion according to the manufacturer’s instructions. Reverse transcription
of 50 ng/μl RNA was carried out using the M-MLV Reverse Transcriptase Kit (Invitrogen,
Karlsruhe, Germany) with random hexamer [p(dN)6] primers (Roche, Basel, Switzerland).
Primer sequences are provided in S1 Table.

Experiments were performed in three distinct experiments each in triplicates. Target gene-
expression was normalized to the averaged expression of three housekeeping genes TBP,HPRT
and USF2.

DNA-Isolation and genotyping
Fasting venous EDTA blood samples were stored at -80°C. After washing with phosphate buff-
ered saline, erythrocyte depletion by NH4-lysis, and centrifugation, we extracted DNA using
QIAmp DNA Blood MiniKit (Qiagen) according to the manufacturer’s manual.

Table 1. Anthropometric andmetabolic characterization of study samples.

Sex (male / female) 277 / 317

n (non-obese / obese) 122 / 472

BMI SDS 2.39 (0.85)

Age (years) 11.67 (5.23)

Total Cholesterol (mmol/L) 4.08 (0.99)

HDL-C (mmol/L) 1.22 (0.37)

LDL-C (mmol/L) 2.46 (0.89)

Triglyceride (mmol/L) 0.99 (0.70)

Quantitative variables are presented as median (interquartile range). Obesity is defined as BMI SDS>1.88.

doi:10.1371/journal.pone.0138064.t001
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Genotyping probes and primers were obtained from Applied Biosystems (Darmstadt, Ger-
many). Primer sequences are listed in S2 Table. We used qPCR MasterMix Kit for probe Assay
and Low Rox Plus (Eurogentec, Köln, Germany) for genotyping according to the manufactur-
ers’manuals. Genotyping was performed on ABI Prism 7500 sequence detector (Applied Bio-
systems, Lincoln, USA). At least 5% of all samples were re-assessed on a different plate with
concordance rate of 100%. Genotype frequencies of all SNPs were consistent with Hardy-
Weinberg equilibrium. SNP characteristics are presented in S3 Table.

Classical statistical analysis
In classical analysis of genetic data, every combination of a single SNP and a single phenotype
is tested for association. Prior to analysis, lipid phenotypes TC, LDL-C, HDL-C and TG were
log transformed to approximate normal distribution. Continuous phenotypes TC, LDL-C,
HDL-C, TG, age and BMI SDS were standardised to zero mean and unit variance before analy-
sis in order to obtain dimensionless effect estimates which are better comparable between dif-
ferent predictors and studies.

SNP associations with BMI SDS were tested with a linear model assuming three different
genetic models, an additive effect of both alleles, and a dominant and recessive effect of the
major allele, respectively. All models were adjusted for age and sex. Similarly, lipid SNP associ-
ations were tested with a linear model and three different genetic models. All models were
adjusted for age, BMI SDS and sex. Adjustment for pubertal state instead of age is also reason-
able. Due to the high correlation of age and pubertal state (Spearman r = 0.84), the genetic
results are essentially the same (not shown). Also, pubertal stage is assessed by two parameters
(pubic hair and breast development or testicular volume), which are not necessarily coherent.
Furthermore, pubertal timing differs between boys and girls. Since dyslipidemia would be
more related to age as an indicator of duration of obesity and dyslipidemia it is not necessarily
influenced by pubertal development per se, this was another reason to adjust for age. We,
therefore, decided to use the continuous and less ambiguously measurable trait age instead of
pubertal state.

Since we tested five phenotypes, six SNPs and three genetic models, it is necessary to correct
for multiple testing. However, due to multiple correlations between phenotypes and effects of
genetic models, it was necessary to simulate the null-distribution. In our situation, a signifi-
cance level of 6.7x10-4 controls the family-wise error rate at 5% and was therefore used to cor-
rect for multiple testing in our study.

Statistical analysis was performed using R 2.10.1.

Bayesian Model Analysis
The major drawbacks of the classical analysis mentioned above are the large number of tests to
be performed due to the large number of possible combinations of SNPs and phenotypes and
the assumption of a specific model of genetic and non-genetic effects. To overcome these limi-
tations, we performed Bayesian model analysis in addition to our classical association analysis.
By this approach, we can estimate plausibilities of different models and corresponding effect
sizes. Bayesian modelling also allows some kind of causal inference by analysing all lipid phe-
notypes and possible influencing factors in parallel considering their overall correlation struc-
ture. To some extent, this avoids spurious associations.

The method is well conceived with application in analysing complex genotype-phenotype
associations in medical research [28–30]. Additional insights can be derived from the model-
ling such as probability of different genetic risk models and estimates of unconfounded effects
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considering all dependencies between variables of interest. It also circumvents the above men-
tioned issue of multiple-testing and the uncertainty regarding the model of inheritance.

Similar to the univariate analysis, transformed and standardised data were used. Lipid phe-
notypes were modelled with the Bayesian variable selection approach described in [29, 31]
using the reversible jump interface of WinBUGS (Version 1.4.3). Since correlation of TC and
LDL-C is very high (r = 0.91) we studied models of the (three-dimensional) lipid phenotype
HDL-C, LDL-C and TG. We aimed to identify the most plausible sets of co-variables having a
direct influence on each lipid phenotype accounting for correlations between them.

In our analysis, the set of co-variables consists of age, BMI SDS, sex and a recessive and a
dominant part for each of the six SNPs defined by indicator variables “genotype” = 0 and
“genotype” = 2 respectively. If both indicator variables are included, different levels of co-domi-
nance can be expressed by corresponding effect estimates. Hence, 15 co-variables were avail-
able for selection for each of the 3 lipid phenotypes.

Each different subset of these co-variables forms a model. Prior to analysis, one assumes
that all models are equally likely. We calculated Bayesian posterior probabilities representing
the plausibilities of the models given our data. Details of Bayesian modelling and fitting can be
found in S1 Methods.

Bayes factors [32] are used to interpret model results. Calculation of Bayes factors is
explained in the S2 Methods. A usual convention is that a Bayes factor of 1 to 3.2 is judged as
“not worth more than a bare mention”, a factor of 3.2 to 10 as “substantial”, a factor of 10 to
100 as “strong” and a factor greater than 100 as “decisive” evidence for a model or effect [33].
Conversely, reciprocal values represent counter-evidence for a model. Rather than deciding
whether a certain covariable has an effect or not (i.e. is in the model or not), we calculate corre-
sponding inclusion probabilities, which can be interpreted as plausibilities regarding the
impact of the covariable on the phenotype considered. Effect estimates of co-variables can be
determined in the Bayesian context by averaging over all models containing this co-variable
(Bayesian model averaging) weighted by the plausibility of the model. Results can be consid-
ered as analogons to Beta-coefficients of classical linear regression analysis.

Results

Classical genotype-phenotype analyses for BMI SDS and lipid
phenotypes
There was no significant association between BMI SDS and any of the selected SNPs indicating
that the variants are not related to the degree of obesity in our data. Results for the additive
model are presented in Table 2. Results for all three genetic models are given in S1 Results.

Next, we analysed the association between genotypes and lipid phenotypes. We found sig-
nificant associations with lipid phenotypes for SORT1 rs599839 with TC (p = 1.50x10-4, β =
-0.257) and LDL-C (p = 8.82x10-6, β = -0.3) as well as for APOE rs4420638 with TC
(p = 2.45x10-5, β = 0.336) and LDL-C (p = 1.38x10-6, β = 0.382), whereas the variants were not
associated with other lipid phenotypes (Table 2). No additional associations were found when
investigating alternative models of inheritance (see S1 Results).

Bayesian model analysis
We performed Bayesian modelling of the multi-phenotype of HDL-C, LDL-C and TG. TC was
not included into the model due to its strong correlation with LDL-C. Analysed relations are
illustrated in Fig 1. In the following, we present the most plausible models of each lipid pheno-
type accounting for their pairwise correlations. The corresponding WinBUGS Model is given
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in detail in S3 Methods. Most probable models in decreasing order of plausibility and corre-
sponding Bayes factors are shown in Table 3. The lists are truncated when the cumulative prob-
ability of the models exceeds 95%, i.e. all other models are less plausible according to our data.
Both top models of HDL-C contain no genetic factors but age and BMI SDS as co-variables.
The third most probable model includes the dominant part of rs4420638 (APOE).

The top models of TG contain age and BMI SDS, too. Additionally, the second best model
includes the dominant part of rs3812316 (MLXIPL).

Various different models are plausible for LDL-C: The recessive parts of SNP rs599839
(SORT1) and rs4420638 (APOE) and BMI SDS contribute to the top 5 models of LDL-C. In
less probable models for LDL-C, combinations of the recessive and dominant parts of rs599839
and rs4420638, age and BMI SDS occur. Further, the dominant part of rs6102059 (MAFB) is
included once.

Table 2. Association of genotypes with BMI SDS and lipid phenotypes.

Phenotype Variant N Beta SE CI p-value

BMI SDS rs599839 576 -0.087 0.066 [-0.217;0.044] 0.193

BMI SDS rs3846663 572 0.076 0.061 [-0.045;0.196] 0.219

BMI SDS rs3812316 564 -0.126 0.095 [-0.312;0.06] 0.184

BMI SDS rs174570 578 0.176 0.09 [-0.001;0.353] 0.052

BMI SDS rs4420638 584 -0.004 0.079 [-0.16;0.152] 0.958

BMI SDS rs6102059 575 0.062 0.065 [-0.065;0.19] 0.335

TC rs599839 576 -0.257 0.067 [-0.389;-0.125] 1.50x10-4

TC rs3846663 572 0.141 0.062 [0.019;0.263] 0.024

TC rs3812316 564 -0.022 0.094 [-0.207;0.162] 0.812

TC rs174570 578 -0.04 0.092 [-0.22;0.14] 0.662

TC rs4420638 584 0.336 0.079 [0.181;0.491] 2.45x10-5

TC rs6102059 575 0.019 0.065 [-0.109;0.146] 0.775

HDL-C rs599839 576 0.077 0.067 [-0.054;0.207] 0.25

HDL-C rs3846663 572 0.098 0.061 [-0.021;0.217] 0.106

HDL-C rs3812316 564 0.129 0.093 [-0.054;0.312] 0.168

HDL-C rs174570 578 -0.078 0.09 [-0.254;0.098] 0.387

HDL-C rs4420638 584 -0.13 0.078 [-0.283;0.024] 0.098

HDL-C rs6102059 575 0.038 0.064 [-0.087;0.164] 0.547

LDL-C rs599839 576 -0.3 0.067 [-0.431;-0.168] 8.82x10-6

LDL-C rs3846663 572 0.12 0.062 [-0.002;0.241] 0.054

LDL-C rs3812316 564 -0.043 0.094 [-0.226;0.141] 0.649

LDL-C rs174570 578 0.021 0.091 [-0.158;0.2] 0.817

LDL-C rs4420638 584 0.382 0.078 [0.228;0.536] 1.38x10-6

LDL-C rs6102059 575 0.018 0.065 [-0.109;0.145] 0.781

TG rs599839 576 -0.114 0.065 [-0.241;0.014] 0.081

TG rs3846663 572 -0.006 0.059 [-0.123;0.11] 0.913

TG rs3812316 564 -0.134 0.088 [-0.307;0.038] 0.127

TG rs174570 578 0.137 0.087 [-0.034;0.307] 0.116

TG rs4420638 584 0.135 0.076 [-0.014;0.285] 0.076

TG rs6102059 575 0.075 0.062 [-0.046;0.197] 0.225

We present numbers of cases available for the corresponding analysis (N), beta-coefficients, their standard errors (SE), 95% confidence intervals (CI) and

uncorrected p-values. Since standardized values were analysed, beta-coefficients and standard errors have unit 1. BMI SDS was analysed with the

additive model adjusted for age and sex. Lipid phenotypes were logarithmized and analysed with the additive model adjusted for age, sex and BMI SDS.

Associations significant after correction for multiple testing (see methods section) are printed in bold.

doi:10.1371/journal.pone.0138064.t002
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The impact of each co-variable independent of a certain model can be assessed by interpret-
ing the inclusion probabilities for co-variables (Fig 2). In addition to the apparent and expected
impact of BMI SDS, rs599839 (SORT1) and rs4420638 (APOE) have a high certainty of affect-
ing LDL-C independent of the degree of obesity. Conversely, the following effects cannot be
ruled out (i.e. no decisive evidence against the effect was found): rs4420638 (APOE) on
HDL-C, rs3846663 (HMGCR) and rs6102059 (MAFB) on LDL-C, rs3812316 (MLXIPL) on
TG.

Effect estimates of co-variables with inclusion probability greater than 0.5% are listed in
Table 4. Estimates and standard deviations are averaged over all models, where the respective
co-variable is included (Bayesian model averaging). In comparison to classical analysis, the
majority of standard deviations of estimates are smaller demonstrating higher power of the
Bayesian model approach (S1 Fig).

The estimated covariance of the model is shown in S2 Results. Results of the combined
model of TC, HDL-C, TG are similar to those of the model of LDL-C, HDL-C, TG considered
here (data not shown).

Fig 1. Bayesian Model.We present the structure of the Bayesian model analysed. Black arrows represent possible impacts of considered covariables
(SNPs, age, BMI SDS, sex) on the distribution means of lipid phenotypes. Grey arrows refer to the covariance between the lipids which is accounted for in the
model.

doi:10.1371/journal.pone.0138064.g001
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Polygenic effects for LDL-C are illustrated in S2 Fig.

Gene-expression analysis in human adipocyte precursors
Wemeasured gene expression of SORT1,HMGCR,MLXIPL, FADS2, APOE andMAFB during
differentiation of human preadipocytes into adipocytes to assess a potential physiological rele-
vance in lipid metabolism. We observed an up-regulation of these genes by magnitudes of 10
to 104 (Fig 3).

Table 3. Results of Bayesianmodel analysis.

Lipid Model Probability Bayes factor

HDL-C BMI SDS 91.89 371265

HDL-C age, BMI SDS 3.08 1041

HDL-C rs4420638dom, BMI SDS 0.99 329

LDL-C rs599839rec, rs4420638rec 53.49 37691

LDL-C rs599839rec, rs4420638rec, BMI SDS 22.88 9720

LDL-C rs4420638rec 7.65 2714

LDL-C rs4420638rec, BMI SDS 4.62 1586

LDL-C rs599839rec 2.54 855

LDL-C rs599839dom, rs4420638rec 1.03 340

LDL-C rs599839rec, rs4420638rec, age 0.8 266

LDL-C rs599839rec, rs4420638rec, rs6102059dom 0.77 254

LDL-C rs599839rec, BMI SDS 0.74 244

LDL-C null 0.56 186

TG age, BMI SDS 90.47 311171

TG rs3812316dom, age, BMI SDS 3.66 1247

TG BMI SDS 2.55 856

Possible models of HDL-C, LDL-C, TG can contain up to 15 covariables (age, sex, BMI SDS, dominant and recessive effect of six SNPs). We present

most probable models, corresponding posterior probabilities and Bayes factors. Models are ranked according to their plausibility. A cumulative probability

of 95% served as cut-off for model presentation.

doi:10.1371/journal.pone.0138064.t003

Fig 2. Inclusion probabilities of covariables for each lipid phenotype. For each SNP, results are given for the recessive (first number) and dominant part
(second number). Results for inclusion probabilities are rounded to integers of percentage. Effect estimates are illustrated by the shade of grey as indicated.
Results rounded to zero are omitted. Results for the lipid phenotypes LDL-C, HDL-C and TG are presented. TC is omitted due to high correlation with LDL-C.

doi:10.1371/journal.pone.0138064.g002
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Discussion
In this study, we aimed to assess the relevance of SNPs showing associations with lipid pheno-
types from adults in a childhood sample which is less prone to confounding factors such as
medication and co-morbidities and has shorter exposure to endogenous and exogenous
factors.

Considering the strong impact of obesity and hence adipose tissue on circulating lipid phe-
notypes, we were also interested whether the candidate genes are dynamically regulated during
adipogenesis. We have previously shown that genetic candidates from GWAS for obesity traits
may have a functional role in human adipogenesis [27]. All selected genes from this study were
expressed in adipocytes and showed considerable up-regulations during human adipocyte dif-
ferentiation up to 10,000 fold. This has not been shown for these genes before. Even though
this dynamic regulation during adipogenesis does not directly imply a functional relationship,
this finding merits further investigation in mechanistic studies. We evaluated the dynamic reg-
ulation of candidate gene expression in SGBS preadipocytes, so far the only established model
of human preadipocyte differentiation [34], which is widely applied in adipogenesis research.
It has been shown that biology and molecular markers are comparable to primary human adi-
pocyte differentiation and circumvents potential bias by patient heterogeneity due to age, risk
factors, morbidities, treatment etc.

Considering the strong dependence of lipid levels on obesity, the observed regulations may
affect serum lipid phenotypes and may explain SNP associations. We, therefore, verified that
the six variants considered were not associated with the degree of obesity in the children prior
to evaluation of associations with lipid traits.

Of the six selected SNPs located in or near the genes FADS2 (rs174570),MAFB (rs6102059),
HMGCR (rs3846663),MLXIPL (rs3812316), APOE/C1/C4/C2 (rs4420638) and CELSR2/
PSRC1/SORT1 (rs599839), we observed a strong impact of rs599839 (SORT1) and rs4420638

Table 4. Inclusion probabilities of covariables and Bayesian effect sizes.

Lipid Variant Probability Estimate SD

HDL-C rs599839dom 0.6 0.253 0.178

HDL-C rs4420638dom 1.03 -0.415 0.25

HDL-C age 3.22 -0.127 0.041

HDL-C BMI SDS 99.34 -0.21 0.041

HDL-C sex 0.53 -0.147 0.072

LDL-C rs599839rec 84.3 0.32 0.077

LDL-C rs599839dom 2.2 -0.415 0.171

LDL-C rs3846663dom 1.16 0.258 0.114

LDL-C rs4420638rec 95.57 -0.365 0.081

LDL-C rs4420638dom 0.58 0.347 0.239

LDL-C rs6102059dom 1.23 0.276 0.134

LDL-C age 1.18 -0.12 0.042

LDL-C BMI SDS 30 0.146 0.04

TG rs3812316dom 3.81 -0.757 0.346

TG age 97.28 0.172 0.035

TG BMI SDS 99.98 0.255 0.044

TG sex 1.45 -0.166 0.061

We present probabilities for inclusion of specified covariables and resulting effect sizes and corresponding standard deviations (SD) averaged over all

models containing the covariable. Only covariables with an inclusion probability greater than 0.5% are shown.

doi:10.1371/journal.pone.0138064.t004
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(APOE) on circulating LDL-C levels independent of the degree of obesity in conventional lin-
ear regression analyses adjusting for age, sex and BMI SDS. This was confirmed by our Bayes-
ian model analysis suggesting causality of these two variants on LDL-C. Bayesian analysis also
revealed that effects of rs4420638 (APOE) on HDL-C, rs3846663 (HMGCR) and rs6102059
(MAFB) on LDL-C as well as rs3812316 (MLXIPL) on TG cannot be ruled out. Still, these vari-
ants should be considered as candidates requiring further investigations.

The APOE-SNP rs4420638 is located on chromosome 19 in a cluster with APOC1, APOC4
and APOC2. The SNP rs599839 is located on chromosome 1, close to the genes CELSR2,
PSRC1 and SORT1. Multiple other studies investigated SNPs in or near the APOE and SORT1
genes. Rs4420638 and rs599839 showed replicable associations with lipid levels (mostly
LDL-C) in Caucasian and non-Caucasian population cohorts and meta-analyses [7, 9, 15, 35].
The non-Caucasian cohorts displayed lower significance regarding all SNP-lipid-associations,
most likely due to lower case numbers (N ranges from 2,532 to 9,328) [15]. In a small sample,
Klein et al. observed effects of rs646776, a proxy of rs599839, only in males [36]. Sex-stratified
analysis of our data reveals a significant effect for both sexes. Beta estimator of females is slightly
lower than that for males (Females: p = 6.5x10-4, β = -0.28, Males: p = 4.5x10-3, β = -0.32).

Associations of the other variants/candidates could not be confirmed in our sample. Corre-
lations for rs174570 (FADS2) with TC, LDL-C and HDL-C were observed in a meta-analysis of

Fig 3. mRNA expression profiles of target genes during human adipogenesis. Fold change of gene expression for SORT1, HMGCR,MLXIPL, FADS2,
APOE andMAFBmRNA during human adipocyte differentiation of SGBS cells. Data shown are averaged over 3 independent experiments, each performed
in triplicates and results are given in mean±SEM. For all candidates, p<0.001 was achieved by one-way ANOVA test with Dunnet´s posthoc test.

doi:10.1371/journal.pone.0138064.g003
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16 European studies [10], although others did not confirm this in Hispanic adult cohorts [37].
Admittedly, our sample is considerably smaller and, thus, weak effects may have remained
undetected. However, according to our Bayesian analysis, rs174570 (FADS2) is the most
implausible of the considered candidates, since, in contrast to the other variants, it is dismissed
for all three lipid phenotypes analysed.

For other variants, even large sample-sized and high-powered adult studies gave controver-
sial results. While a significant association of rs6102059 (MAFB) with LDL-C was observed by
some [8], this could not be replicated by others [15]. However, the cohort of supposed Euro-
pean ancestry consisted of self-identified European Americans. Their genetic origin was not
validated, which might have blurred the associations. In our Central European sample we
observed no convincing association of rs6102059 with TC and LDL-C levels but we can also
not completely rule out an effect based on our Bayesian analysis.

The intronic SNP rs3846663 inHMGCR was reported to be significantly associated with
LDL-C levels in a cohort of 19,840 subjects [8]. These findings were replicated in several popu-
lations (Kosrean islands inhabitants (n = 2,346) with an even larger effect size compared to
Kathiresan et al [8] and Japanese [38] or Scottish [39]. Our results did not reach significance
again possibly due to our limited sample size, but by trend, are in line with the above men-
tioned studies. This is further confirmed by our Bayesian analysis complying with a possible
causal effect of rs3846663 on LDL-C but not on HDL-C or TG.

Rs3812316 (MLXIPL) was most strongly associated with TG in adults [16], although others
did not find this association [40, 41]. It was suggested that the effect on TG levels must be weak
if it exists at all [40]. In our study, standard linear regression analysis did not reveal any signifi-
cant association. Nevertheless our results show lower triglyceride levels in homozygous SNP-
carriers with rs3812316/GG genotype (CC: 1.13 mmol/l; GG: 0.69 mmol/l adjusted for age, sex
and BMI SDS) in agreement with the above mentioned observations. The effects that were seen
in our analysis indicate a protective function for minor allele carriers concerning triglyceride
levels in children, even in the presence of obesity [16]. Again, Bayesian model analysis supports
this finding since in contrast to HDL-C and LDL-C, an effect of rs3812316 to TG cannot be
excluded.

A limitation of our study is the relatively small sample size since recruitment of volunteers
is more challenging for childhood cohorts. Children are a population much less affected by
chronic diseases or medication. Therefore, genetic studies in childhood cohorts are intriguing.
Indeed, we were able to confirm the association for children for variants which are originally
detected in much larger cohorts of adults comprising several thousands of individuals.
Although, the power of our study is limited, we could confirm rs599839 and rs4420638 to be
associated in children. Interestingly, higher effect sizes compared to adults were observed.
However, one has to note that our study population is mainly obese. Therefore, replication in a
population-based sample of children is required to show general validity of our associations.

Also, besides the possibility that due to the lower influence of co-morbidities and other life-
style related factors, primary genetic effects may be hypothesized to be stronger in children
than in adults, an alternative possibility would be the later emergence of genetic effects on phe-
notype. This would particularly apply to conditions where genetic predisposition is reinforced
by additional (environmental) risk factors that accumulate or increase with life time (double/
multiple hit theory). Such a relationship has been discussed for the manifestation of coronary
artery disease in patient with genetic risk factors [42]. It also needs to be considered, that chil-
dren and adolescents do not yet present with overt disease and hence do not meet the patholog-
ical endpoints (eg. myocardial infarction), which limits interpretation on genotype-phenotype
associations.
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For adults it is common practise to combine diverse cohorts (i.e. The Framingham Heart
Study, Invecchiare in Chianti, London Life Science Population Cohort [8], The Rotterdam
Study [10], Diabetes Genetics Initiative [7, 8] or The Finland-United States Investigation of
NIDDM Genetics [8, 9, 16]. These cohorts differ considerably regarding the burden of chronic
illness or drug-intake which might lower the chance to detect genetic associations. However,
besides all the advantages of childhood cohorts, we have to acknowledge that studies in adoles-
cent individuals might be affected by changes of lipid metabolism during puberty [43].

By our Bayesian modelling approach we propose an innovative method of analysing multi-
SNP–multi-phenotype associations independently and in addition to the classical frequentist
regression modelling. This type of analysis overcomes a number of limitations of classical
regression analysis: First, it allows comparisons of different types of models, i.e. different
modes of inheritance and inclusion of co-variables. Although it is possible in principle to
include multiple SNPs and covariables in regression analysis, this usually results in a large
number of possible models with no generally accepted decision rule how to select an optimal
one. Second, it considers polygenic effects and the information of other phenotypes as well.
Considering the correlation structure between different phenotypes can improve detection of
the underlying signal [29]. To some extent, this also allows inference regarding unconfounded
effects of genotypes and co-variables, which may be indicative for direct or even causal rela-
tionships. Interestingly, as discussed above, our Bayesian model results are always in line with
observations in adult studies and hence support these results.

Third, the Bayesian approach can deal with missing values, i.e. single missings in either phe-
notypes, co-variables or SNPs [44]. For example a classical analysis of all SNPs and phenotypes
in parallel would reduce the sample size from 594 to 521 in our study whereas Bayesian analysis
includes all individuals resulting in higher power. Indeed, compared to the classical analysis,
standard deviations of effect estimates are typically smaller, i.e. estimates are more precise [30]
and may handle smaller sample sizes.

Summary
We could show for the first time in children that rs599839 (SORT1) and rs4420638 (APOE) are
strongly associated with alterations in blood lipid levels independent of the presence and
degree of obesity. Our integrative Bayesian model analysis provided further candidate associa-
tions requiring further investigation of the candidates. Therefore, we conclude that this novel
approach can improve the detection of weaker associations in genotype-phenotype data sets.
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