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Abstract
We used single cell RNA-Seq to examine molecular heterogeneity in multiple myeloma (MM) in 597 CD138 positive
cells from bone marrow aspirates of 15 patients at different stages of disease progression. 790 genes were selected by
coefficient of variation (CV) method and organized cells into four groups (L1–L4) using unsupervised clustering. Plasma
cells from each patient clustered into at least two groups based on gene expression signature. The L1 group contained
cells from all MGUS patients having the lowest expression of genes involved in the oxidative phosphorylation, Myc
targets, and mTORC1 signaling pathways (p < 1.2 × 10−14). In contrast, the expression level of these pathway genes
increased progressively and were the highest in L4 group containing only cells from MM patients with t(4;14)
translocations. A 44 genes signature of consistently overexpressed genes among the four groups was associated with
poorer overall survival in MM patients (APEX trial, p < 0.0001; HR, 1.83; 95% CI, 1.33–2.52), particularly those treated with
bortezomib (p < 0.0001; HR, 2.00; 95% CI, 1.39–2.89). Our study, using single cell RNA-Seq, identified the most
significantly affected molecular pathways during MM progression and provided a novel signature predictive of patient
prognosis and treatment stratification.

Introduction
Multiple myeloma (MM) is a malignant hematological

disorder characterized by the accumulation of terminally
differentiated antibody-secreting plasma cells with clonal
genetic/cytogenetic abnormalities that home to the bone
marrow1–3. Clinically, monoclonal gammopathy of
undetermined significance (MGUS) is a pre-neoplasic
condition preceding MM. Extensive immunophenotypic
and differential gene expression analyses have shown that
MGUS and MM can also be distinguished from normal
plasma cells but not from each other4.
Fluorescence in situ hybridization (FISH) studies of

neoplastic plasma cells demonstrate trisomies of multiple

odd numbered chromosomes in ~40% of MM cases, while
the majority of the remaining cases have a translocation
involving the immunoglobulin heavy chain (IgH) gene at
chromosome 14q321–3. Secondary cytogenetic abnorm-
alities can also occur during the disease progression,
including gains of 1q, deletions of 17p (resulting in TP53
loss) and 13q, as well as mutations and secondary trans-
locations involving MYC1,2. Both primary and secondary
cytogenetic abnormalities, as well as specific molecular
alterations are known to influence disease progression,
response to therapy, and prognosis1. There is strong evi-
dence of genetic heterogeneity based on the diverse pat-
tern of molecular changes including clonal evolution and
differential clonal response, which impact prognostic
stratification, therapeutic approaches, and disease
response to treatment2,5,6. High throughput single cell
RNA-Seq (scRNA-Seq) technology offers an opportunity
for an unbiased gene expression profiling of plasma cells
obtained from each patient to understand the pathogen-
esis of MM progression that can better guide patient
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prognosis and selection for appropriate clinical
interventions7.
In this study, we performed scRNA-Seq using 597 cells

derived from 15 patients at different stages of MM
including MGUS, smoldering multiple myeloma (SMM),
newly diagnosed MM (NDMM), and relapsed and/or
refractory MM (RRMM). At the resolution of single cells,
we identified gene expression signatures and molecular
pathways relating to disease progression that are present
within each patient and affect overall survival (OS).

Materials and methods
MM samples, plasma cell selection, and cell capture for
scRNA-Seq
Bone marrow aspirates were collected from 15 patients

(Table 1) after informed consent and subjected to ACK
lysis and mononuclear cell isolation. Plasma cells were
separated by positive selection using CD138-coated
magnetic beads (MACS; Miltenyi Biotec, CA) in a
RoboSep system (STEMCELL Technology, Canada).
CD138-positive cells were examined using Vi-CELL XR
(Beckman Coulter, CA) to determine cell number,

viability, and average size. A microfluidic mRNA-Seq chip
(Fluidigm, CA) was used for capturing cells from each
sample at a concentration of 500 cells/μl and run in the
Fluidigm C1 system to generate double-stranded cDNA
using SMARTer Ultra Low RNA kit for Illumina (Takara,
CA). All samples were assessed for cell capture in a C1
chip by direct observation under a microscope and for
cDNA quality using Fragment Analyzer (HS Large Frag-
ment kit, Advanced Analytical Technologies, IA). In total,
701 single cells that generated cDNA fragments > 1000 bp
on average were included in the subsequent sequencing
analysis. While the exact protocol was used, we observed a
significant variation on the total number of cells isolated
from each bone marrow biopsy and the number of cells
captured by the Fluidigm C1 chip. This is in part due to
individual sample variations, as well as possible difference
in disease stage, since the total number of captured
plasma cells was overall lower in MGUS cases compared
to those at SMM or MM stages (Table 1). Overall, the
number of analyzable cells from each patient reflected the
total number of CD138-positive cells available, as well as
the quality of the bone marrow biopsy. Figure 1a outlines

Table 1 Patient characteristics and distribution of cells based on 790 genes

Sample IDs Total number of

cells sequenced

Total number of cells

passing QC and

analyzed

L 1 L 2 L3 L4 Cytogenetic abnormality

information

IgM MGUS1 26 24 (92%) 15 (63%) 6 (25%) 3 (13%) Not tested

IgM MGUS3 33 17 (52%) 16 (94%) 1 (6%) Not tested

MGUS5 19 7 (37%) 4 (57%) 3 (43%) Normal

SMM0 84 77 (92%) 10 (13%) 67 (87%) t(4;14), gain 1q21, del 13q

SMM2 40 16 (40%) 14 (88%) 2 (12%) t(14;20), monosomy 13

SMM3 40 39 (98%) 4 (10%) 34 (90%) Trisomy 7, 9, 11 and 15

SMM4 51 44 (86%) 18 (41%) 26 (59%) Trisomy 3, 7, 9, 11, 14, & 15

NDMM3 65 59 (91%) 3 (5%) 27 (46%) 29 (49%) Trisomy 3, 7, & 11, trisomy/

tetrasomy 9 & 15

NDMM5 41 32 (78%) 1 (3%) 30 (94%) 1 (3%) Trisomy 7, 9, 11, & 14, trisomy/

tetrasomy 3 &15, del 13q

NDMM6 48 47 (98%) 3 (6%) 41 (88%) 3 (6%) Trisomy 3, 9, 11, & 15

NDMM7 59 54 (92%) 30 (56%) 24 (44%) t(11;14)

NDMM8 63 60 (95%) 26 (43%) 34 (57%) Trisomy 3, 8, 9, & 14, trisomy/

tetrasomy 7, tetrasomy 11, gain

1q21

RRMM1 48 46 (96%) 1 (2%) 45 (98%) t(4;14), monosomy 13, del 17p

RRMM2 50 42 (84%) 1 (2%) 12 (28%) 28 (67%) 1 (2%) t(4;14), trisomy 11 &15, monosomy

9 &13

RRMM4 34 33 (97%) 1 (3%) 32 (97%) t(11;14) and tetraploid

Total 701 597 (85%) 89 (15%) 237 (40%) 158 (26%) 113 (19%)
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the major steps of this study. Aliquots of the same bone
biopsy were also retained and analyzed by FISH as a part
of the routine clinical diagnosis and extracted from
patients’ pathology record following institutional
approved IRBs.

scRNA-Seq library construction and sequencing
For RNA-Seq library construction, single cell cDNAs

(250 pg) were used to construct indexed libraries using
Nextera XT DNA Sample Preparation kit (Illumina, CA).
Libraries were quantified by Bioanalyzer (High Sensitivity

Secondary Pipeline Output 
(MAPRSeq v1.0, hg19)

Mapped Reads ≥ 1M/Cell
Mapped Reads Percentage ≥ 55%

TIN median ≥ 45

TINRPKM to TPM Moderately  Variable Genes  (790)
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Fig. 1 Workflow of scRNA-Seq in MM. a Schematic illustration of scRNA-Seq from bone marrow aspirate. b Bioinformatics analysis pipeline which
includes three components: QC and data conversion, gene selection and profiling, and clustering and survival analyses
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DNA analysis kit, Agilent, CA) and Qubit (dsDNA BR
Assay kits, Life Technologies, CA). Single cell libraries
obtained from each patient were pooled at up to 48 cells
per lane and sequenced using the 101 bases paired-end
protocol on Illumina HiSeq 2500 Rapid Run. FASTQ
formatted raw files from each sample were mapped to the
hg19.

scRNA-Seq data QC and analysis
We used MAPRSeq (v1.0)8 to analyze RNA-Seq data as

outlined in Fig. 1b with TopHat2 for reads alignment to
the hg19 and FeatureCounts for gene expression. During
quality control (QC), we consider cells of low quality if the
total number of reads/cell < 1,000,000, percentage of
mapped reads <55%, and if the median of non-zero gene
transcript integrity number (TIN) < 459. Of the 701 single
cell libraries sequenced, 597 passed QC and were included
in the downstream analysis. We observed that some genes
have reads mostly aligned to the 3′UTR with few reads
aligned to the coding DNA sequence (CDS) regions. To
reduce bias in gene expression based on 3′UTR align-
ments, we used only expression in CDS for subsequent
analysis10. Transcripts per kilobase million (TPM) was
used as the measure for gene expression. Raw sequence
data and processed data sets from this study have been
submitted to Gene Expression Omnibus (GEO; http://
www.ncbi.nlm.nih.gov/geo/) under accession number
GSE118900).
For gene selection and molecular signature analyses, we

first performed Seurat t-distribution stochastic neigh-
borhood embedding (t-SNE, V1.2) and clustering analy-
sis11 using genes expressed in more than two cells with
log2mean > 1 and standard deviation (y) > 1 (Supple-
mental Figure S1). Secondly, we employed a coefficient of
variation (CV)12 approach to select for highly variable
genes with CV ≥ 0.5 and log2(TPM+ 1) ≥ 3 as the cutoff.
Of the 790 genes in this group (Supplemental Table S1),
14.8% (n= 117) were housekeeping genes (HGs) as cate-
gorized by Hsiao et al.13. In contrast, 40% (n= 39) were
HGs among the 99 genes with the high expression levels
(log2(TPM+ 1) > 3) and low CV values CV ≤ 0.5). Using
this approach, we excluded HGs uniformly expressed in a
majority of the cells while reducing the stochastic noise
associated with low copy transcripts to capture the most
significant differential gene expression signatures among
the individual MM cells (Fig. 2a).
Unsupervised hierarchical clustering was performed

based on the expression levels of the 790 selected genes
using the “1—Pearson correlation” distance and Ward.D2
linkage approach. ANOVA analysis was performed
among the major groups of cells (log2 scale) and the
significantly differentially expressed genes were selected
using ANOVA p-value < 0.05 and two-fold change (FC)
(Supplement Figure S2). To further understand the

biological characteristics of the data set, Compute Over-
laps Examination of Molecular Signatures Database v5.2
(MsigDB) was carried out using 311 common genes and
44 signature genes that are significantly up-regulated
(FC ≥ 2, p < 0.05) within each comparison using L1 as
reference. Hallmarks gene set and C5 GO gene sets in
MsigDB (v5.2) were used to identify the most significant
pathways within the data set.

Survival analysis using publically available datasets
We extracted microarray gene expression (GEP) data

from APEX trial14,15 on 44 with consistently increased
expression among L1–L4 groups. For genes with multiple
probe sets, mean intensities were computed. GEP data
was then mean-centered and scaled prior to analysis.
Unsupervised K-means clustering was performed using
Hartigan and Wong’s algorithm16 based on the GEP sig-
nature. Kaplan–Meier (KM) survival curves were gener-
ated for the clusters by computing OS over time. The KM
curves were compared and p-values were generated using
Mantel–Cox log-rank test.

Results
Patient population and clinical status
Our scRNA-Seq analysis included CD138-positive cells

isolated from bone aspirates of patients with MGUS (n=
3), SMM (n= 4), NDMM= 5, and RRMM (n= 3). A total
of 701 cells were collected using the Fluidigm C1 nano-
fluidics platform and 597 cells passed QC and included in
the analyses. An average of 16 cells from three MGUS
patients were included in the analysis (range, 7–24 cells/
patient) while an average of 46 cells/patient were analyzed
for those at either SMM or MM stages of the disease
(range, 16–77 cells/patient and 40–50 cells/MM sub-
group). Consistent with the clinical status of the disease,
MGUS cases collectively had fewer analyzable CD138-
positive plasma cells compared those in later stages. A
summary of the clinical information and FISH results
obtained as a part of routine clinical practice for all
patients are shown in Table 1.

Gene selection and molecular classification of MM based
on scRNA-Seq
We first used t-SNE analysis to assess cell-to-cell

variability after sample QC of scRNAseq data and
observed that most plasma cells clustered primarily by
individual patients reflecting the highly clonal nature of
MM, except MGUS group (Supplemental Figure S1). We
next used CV method to select 790 genes with moderately
high expression values of log2(TPM+ 1) ≥ 3 and ≥ 0.5 fold
variation (CV) in gene expression across all 597 cells from
15 patients (Fig. 2a). By unsupervised hierarchical clus-
tering (Fig. 2b), cells self-organized into four main clusters
(L1–L4) each composed of cells from patients at different
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stages of MM diagnosis (Fig. 2b). Cells in the L1 group
were characterized by low level expression in genes
involved in the oxidative phosphorylation, Myc targets,
and mTORC1 signaling when compared to the other
groups (p < 1.2 × 10−14, Supplemental Table S2).
As shown in Table 1, most CD138-positive cells from

the three MGUS patients clustered into the L1 group
(63%) with other cells in the L2 or L3 groups (29% and 9%,
respectively). When compared with cytogenetic abnorm-
alities identified by FISH, all cells from patients with
either t(14;20) or t(11;14) translocation clustered into L1
and L2 groups (SMM2, NDMM7, and RRMM4). In
contrast, a majority of cells from patients with trisomy
features (SMM3 and 4, NDMM3, 5, 7, and 8) belonged to
the L2 and L3 groups while cells with t(4;14) transloca-
tions appeared to contribute exclusively to the L4 cluster
(SMM0, RRMM1 and 2). Sample RRMM2, with both
t(4;14) and trisomies of 11 and 15, had cells that cluster
across all four clusters. In total, 89 cells formed L1 cluster
(15%) with a gene expression signature representing low-
risk MM having a high representation of cells from
MGUS and cytogenetically favorable patients. Gene
expression profiles from 237 cells in the L2 group (40%)
and 113 cells in L3 (26%) more closely represented
cytogenetically complex MM based on their association
with cases having trisomies or tetrasomies. Lastly, gene
expression signature from cells in the L4 group (113 cells,
19%) appeared to reflect the highest risk MM given it is
exclusively of cells obtained from the patients having the
t(4;14) translocation (Fig. 2c and Table 1).

Altered protein homeostasis genes among subgroups
Since it is well established that MM patients often

respond well to proteasome inhibitor therapy, we exam-
ined the expression status of all 18 genes encoding the
proteasome subunits in the 790 selected genes. Each of
these genes was differentially over expressed when com-
pared between the groups (Fig. 3a). At p < 0.05, seven
proteasome genes (PSMA2, PSMA4, PSMB1, PSMB3,
PSMB7, PSMD7, and PSME2) were significantly highly
expressed in L2 (FC, 2.2–13.7) compared to L1, while all
18 genes were significantly up-regulated in both L3 and
L4 groups (FC, 3.0–40.4) when compared to cells in L1
group (Supplemental Table S3). Similarly, when com-
paring the L3 and L4 groups to L2, a majority of the
proteasome genes were highly expressed in the later
groups (FC, 2.6–22.3). Furthermore, eight proteasome
genes (PSMA6, PSMB1, PSMB3, PSMB6, PSMB9, PSMC4,
PSMD7, and PSME2) were expressed at remarkably
higher levels (FC, 3.0–7.2) in L4 compared to L3. Addi-
tionally, critical genes involved in the unfolded protein
response pathway (UPR, also known as ER stress
response) were also significantly up-regulated. One of
those, XBP1 is stably expressed at high levels in a majority

of the cells analyzed (CV ≤ 0.5 and Fig. 2a). ATF6, a
transcription factor that activates target genes for UPR,
was predominantly expressed at a high level in the L4
group while EIF2A (Eukaryotic translation Initiation
Factor 2A) was significantly highly expressed in both the
L3 and L4 groups (Fig. 3b).

Molecular pathways involved in MM progression
Comparing cells in the L1 group to each of the higher

cell clustering groups (L2–L4), we obtained a total of 311
common genes most significantly up-regulated from L1 to
L4 groups (p < 0.05, FC ≥ 2, Fig. 4a and Supplemental
Table S4). Compute Overlaps Examination of MSigDB
showed that gene sets shared among these groups were
associated with cell metabolism and protein homeostasis,
such as oxidative phosphorylation, Myc-targeted genes,
mTORC1 signaling, and UPR (Fig. 4a). When considering
genes significantly altered in expression levels (FC ≥ 2, p <
0.05) between the adjacent groups, out of 311 common
genes, we identified a 44 signature genes with consistently
increased expression level among the groups (Fig. 4b).
Using GO term analysis, we found that 26/44 (59%) were
related genes with UPR pathway, function of endoplasmic
reticulum and mitochondria that highlighting their role in
MM (Supplemental Table S5).

Clinical implications of genes associated with MM
progression
We examine the clinical association of the 44 genes

most consistently associated with MM progression from
pair-wise comparisons between the four groups (L1 vs. L2,
L2 vs. L3, and L3 vs. L4) to examine whether the
expression patterns of these genes correlate with OS in
MM patients. Using the APEX trial data set and when
dichotomized as high and low expression groups, the 44
gene expression signature was able to distinguish OS in all
patients (p < 0.0001; hazard ratio (HR), 1.831; 95% CI,
1.33–2.522). Strikingly, this survival significance was pri-
marily observed in the bortezomib treatment group (p <
0.0001; HR, 2.001; 95% CI, 1.387–2.888) but not in
patients treated with dexamethasone (p < 0.0812; HR,
1.763, 95% CI, 0.9133–3.403; Fig. 5).

Discussion
Single cell RNA-Seq is a powerful tool to identify

unique cell types and unmask the cellular heterogeneity in
the tumor microenvironment17,18. However, scRNA-Seq
data can be inherently noisy due to pre-amplification of
single cell RNA and the stochastic nature of RNA tran-
scription19,20. Data analysis to identify underlying biolo-
gical variations with confidence is further confounded by
the large gene expression variations within a cell, and the
lower coverage per transcriptome in general when the
total reads are distributed over a large number of

Jang et al. Blood Cancer Journal             (2019) 9:2 Page 6 of 10

Blood Cancer Journal



individual cells rather than a single mixed cell population.
In the context of MM, most transcriptome profiling stu-
dies to date have focused on CD138-selected plasma cells
from bone marrow aspirates. Gene expression changes
from pooled cells represent an average expression and
could mask gene expression signatures by subpopulations
of cells with high expression18,21–23. In addition, the
highly monoclonal nature of the MM disease posts a
significant challenge in assessing intercellular hetero-
geneity even at the resolution of single cells.
To overcome these technical challenges, we utilized

several different analytical approaches for gene expression
analysis in single cells. By t-SNE11 we observed that most
cells clustered exclusively by individual patients reflecting
the clonal genetic changes unique to each patient. We

used the CV approach12 to focus on robustly expressed
genes with a variation of CV ≥ 0.5 (n= 790), thus reducing
technical and biological noises for subsequent unsu-
pervised clustering analyses. Using this strategy, we
observed that cells from all 15 patients re-clustered into
four sub-populations (L1–L4) based on the gene expres-
sion obtained by scRNA-Seq (Table 1). Cells derived from
each patient’s bone biopsy dispersed across different
clusters reflecting the heterogeneous nature of plasma
cells in MM (Fig. 2b).
A novel observation from our study is that while a

highly clonal disease, plasma cells derived from each of
the 15 patients have diverse molecular signatures that
corresponded to different stages of disease and reflected
cytogenetic features observed in MM at different risk
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levels. Although a relatively small study involving a few
hundred cells, most cells in the L1 group displayed a
relatively the lowest level of activations for genes involved
in oxidative phosphorylation and proteasome homeostasis
(Figs. 3a and 4a). L2 and L3 contained a majority of the

cells from patients with trisomies and cytogenetically
complexed MM (Table 1). L4 group is exclusive of cells
from patients with t(4;14). It is worth noting that pro-
teasome genes were some of the most prominently
expressed in L3 and L4 groups and their expression was
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successively increased compared to cells in the L1 and L2
groups (Fig. 3). These results are consistent with the
favorable responses observed in some MM patients trea-
ted with proteasome inhibitor.
Recently, there is increasing evidence of interplay

between UPR and the mammalian target of rapamycin
(mTOR) kinase signaling pathway24–26. Both mTOR and
UPR pathways control many cellular processes including
apoptosis, translation, energy metabolism, and inflam-
mation24–27. mTOR regulates cell growth, survival, pro-
liferation, and metabolism. In this study, we observed that
mTORC1 pathway genes were not only significantly
enriched and elevated in the high-risk cell cluster, but also
likely serve as a distinct feature with activation of UPR,
glycolysis, and protein secretion pathways between the
high risk of trisomies MM (L3) and t(4;14) RRMM (L4)
groups (Table 1 and Supplemental Table S2). These
observations are supported by several reports on the
crosstalk between UPR and mTORC1 pathway in the cells
contributing to malignancy cells14,16–18 and provide the
mechanistic rationale to mTOR inhibitors as a useful
regimen to potentially improve treatment efficacy for MM
and RRMM in combination with proteasome inhibi-
tors24,26–28.
The clinical relevance of our single cell analysis is

highlighted by the strong association of the 44 gene sig-
nature with OS from MM in independent clinical studies
(Fig. 5). Significantly, 26 of the 44 genes consistently
overexpressed among the four groups (Fig. 4b) were
related to protein homeostasis and energy metabolism
function and likely contributed to treatment response
and OS in patients treated with proteasome inhibitors
(Supplemental Table S5).
In conclusion, we used scRNA-Seq to examine gene

expression signature of individual plasma cells (n= 597)
from 15 patients at different stages of MM progression.
We showed that different fractions of CD138-positive
cells from each of the 15 patients clustered into four main
groups corresponding to increasing risk levels in MM.
Compared to the minimal risk cluster which contained
most of the plasma cells derived from MGUS patients,
increased expression of genes involved in protein home-
ostasis in MM cells in the later groups (L2–L4) is asso-
ciated with progression and reduced survival of MM.
Although our study is limited to only 15 patients and a
total of 597 cells, comprehensive bioinformatics analyses
of this high-resolution molecular dataset enabled us to
derive at a robust molecular signature in MM progression
at the resolution of single cells that reflect different risk
levels across all samples. Our findings will require vali-
dation in a larger patient cohort, use of sequentially
obtained plasma cells during the course of MGUS to MM
progression, as well as improvements in analytical cap-
abilities by analyzing many more cells per patients and the

inclusion of unique molecular indexes (UMIs) during the
cDNA synthesis to validate whether combination regi-
mens including proteasome inhibitors and mTOR inhi-
bitors could improve MM treat and overcome drug
resistance in MM and RRMM. It will also be highly
informative to determine whether the fraction of plasma
cells within different risk clusters change over time in
individual MM patients and how they affect disease pro-
gression, treatment response, and patient outcome.
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