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histoarchitecture in Wistar
rats following chronic
exposure to BushfireVR :
the mitigating role of zinc
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Abstract

Objectives: To assess the toxicopathologic effects of chronic exposure to the glyphosate-based

herbicide BushfireV
R
on the pancreas of Wistar rats and the protective role of zinc.

Methods: We exposed the rats to daily doses of 14.4 to 750 mg/kg body weight of the

glyphosate-based herbicide BushfireV
R
and to 50 or 100 mg/kg zinc, and measured blood glucose

levels and serum insulin levels. Tissue samples were evaluated for histopathological alterations.

Results: Levels of both blood glucose and serum insulin increased in glyphosate-exposed rats,

and moderate to severe degenerative changes were observed in both glandular pancreatic acinar

cells and islets of Langerhans in all rats exposed to glyphosate. These effects were prevented by

pretreatment with zinc.

Conclusion: Chronic exposure to glyphosate can alter pancreatic function and histoarchitec-

ture, but zinc supplementation can mitigate these toxicopathologic effects.
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Introduction

Glyphosate (N-Phosphonomethyl-glycine)
is a non-selective herbicide used worldwide
to control weeds.1 Glyphosate-based for-
mulations for commercial uses are primari-
ly made up of an aqueous mixture of
glyphosate in the form of a salt, a surfac-
tant, and various minor constituents.1

Globally, glyphosate is the most widely
used herbicide, and over 130 countries
permit its extensive use; the US is the larg-
est consumer, accounting for approximately
20% of the market.2 Over the past few
years, concerns have been raised that envi-
ronmental exposure to glyphosate-based
herbicides may cause endocrine disruption
and organ damage at doses below regulato-
ry limits.3–5 Poisoning of domestic animals
by pesticides and other agricultural chemi-
cals is attributable to human error such as
inaccuracies in calculating concentrations
for spraying and dipping procedures, result-
ing in exposure to concentrations several
times higher than recommended.6

The phytotoxicity of glyphosate is medi-
ated by its action on various enzyme sys-
tems; the pesticide inhibits amino acid
metabolism in what is known as the shiki-
mic acid pathway.7,8 Its toxic mechanism of
action in animals is not clear, although lab-
oratory experiments have suggested that the
toxicity is due primarily to the presence of
surfactants in the formulation, and oxida-
tive stress is the indicated molecular mech-
anism of glyphosate toxicity.1,9 Recent
research has elucidated the toxicological
effects of glyphosate-based herbicides in
humans and animals.9–12 Altered glucose
homeostasis and oxidative impairment in
the pancreas of rats exposed to the organo-
phosphate insecticide dimethoate have been
reported.13 We previously found that zinc
supplementation arrested glyphosate-
mediated cellular degeneration in rat pan-
creas without altering the histoarchitecture
of the organ.14 There is still, however,

insufficient information on the effects of
chronic glyphosate exposure on pancreas
histology and function, or on the ameliora-
tive effect of zinc.

Zinc is an essential trace element for a
number of animal species. Under stress con-
ditions, the liver synthesises large quantities
of metallothionein, which then binds to zinc
and can reduce its levels in the body, lead-
ing to a deficiency. Metallothionein is also
synthesised by the non-glandular pancreatic
acinar cells.15,16 Zinc has been shown to
slow or delay the oxidative process14 by
two mechanisms of action. The first mech-
anism involves the protection of sulphydryl
groups from oxidation via inhibition of
intramolecular disulphide formation.13

The second mechanism involves the preven-
tion of free radical formation by transition
metals.17–19 Oxidative stress has also been
implicated in the molecular mechanisms of
glyphosate toxicity.14 The objectives of this
study were to investigate the effects of
glyphosate on pancreas histology and func-
tion and to evaluate the mitigating role of
zinc on alterations induced by chronic
glyphosate exposure in rats.

Materials and methods

Animals

Approval of the study was obtained from
the Ethics Committee on Animal Use and
Care of Ahmadu Bello University (Zaria,
Kaduna State, Nigeria). Eighty adult male
Wistar rats weighing 140 to 150 g were
purchased from the National Institute for
Trypanosomosis and Onchocerciasis
Research (Vom Office, Jos Plateau State,
Nigeria). The animals were housed in the
animal room of the Department of
Veterinary Pathology, Ahmadu Bello
University-Zaria for two weeks for acclima-
tisation prior to the experiment. The rats
were fed standard rat chow and water was
provided ad libitum.
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Chemicals

A glyphosate-based herbicide (BushfireVR )
containing 360 g glyphosate/L in the form
of 441 g/L potassium salt, distilled water,
and zinc chloride (BDH Chemicals Ltd.;
Poole, UK), haematoxylin and eosin stain,
and aldehyde fuchsin stain were obtained
from a reputable chemical store in Zaria.

Experimental design

Chronic toxicity study

The rats were randomised into eight groups
of 10. Group I (DW) served as the control
and received 2mL/kg of distilled water
daily. Group II (Z) received 50mg/kg body
weight zinc.20 Group III (G1) received
14.4mg/kg glyphosate (2% concentration
in 2mL of distilled water, the standard con-
centration used for agricultural spraying).
Group IV (G2) received 375mg/kg of the
glyphosate-based herbicide BushfireVR (10%
of the half-maximal lethal dose [LD50]).

21

Group V (G3) received 750mg/kg
BushfireVR (20% of the LD50).

21 Group VI
(ZG1) was pretreated with zinc (50mg/kg)
and then administered BushfireVR (14.4mg/
kg) 1 hour later. Group VII (ZG2) was pre-
treated with zinc (50mg/kg) and then admin-
istered BushfireVR (375mg/kg) 1 hour later.
Group VIII (ZG3) was pretreated with zinc
(100mg/kg) and then administered
BushfireVR (750mg/kg) 1 hour later.

The dose regimens were administered by
gavage once daily for 36 weeks.22 Rats were
weighed weekly using a digital electronic
balance (Hangzhou Gongheng, Hangzhou,
China) to monitor weight changes and
ensure appropriate dosing. No rats died
during the experimental period.

Determination of fasting blood glucose
and insulin levels

Fasting blood glucose level was determined
at the end of the study with a blood glucose

metre (Accu-CheckVR ) using blood from the

tail vein after fasting the rats overnight.

Insulin was measured in serum using

an ultrasensitive insulin ELISA kit

(Monobind Inc., Lake Forest, CA, USA).

Histopathological examination

Tissue samples from the pancreas were col-

lected and fixed in 10% neutral buffered

formalin. The samples were dehydrated in

graded concentrations of alcohol (70%,

80%, 95%, and 100%), cleared using

xylene, impregnated in paraffin wax, incu-

bated in a vacuum oven at 60�C, embedded

in plastic embedding rings, sectioned into

5-mm slices using a microtome, deparaffi-

nised with xylene, rehydrated in graded

concentrations of alcohol (100%, 95%,

80%, and 70%), stained with haematoxylin

and eosin,23 and viewed under a light

microscope. The histochemical features of

the pancreas samples were also studied

using aldehyde fuchsin staining.24

Data analysis

Data are expressed as the mean�SEM and

analysed by one-way ANOVA followed by

Tukey’s post-hoc test with GraphPad Prism

version 4.0 for Windows (La Jolla, CA,

USA). p< 0.05 was considered statistically

significant. Where there was no significant

difference, the mean difference between

groups, expressed as a percentage, is

reported if the value was �10%.

Results

Effects of treatments on blood

glucose levels

There was no significant difference

(p> 0.05) in blood glucose levels between

the treatment groups. An increase in glu-

cose levels was observed in the ZG3 and

G3 groups compared with the levels in the
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DW group (10% and 25%, respectively;

Figure 1).

Effects of treatments on serum

insulin levels

There was no significant difference

(p> 0.05) in serum insulin levels between

the treatment groups. An increase in

serum insulin levels was observed in the

ZG1 and G2 groups, compared with the

levels in the DW group (30% and 33%,

respectively; Figure 2).

Histopathological findings

There were no visible lesions in the pancre-

atic tissues of rats from group I (DW) or

group II (Z) (Figure 3a). Tissues from rats

in group III (G1) and group IV (G2)
showed degeneration of both pancreatic
acinar cells and islets of Langerhans
(Figures 4a and 5a, respectively). Severe
degeneration of both pancreatic acinar
cells and islets of Langerhans was observed
in tissues from rats in group V (G3)
(Figure 6a). Tissues from groups VI
(ZG1), VII (ZG2), and VIII (ZG3) did not
exhibit visible lesions (Figures 7a, 8a, and
9a, respectively). Histochemical analysis
revealed morphologically normal islets of
Langerhans in groups DW, Z, ZG1, ZG2,
and ZG3 (Figures 3b, 7b, 8b, and 9b),
whereas samples from groups G1, G2, and
G3 revealed regions of depopulated and less
deeply stained cells in the islets of
Langerhans (Figures 4b, 5b, and 6b,
respectively).

Figure 1. Blood glucose levels in male Wistar rats treated with 2 mL/kg distilled water (DW), 50 mg/kg
zinc (Z), 14.4 mg/kg glyphosate-based herbicide (BushfireV

R
) (G1), 375 mg/kg BushfireV

R
(G2), 750 mg/kg

BushfireV
R
(G3), 50 mg/kg zincþ 14.4 mg/kg BushfireV

R
(ZG1), 50 mg/kg zincþ 375 mg/kg BushfireV

R
(ZG2), or

100 mg/kg zincþ 750 mg/kg BushfireV
R
(ZG3) for 36 weeks by gavage.
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Discussion

We found a relative increase in blood glu-
cose levels in glyphosate-exposed rats that
did not reach statistical significance. This
increase may be attributable to the oxida-
tive damage induced in the pancreas by
glyphosate. Stress is known to activate the
hypothalamic-pituitary-adrenal (HPA) axis

and the sympathetic nervous system, result-
ing in hyperglycaemia.25–28 Activation of
the HPA axis causes increased secretion of
glucocorticoids from the adrenal cortex,
eventually resulting in increased gluconeo-
genesis. The activation of the HPA axis has
also been reported to impair glucose uptake
in skeletal muscle.29 Similarly, the stimula-
tion of the sympathetic nervous system

Figure 2. Serum insulin levels in male Wistar rats treated with 2 mL/kg distilled water (DW), 50 mg/kg zinc
(Z), 14.4 mg/kg glyphosate-based herbicide (BushfireV

R
) (G1), 375 mg/kg BushfireV

R
(G2), 750 mg/kg BushfireV

R

(G3), 50 mg/kg zincþ 14.4 mg/kg BushfireV
R
(ZG1), 50 mg/kg zincþ 375 mg/kg BushfireV

R
(ZG2), or

100mg/kg zincþ 750 mg/kg BushfireV
R
(ZG3) for 36 weeks by gavage.

Figure 3. Photomicrographs of pancreas of rat administered distilled water (DW) for 36 weeks by gavage,
showing no visible lesions. (a) Haematoxylin and eosin staining; and (b) aldehyde fuchsin staining.
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under stress conditions has been reported to
lead to increased secretion of catechol-
amines, glucagon, and growth hormone,
promoting gluconeogenesis, glycogenolysis,
insulin resistance, and hyperglycaemia.30,31

Previous studies have shown that organo-
phosphate pesticides induce insulin resis-
tance by inhibiting glucose transport in
skeletal muscle via alterations in the insulin
signalling pathway.32,33 It can therefore be
deduced that the increased glucose levels

observed in this study, along with the cor-
responding increase in insulin secretion,
may be attributable to insulin resistance
induced by activation of the HPA axis
and/or oxidative stress associated with
reduced peripheral tissue uptake of glucose
and a chronic exposure. Zinc supplementa-
tion exerted a protective effect on serum
glucose levels, possibly by preventing oxida-
tive stress and decreasing insulin
resistance.17,34

Figure 5. Photomicrographs of pancreas of rat administered 375 mg/kg of the glyphosate-based herbicide
BushfireV

R
for 36 weeks by gavage, showing (a) moderate degeneration of the islets of Langerhans (di) and

degeneration of pancreatic acinar cells (da) (haematoxylin and eosin staining) and (b) severe degeneration of
the cells of the islets of Langerhans (di) (aldehyde fuchsin staining).

Figure 4. Photomicrographs of pancreas of rat administered 14.4 mg/kg of the glyphosate-based herbicide
BushfireV

R
for 36 weeks by gavage, showing (a) moderate degeneration of the islets of Langerhans (di) and

degeneration of pancreatic acinar cells (da) (haematoxylin and eosin staining) and (b) severe cystic degen-
eration of the cells of the islets of Langerhans (di) (aldehyde fuchsin staining).
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Rats exposed to 14.4 and 375 mg/kg
glyphosate exhibited a relative increase in
serum insulin levels, perhaps because of oxi-
dative damage, while rats exposed to 750
mg/kg glyphosate did not. This finding
may be due partly to the degenerative
changes in the islets of Langerhans that
were observed in these groups; the damage
would be expected to limit insulin secretion.
Previous studies have shown that organo-
phosphate pesticides can elevate insulin

levels and lead to insulin resistance by
inhibiting glucose transport and dysregulat-
ing the insulin signalling pathway.32,33 Zinc
treatment alone caused a relative decrease
in serum insulin levels, possibly because of
the pro-oxidant effect of zinc. Zinc supple-
mentation prior to treatment with the
lowest glyphosate dose resulted in an
apparent increase in serum insulin levels
compared with levels in the control group.
The pro-oxidant effect of zinc has been

Figure 6. Photomicrographs of pancreas of rat administered 750 mg/kg of the glyphosate-based herbicide
BushfireV

R
for 36 weeks by gavage, showing (a) severe degeneration of the islets of Langerhans (di) and acinar

cells (da) (haematoxylin and eosin staining) and (b) severe degeneration of the islets of Langerhans (di)
(aldehyde fuchsin staining).

Figure 7. Photomicrographs of pancreas of rat administered 50 mg/kg zinc and 14.4 mg/kg of the glyph-
osate-based herbicide BushfireV

R
for 36 weeks by gavage, showing no visible lesions. (a) Haematoxylin and

eosin staining; and (b) aldehyde fuchsin staining.
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documented in earlier studies,35,36 but zinc
supplementation in the groups that received
375 and 750 mg/kg glyphosate restored
serum insulin levels to near normal.

Degeneration of both pancreatic acinar
cells and islets of Langerhans were
observed, probably as a result of oxidative
damage. Similarly, in our previous study,14

we observed degeneration of pancreatic
acinar cells following subchronic (8-week)

exposure to the glyphosate-based herbicide
BushfireVR in rats. The damage to the islets
of Langerhans observed in this study may
be attributable to the increased duration of
exposure. Zinc supplementation in the pre-
sent study prevented any visible histopath-
ological damage, indicating that zinc may
exert an ameliorative effect on the pancreas.
Zinc has been reported to play an impor-
tant role in the maintenance of structure,

Figure 9. Photomicrographs of pancreas of rat administered 100 mg/kg zinc and 750 mg/kg of the glyph-
osate-based herbicide BushfireV

R
for 36 weeks by gavage, showing no visible lesions. (a) Haematoxylin and

eosin staining; and (b) aldehyde fuchsin staining.

Figure 8. Photomicrographs of pancreas of rat administered 50 mg/kg zinc and 375 mg/kg of the glyph-
osate-based herbicide BushfireV

R
for 36 weeks by gavage, showing no visible lesions. (a) Haematoxylin and

eosin staining; and (b) aldehyde fuchsin staining.
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function, and integrity of biological mem-
branes,37,38 and to protect sulphydryl

groups against oxidation, thereby stabilis-

ing the cellular thiol pools.39

We did not conduct an oral glucose

tolerance test, which would have deter-

mined the rate at which glucose was cleared
from the blood, so we could not verify

whether the rats had developed insulin

resistance. In addition, we did not identify
whether b-cells or a-cells in the islets of

Langerhans were most affected by the expo-

sure. This information would have been
beneficial in elucidating why serum insulin

levels increased as blood glucose increased.
In summary, chronic exposure to the

glyphosate-based herbicide BushfireVR can

alter blood glucose homeostasis and influence
insulin secretion in rats by damaging pancre-

atic islet and acinar cells, and zinc supplemen-

tation can ameliorate these effects.
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