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The emergence of the information age in the last few decades brought with it an explosion

of biomedical data. But with great power comes great responsibility: there is now a

pressing need for new data analysis algorithms to be developed to make sense of the

data and transform this information into knowledge which can be directly translated into

the clinic. Topological data analysis (TDA) provides a promising path forward: using tools

from the mathematical field of algebraic topology, TDA provides a framework to extract

insights into the often high-dimensional, incomplete, and noisy nature of biomedical data.

Nowhere is this more evident than in the field of oncology, where patient-specific data is

routinely presented to clinicians in a variety of forms, from imaging to single cell genomic

sequencing. In this review, we focus on applications involving persistent homology, one

of the main tools of TDA. We describe some recent successes of TDA in oncology,

specifically in predicting treatment responses and prognosis, tumor segmentation and

computer-aided diagnosis, disease classification, and cellular architecture determination.

We also provide suggestions on avenues for future research including utilizing TDA to

analyze cancer time-series data such as gene expression changes during pathogenesis,

investigation of the relation between angiogenic vessel structure and treatment efficacy

from imaging data, and experimental confirmation that geometric and topological

connectivity implies functional connectivity in the context of cancer.

Keywords: topological data analysis, persistent homology, oncology, single cell analysis, imaging, clonal evolution,

tumor heterogeneity

1. INTRODUCTION

With the advent of next-generation high-throughput sequencing (Roychowdhury et al., 2011;
Reuter et al., 2015), improved medical imaging (Wang, 2016; Tahmassebi et al., 2018; Aiello
et al., 2019), and an increased focus on personalized medicine (Dilsizian and Siegel, 2014; Gu
and Taylor, 2014; Alyass et al., 2015; Suwinski et al., 2019), more data is being collected than ever
before. Efficient data analysis techniques are critically needed to convert this data into meaningful,
clinically translatable information. Topological data analysis (TDA) focuses on the shape of data,
identifying both local and global structures at multiple scales. Consider a trivial example: suppose
data points lie on a circle. The data points could represent customers’ preferences or patient gene
expression. In this case if a product or drug were targeted to the average person, the target would
be the center of the circle and would thus miss the data set entirely. While this is a simple made-up
example, it illustrates the importance of understanding the shape of data. TDA can be applied to
high-dimensional and noisy data. While the output of TDA can be affected by incomplete data, it
is still effective at distinguishing between data sets that have different shapes.
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TDA has been successfully applied in a variety of medical
contexts including to discover phenotype-biomarker associations
in traumatic brain injury (Nielson et al., 2017), identify
diagnostic factors for pulmonary embolism (Rucco et al., 2015),
discriminate between healthy patients and those with diabetic
retinopathy from retinal imaging (Garside et al., 2019), map
human recombination at fine scales (Camara et al., 2016),
identify novel pathological phenotypes of asthma (Siddiqui
et al., 2018), and characterize the structure of chromatin
conformation inside the nucleus (Emmett et al., 2016). In
this review, we shall focus our attention on some recent
applications of persistent homology, a main tool of TDA, to
oncology. We specifically discuss treatment responses, clinical
outcomes, disease classification, biomarker identification, and
cellular architecture in cancer. We will also provide insights
into possible future fruitful avenues of research, including
analysis of time-series data to help with disease classification and
identification of selection events, investigation of the relation
between angiogenic vessel structure and treatment efficacy from
imaging data, and experimental confirmation that geometric and
topological connectivity implies functional connectivity in the
context of cancer. Though we focus on persistent homology
here, it is worth noting that there have been many notable
successes of the application of other TDA methods, such as the
Mapper algorithm (Singh et al., 2007). For example, Mapper
was recently used to extract information from high-throughput
microarray data and define a new subtype of breast cancer,
c-MYB+, characterized by high c-MYB expression and low
levels of innate inflammatory genes, with corresponding patients
exhibiting 100% survival and no metastasis (Nicolau et al., 2007).
In another study, Mapper was used to discover 38 new cancer-
associated genes across tumor types, some of which were then
confirmed to play a key role in tumorigenesis in mouse models
(Rabadán et al., 2020). Before delving into the applications of
persistent homology in cancer, we introduce some of the key
mathematical underpinnings needed to understand these results.

2. WHAT IS PERSISTENT HOMOLOGY?

The mathematical definition of homology/homologous is very
precise and often differs from the English common usage.
Homology uses algebra to detect topological shapes. Topology
is sometimes called rubber sheet geometry as two objects are
topologically equivalent to each other if one can be deformed into
the other without tearing or puncturing the objects. For example,
the spherical and cubical surfaces are topologically equivalent
per Figure 1A. The sphere is topologically different from the
3-dimensional ball that the sphere bounds. Homology detects
this difference by noting that the 2-dimensional spherical surface
bounds a void while the 3-dimensional ball is solid and thus does
not bound any voids.

To describe homology, we will first focus on two quantities:
β0 = the number of connected components and β1 = the number
of 1-dimensional holes (a circle that has not been filled in). One
does not need to understand the algebra of homology in order
to understand the basics of persistent homology, thus we will

only briefly introduce some concepts for the interested reader.
Two points are homologous if they are in the same connected
component. Thus, β0 = 1 if the object is connected. To describe
β1, we will focus on Figure 1B. We can use addition to represent
topological objects. For example, the rectangle in Figure 1 is
represented by the sum of edges: e1 + e2 + e3 + e4. Two 1-
dimensional cycles are homologous to each other if they form the
boundary of a surface. Thus, the rectangle is homologous to the
cycle e5 + e8 + e10 + e11 since these two cycles bound the green
surface. The cycles e5+e6+e7+e8 and e9+e10+e11+e12 are also
homologous since they bound the light green surface consisting
of two crescent moons. In fact all these cycles are homologous to
the rectangle e1+e2+e3+e4. One can see that this object contains
many cycles, many of which are homologous to the rectangle (or

a multiple of the rectangle, for example,

12∑

i=5

ei is homologous to

2

4∑

i=1

ei). A 1-dimensional cycle is homologous to 0 if it bounds a

surface. Thus the cycles e5 + e9 + e12 + e8 and e6 + e7 + e11 + e10
are both homologous to 0 since they each form the boundary of a
surface (the two crescentmoons, waning or waxing, respectively).
Since each of the cycles in this figure are homologous to 0 or to
a multiple of the rectangle, its homology is generated by a single
cycle (for example, the rectangle) and thus β1 = 1.

The intuitive definition of homology is that βn equals the
number of n−dimensional holes1. Per the Figure 1 caption,
homology can be used to distinguish the following objects from
each other: solid ball, sphere, higher dimensional balls and
spheres, solid torus, and torus. Homology cannot distinguish
all objects that are topologically different. For example,the 1-
dimensional circle, the 2-dimensional surface in Figure 1B, and
the 3-dimensional solid torus (Figure 1C) all have the same
homology. For more on themathematical definition of homology
(please see Munkres, 1984; Hatcher, 2002; Ghrist, 2014).

We will illustrate with an elementary example how persistent
homology can detect shape at multiple scales by noting the birth
and death of topological features. Our dataset will consist of 5
points from a circle as shown in Figure 2. To detect the circle, we
need to connect these points in some manner. For example, we
could connect all points whose distance is less than some fixed
ǫ. If one can visualize the data set, then the choice of ǫ may be
clear. But more often, there is no obvious choice, so instead we
analyze the data at multiple scales using persistent homology. The
first box in Figure 2 shows the five data points. At this stage,
we have five components, one for each data point (β0 = 5).
These components are represented by the five red lines in the
top part of this figure. These five red lines along with the blue
segment is called the barcode for the data set. The barcode keeps
track of the number of components (red bars) and number of
1-dimensional holes (blue bar) as the threshold for connecting

1While the intuitive definition will suffice for this paper, we have left out a number

of details. For example if we use addition with Z2 coefficients, we can detect the

Klein bottle surface (β2 = 1), while if we use Z coefficients, β2 = 0 since the

Klein bottle does not bound a void. For computational speed, Z2 coefficients are

frequently used when computing persistent homology.
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FIGURE 1 | (A) The solid ball and solid cube are topologically equivalent and thus have the same homology. Their surface boundaries also have the same homology

since these surfaces are topologically equivalent. The solid ball has one connected component and thus β0 = 1. The solid ball does not contain any voids, and thus

βi = 0 for all i > 0. The sphere, which is the boundary of the ball, has β0 = 1 since it is connected, and β2 = 1 since the 2-dimensional sphere bounds a void, while

βi = 0 for all other i since there are no lower or higher dimensional voids. For an n+ 1-dimensional ball (for example, all points of distance less than or equal to 1 from

the origin in Rn+1 ), βi = 0 for all i > 0 since it does not contain any voids. The n-dimensional sphere, which is the boundary of the n+ 1-dimensional ball, has βi = 1

for i = 0, n and βi = 0 for all other i. Since the n-dimensional sphere contains a void, it is the n-dimensional object that generates βn. (B) A surface with boundary that

is topologically equivalent to an annulus. The annulus is a 2-dimensional surface that has the same homology as a 1-dimensional circle. Since this object has one

connected component, β0 = 1. We can use addition to represent a cycle. The cycle e5 + e9 + e12 + e8 = e5 + e8 + e9 + e12 is homologous to 0 since it bounds a

surface (the light green waning crescent moon). Since all 1-dimensional cycles are either homologous to 0 or to (a multiple of) the rectangle cycle e1 + e2 + e3 + e4,
β1 = 1. Since this object lives in the 2-dimensional plane, βi = 0 for all i > 1. (C) The solid torus has βi = 1 for i = 0, 1 and βi = 0 for all other i while its boundary, the

torus, has βi = 1 for i = 0, 2, β1 = 2, and βi = 0 for all other i. The thick blue cycle is a 1-dimensional homology generator for both the solid torus and its boundary.

The thiner black cycle is a homologous to 0 in the solid torus as it bounds a meridinal disk, while this black circle is a homology generator in the torus which is not

homologous to the blue circle. The torus surface generates the 2-dimensional homology.

FIGURE 2 | A barcode captures topological features in a dataset at multiple

scales. The topology of a dataset at a fixed scale is determined by joining pairs

of data points with an edge if the distances between the pair of points is less

than the fixed scale. If three edges form a triangle, then the triangle is filled in.

This process is shown in the seven boxes as the scale for joining vertices

increases from box 1 to box 7. The corresponding barcode is shown at the

top of the figure. The persistence of a feature over multiple scales determines

the length of the bar corresponding to that feature. The number of

components (β0) that exist at a particular scale is represented by the number

of red bars that exists at the corresponding Rips diameter. The creation of the

1-dimensional cycle in box 6 is represented by the birth of the blue bar. The

blue bar dies when this cycle is filled in with triangles (box 7). This figure was

created by modifying the output of the R package TDAstat (Wadhwa et al.,

2018) and latex code written by Catalina Betancourt.

data points increases. We can visualize the increasing threshold
(or proximity parameter) by growing balls around each data
point and connecting pairs of points as soon as their respective
balls intersect. Thus, in the second box, an edge joins the two
closest points, reducing the number of connected components
by one. Thus, one bar ends (dies), and only 4 bars (β0 = 4)

continue past this threshold. Observe that every time an edge
joins two components, a bar dies (and β0 reduces by one). In the
timepoint just before 1.5 (box labeled 5), two edges are added.
One connects two components, but the third forms a triangle
with two previously created edges. These three edges surround
a small hole, but we fill in this hole (shaded in pink) as we only
want to detect large holes. We are forming a Rips complex where
whenever a triangle is formed, it is immediately filled in and
thus triangles do not contribute to β1. In the timepoint after
1.5 (box labeled 6), a cycle containing four edges is formed.
This is indicated in the barcode by the start (birth) of the blue
bar. As more edges are added, eventually this region is divided
into two triangles and the blue bar dies at timepoint close to 2
(corresponding to box labeled 7). Note we have one infinitely
long bar (top red bar with arrow) since after time 1.5 we have
one connected component.

To summarize, this example of a TDA pipeline consists of
taking a dataset, creating a sequence of Rips complexes, and
outputting a barcode (Edelsbrunner et al., 2002; Carlsson et al.,
2005; Zomorodian and Carlsson, 2005). A Rips complex is a
generalization of a graph.While in our example we only looked at
adding edges and triangles, we can also add higher dimensional
simplices. A n-simplex in a Rips complex is a collection of n +

1 points where each pair of points is connected by an edge.
Thus an edge is a 1-simplex, a triangle is a 2-simplex, and a
tetrahedron is a 3-simplex. In our circle example, when all pairs

of the 5 points are connected by edges, we add a 4-simplex
even though the data set lives in 2-dimensions. The existence

of an n-simplex means that (all pairs of) n + 1 points are close

together according to a given threshold. The Rips complex is
also called a clique complex, the latter term coming from graph
theory where a clique is a graph where every pair of vertices is
connected. Thus, our simplices correspond to clique subgraphs.
Other names for Rips complex include Vietoris-Rips complex
and flag complex.
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FIGURE 3 | A barcode can be converted into a persistent diagram. Each bar

with finite length in a barcode is represented by a point in the persistent

diagram. If a bar is born at time b and dies at time d, then the bar is

represented by the point (b,d). In Figure 2, there are four finite red bars plus

one infinite red bar. These bars are all born at time 0. In the persistent diagram,

the four finite red bars are represented by the four red points all of which have

b = 0. The one blue bar in Figure 2 is represented by the blue triangle in this

persistent diagram. This figure was created using the R package TDAstat

(Wadhwa et al., 2018).

There are other ways to form a simplicial complex from data.
For the Rips complex, an n-simplex is formed at threshold r
when all pairs of n + 1 points are of distance less than r (so that
each pair of points is connected by an edge). This is equivalent
to requiring every pair of balls of radius r centered around the
n+ 1 points to intersect. If we require the intersection of all these
balls to be nonempty in order to form an n-simplex, we instead

form the Čech complex. Thus, to form a 2-simplex (triangle),
the Rips complex only requires non-empty pairwise intersection

of three balls while the Čech complex requires the intersection
of all three balls to be nonempty. Thus, the Čech complex is
similar to the Rips complex, but an n-simplex is formed at a
slightly larger threshold in the Čech complex. Under certain

conditions, the Čech complex is guaranteed to have the same
homology as the union of all balls of radius r centered around
data points (Hatcher, 2002). But the Rips complex has much
smaller computer memory requirements as only the edges need
to be stored to determine the Rips complex, and thus the Rips
complex is normally used when calculating persistent homology.
A very different TDA technique called Mapper uses a completely
different method to create a simplicial complex from data (Singh
et al., 2007). For Mapper, each vertex represents a cluster of data
points. If n+1 of these clusters have a common intersection, then
an n-simplex is formed. Mapper can be used to reduce the size of
a data set and to visualize it.

The example in Figure 2 focused on β0 and β1. For data that
lives in a higher dimensional space, we can similarly calculate
βn = the number of n-dimensional holes. For example, β2 = 1
for both the sphere and torus as these are 2-dimensional surfaces
that bound voids in space. For more details regarding persistent
homology and barcodes (please see Ghrist, 2008; Carlsson, 2009;
Edelsbrunner and Harer, 2010; Otter et al., 2017).

In order to use persistent homology in machine learning, we
need a distance between barcodes. We first convert barcodes

to persistence diagrams as described in the next section and
use these diagrams to define a distance between barcodes. In
this section, we show how persistent homology is stable with
respect to noise: small perturbations in the data have only a
small effect on the barcode (Cohen-Steiner et al., 2007). In
section 2.2, we discuss the advantages/disadvantages of persistent
homology with regard to how it handles noise, incomplete data,
and computational complexity. In section 2.3, we discuss one
method (persistent images) of converting a persistence diagram
into a vector that can be used in machine learning. We also give
references to many other methods for using persistent homology
in machine learning.

While we have discussed the basic method for converting
Euclidean data into barcodes, there are a number of other
methods for obtaining barcodes from data. All one needs is a
method to determine when to add an edge between pairs of data
points. Thus, the data do not need to live in Euclidean space. We
also assumed that small holes correspond to noise, but there are
applications where the point of using persistent homology is to
detect small holes (Bendich et al., 2016). We also had only one
infinite bar corresponding to the one connected component we
obtained when all our data points were connected by edges. If one
is working with Euclidean data, eventually all holes will be filed
in and thus eventually a Rips complex with only one component
and no holes will be formed. But in other applications, holes
may persist forever, resulting in infinite bars. One can also obtain
additional information by looking at the group structure of the
filtered homology groups, and prove stability properties using
interleaving distance (Bauer and Lesnick, 2014; Bubenik and
Scott, 2014; Oudot, 2015; Chazal et al., 2016).

2.1. Persistence Diagrams and Stability
While barcodes are useful for visualizing changes in homology,
barcodes are generally converted into persistence diagrams for
statistical and machine learning analysis (Edelsbrunner et al.,
2002; Mileyko et al., 2011). The start of a bar represents the birth
of a cycle while the end represents its death. The plot of the points
(birth time, death time) in 2-dimensional space is called the
persistent diagram (PD). The persistent diagram corresponding
to the barcode in Figure 2 is shown in Figure 3. A persistence
diagram also includes the diagonal as shown in this figure as the
diagonal is used when computing distances between PDs. A PD
can be a multiset if multiple bars have the same birth time b and
death time d, so that the point (b, d) occurs multiple times in
the PD.

The formula for the bottleneck distance for a fixed βi

between two persistence diagrams, P1 and P2, is dB(P1, P2) : =

inf
γ : P1→P2

sup
x∈P1

‖x − γ (x)‖∞. To compute this distance we first

create a matching γ between these diagrams for the fixed βi

as shown in Figure 4. In this figure the blue triangles represent
features with the fixed βi from one data set while the purple
stars represent features from a different data set for the same βi.
A matching γ : P1 → P2 is a bijective function from P1 to P2
where both persistence diagrams include the diagonal. Features
that are close to the diagonal get matched to the diagonal unless
they are closer to another feature that does not have a better
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FIGURE 4 | Two persistence diagram, P1 and P2, are shown for a single

dimension (for example, β1). The blue triangles correspond to P1 while purple

stars are used for P2. Both persistence diagrams include the diagonal. A

matching between P1 and P2 is shown where the red dotted lines indicate

features that have been matched where some of the features are matched to

the diagonal. The length of the thicker dark red dotted lines indicate the

distance between matched features. The distance between a feature and the

diagonal is the persistence of the feature, d − b, where b = birth time and d =

death time of that feature. If feature (b,d) is matched with feature (β, δ), then

the distance between these features is max(|b− β|, |d − δ|). Since the best

matching is shown, dB(P1,P2 ) equals the length of the longest of the thick

dark red dotted lines. Any other matching would have a matched pair of

features with larger distance.

matching than to the diagonal. If x = (b, d) ∈ P1 is matched
to the point (β , δ), then the distance between these features is
‖x − γ (x)‖∞ = max(|b− β|, |d − δ|). To find the distance for a
particular matching γ , we calculate supx∈P1 ‖x − γ (x)‖∞ = the
largest distance between a point x in P1 and its match γ (x) in P2.
The bottleneck distance is obtained by taking the infimum of this
distance over all possible matchings. In Figure 4, red dotted lines
indicate best matches between features from P1 and P2.

If P1 is the PD for the data set X and P2 is the
PD for the data set Y , the stability theorem states that
dB(P1, P2) ≤ dH(X,Y) = inf{ε ≥ 0 ; X ⊆ Yε and Y ⊆ Xε}

where Xε : =
⋃

x∈X

{z ∈ M ; d(z, x) ≤ ε} (Cohen-Steiner et al.,

2007). In other words, if each data point is perturbed by at most
a distance ǫ, then the persistence of a feature will change by at
most 2ǫ since the birth and death times can change by at most ǫ.
Features with persistence <2ǫ may disappear, while new features
with persistence less than 2ǫ may be created.

2.2. Benefits and Limitations of Persistent
Homology
That persistent homology is stable with respect to noise is, of
course, a major advantage. But any method that uses Euclidean
distance is affected by the curse of dimensionality due to the effect
of noise on distance. For example, suppose a data point should
be at the origin, but due to noise, each coordinate is perturbed
by 0.01 units, then the point which should be at the origin is
now 6n

i=1(0.01
2) units away from the origin if the data lives in

R
n. Thus, for example if n = 10, 000, then the data point is

perturbed by a distance 6
10,000
i=1 (0.012) = 1. While the change

in persistent homology is bounded by the distance between the
original data set and the perturbed data set, the latter can be quite
large, depending on the amount of noise and the dimension of
the dataset. Thus, performing PCA or t-SNE or other dimension
reduction technique first may lead to stronger results.

In order to recover the shape of an object, one must have
sufficient coverage. Some holes detected by persistent homology
may be due to incomplete data. If these are small, then they only
result in short bars which may be considered noise. But in high
dimensional spaces, one has many degrees of freedom, so even
recovering the shape of simple objects in high dimensions can
be impossible as obtaining a sufficient number of data points
may not be feasible. However, differences between data sets may
still be detected even if coverage is lacking. For example, one
may have insufficient coverage to recover the topology of a
torus if one uniformly under-samples data points from a torus.
However, the resulting barcode will likely be very different than
the barcode obtained from uniformly under-sampling points
from a sphere. Also, coverage can be less of an issue if you
have some information regarding the shape of the data such as
periodicity (for example, Dequeant et al., 2008). Thus, in practice,
topological data analysis has proven to be quite robust. For more
on complexity and topological inference (see Weinberger, 2014).

Due to computational complexity, most analysis using TDA
restricts to the use of βi for i ≤ 4. Often only β0 and β1

are used, but faster algorithms such as Ripser (Bauer, 2019)
are becoming available. To calculate persistent homology of a
point cloud, one first needs to create simplicial complexes. The
number of simplices grows rapidly with the number of data
points as well as the homology dimension (not the dimension
of the data set, but the dimension of the holes one wishes to
detect—in order to calculate βi, one needs i-dimensional and
i+ 1 dimensional simplices). The TDA pipeline also requires the
computation of distances between data points. The dimension
in which the data lives can affect this step, but after distances
are calculated, it is the shape of the data that can have the
largest effect, sometimes even larger than the number of data
points as there are several algorithms that can greatly simplify the
simplicial complex (Zomorodian, 2010; Mischaikow and Nanda,
2013; Wilkerson et al., 2014; Boissonnat and Pritam, 2020). The
effectiveness of these simplification algorithms depends on both
the topology and geometry of the data set. For example, suppose
one takes n data points equally spaced on a straight line. The
topology of the line is the same as the topology of a point. Thus, to
calculate the homology of the line, one can remove all simplices
except for a single vertex. For more on computational complexity
of persistent homology (see Otter et al., 2017).

If all the data points enter at time 0, the β0 bars all start
at time 0. Thus the barcode for β0 can be created from a
single linkage hierarchical clustering dendrogram as the merge
heights of the dendrogram become the lengths of the β0 bars.
Hence the β0 barcode contains less information than a single
linkage hierarchical clustering dendrogram. However, there are
applications where the data points enter at different times such
as time series data. Thus, the β0 barcode can be applied to a
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FIGURE 5 | Pipeline for vectorizing a persistent diagram using persistent images. This figure is a modification of Figure 1 from Adams et al. (2017) which is licensed

under CC BY 4.0.

wider variety of applications than standard clustering techniques.
Clustering also cannot capture holes and voids; the higher
dimensional barcodes capture structure that other methods such
as clustering miss.

2.3. Persistent Homology and Machine
Learning
The barcode can be used as a topological signature to identify
structure in data. While homology is built to detect topology
and not geometry, persistent homology can be implemented in
a variety of ways to distinguish geometrical shapes (e.g., Turner
et al., 2014; Li et al., 2018; Bubenik et al., 2020). Machine
learning can be applied to a collection of persistent diagrams
to distinguish between data sets with different structures. Many
machine learning algorithms take a vector as input. There are
many ways to create a vector from persistent homology. A
pipeline to create a vector using persistence images (Adams et al.,
2017) is illustrated in Figure 5. A persistent diagram is first
rotated by 45◦ so that the diagonal becomes the horizontal axis
(2nd panel of Figure 5). Thus the horizontal axis represents the
birth time, while the vertical axis represents persistence = death -
birth. A heat map is then created using a Gaussian distribution
(or other weight function) about each point (3rd panel). The
height of the Gaussian distribution is indicated with color in the
heat map and is dependent on the persistence of the feature.
Points closest to the diagonal are considered to be the result
of noise and are thus given no intensity. Hence the bottom of
the heat map will always have the color corresponding to zero
intensity, in this case blue. In other words, points close to the
diagonal have no effect on the heat map. Observe that the point
furthest from the diagonal in the first panel corresponds to a
feature with the largest persistence per second panel. Thus, in
the heat map in the 3rd panel, the color at this point is given
the highest intensity (yellow). As shown in the fourth panel,
the heat map is discretized by partitioning the heat map into
n × n squares where the color of each square corresponds to the
average value of the corresponding square in the heat map. In
the discretized heat map (4th panel), the yellowish region from
the 3rd panel corresponding to the most persistent feature is
partitioned between two squares with the yellow square in the
top row of this heat map containing a larger portion than the

pinkish square next to it in the same row. In the final panel, an
n2-dimensional vector is created by concatenating the rows of the
discretized heat map.

Other methods for using persistent homology in machine
learning include persistent landscapes (Bubenik, 2015, 2020),
persistent curves (Chung and Lawson, 2019), and kernel
functions (for example, Reininghaus et al., 2015; Kusano et al.,
2016; Carrière et al., 2017; Chazal et al., 2017).

3. TREATMENT RESPONSES AND
PROGNOSIS

What impedes the success of cancer therapies is often the
coexistence of therapy resistant cells along with therapy
sensitive tumor cell populations. When administered separately,
all currently adopted therapeutic strategies—ranging from
cytotoxic chemotherapies to molecular targeted therapies—
impose a dramatic, yet homogeneous selective pressure on
an often heterogeneous group of tumor cells. Despite varying
resistance mechanisms contingent upon therapy-type and tumor
composition, every therapeutic intervention inevitably selects for
resistant cells, which expand and become the dominant cell type
of recurrent tumors, that cease to respond to therapy (Maley
and Reid, 2005; Aparicio and Caldas, 2013; Bukkuri, 2020). The
increased resolution on the clonal architecture of intermixed
tumor cell populations that has just now become available
calls for prognostic and therapeutic benefits. High intra-tumor
diversity in pre-malignant lesions has been shown to predict
progression to malignant growths and poor outcome (Maley
et al., 2006; Laurie et al., 2012). The therapeutic significance of
intratumoral heterogeneity (ITH) is exemplified in a recent study
that measured genetic and transcriptional diversity of breast
cancer tumors before and after therapy based on four genetic
markers and two transcriptional markers. The study provided
proof-of-principle that therapy-induced phenotypic changes can
be predicted based on the characterization of coexisting tumor
subpopulations (Almendro et al., 2014). Another recent study
used RNA interference to model heterogeneous tumors and
tested the efficacy of predicted drug combinations in eliminating
coexisting tumor subpopulations (Zhao et al., 2014). Their
findings suggest that the most effective drug combination for a

Frontiers in Artificial Intelligence | www.frontiersin.org 6 April 2021 | Volume 4 | Article 659037

https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Bukkuri et al. Applications of TDA in Oncology

given tumor cannot be achieved by targeting the predominant
subpopulation alone, but requires detailed characterization of
the genetic makeup of branched subpopulations and their
contribution to the tumor bulk.

Techniques from computational homology have been used to
develop a new algorithm to characterize comparative genomic
hybridization (CGH) profiles and identify the frequency of
cancer recurrence in early stage breast cancer patients through
identification of recurrent copy number aberrations (CNAs)
in cancer (DeWoskin et al., 2010), which serve as markers of
genomic instability and thus cancer prognosis (Hanahan and
Weinberg, 2000; Han et al., 2006). Specifically, the method uses
a sliding window algorithm to associate a set of point clouds to
each array CGH. Different window sizes allow one to analyze
the data at various scales by considering different dimensional
point clouds. Then, persistent homology is applied to these point
clouds for classification. It was found, in accordance with prior
results (Climent et al., 2007), that the Betti numbers of the
zero dimensional homology groups (β0) can distinguish between
recurrent and non-recurrent groups in patients who did not
receive anthracycline-based chemotherapy after surgery but not
in patients who were treated with anthracycline. Note that, in this
approach, no segmentation of the data was required.

In another study, a novel statistic called the smooth Euler
characteristic transform (SECT), which allows shape information
to be integrated into traditional statistical models, was developed
and applied to predict disease free survival in glioblastoma
multiforme (GBM) based on tumor shape from post-contrast
T1 axial magnetic resonance imaging (MRI) (Crawford et al.,
2020). SECT is a variation of the persistent homology transform
(PHT) introduced in Turner et al. (2014) that was created to
overcome the difficulties in integration with traditional statistical
models. Specifically, the output of SECT is a collection of smooth
vectors, while the output of PHT is a collection of persistence
diagrams (Edelsbrunner et al., 2002), thus having a complicated
representation and geometry which does not lend itself easily
into integration with statistical models. In the GBM application,
the statistical model used was a Bayesian linear mixed model
(BLMM) (Ishwaran and Rao, 2005; Guan and Stephens, 2011;
Zhou et al., 2013).When this topological approach was applied to
the GBMMRI data, it was found to outperform gene expression,
volumetric, and morphological summaries in predicting disease
free survival.

Clinically, there is a great importance in the identification
of biomarkers which can serve as predictors for metastasis and
patient prognosis in cancer. To this end, researchers have recently
used persistent homology techniques, in an exploratory data
analysis fashion, to identify biologically meaningful geometric
properties of single cell data (Lockwood and Krishnamoorthy,
2015). In this method, data was first transposed and analyzed
in its dual space with each gene represented in a much lower
dimensional sample space, thus circumventing the problem
of high dimensionality that is typical of single cell data. A
small set of genes (120–200) were then selected as landmarks
(De Silva and Carlsson, 2004) and a family of nested simplicial
complexes was constructed, indexed by a proximity parameter.
Unlike many other methods which focus on the analysis of zero

dimensional homology groups (DeWoskin et al., 2010; Nicolau
et al., 2011), thus performing analyses which are topologically
equivalent to clustering, this study focused their efforts on
identifying loops of one dimensional homology groups which
persist over a large range of values of the proximity parameter,
hypothesizing that connections around holes imply nontrivial
interactions among genes and biological functions which could
have implications for tumorigenesis. Repeating this process for
various landmarks, features which remain stable over large ranges
of both the proximity parameter and number of landmarks
could be detected. Applying these techniques to five different
cancer data sets from brain, breast, ovarian, and acute myeloid
leukemia cancers, many members of the significant loops in
the one dimensional homology groups that were found have
been previously shown to be accurate biomarkers for cancer
biogenesis, while others serve as potential new markers which
have yet to be experimentally validated.

4. TUMOR SEGMENTATION AND
COMPUTER-AIDED DIAGNOSIS

Computerized methods can efficiently and effectively identify
quantitative image features that are otherwise difficult to
spot by manual inspection (Yu et al., 2016). Quantitative
morphological features extracted from H&E stained slides,
such as Zernike shape features, have been shown to predict
survival in lung adeno- and squamous cell carcinoma (Yu
et al., 2016). Recent advances in next-generation sequencing
technologies gave rise to a plethora of approaches that quantify
and characterize the genotypic diversity within a given tumor.
Evidence supporting a quantitative relation between genotypic
and morphological ITH followed. A quantitative image analysis
approach that complements genomic profiling with geographical
information was developed (Yuan et al., 2012; Andor et al., 2016).
Furthermore, the authors characterized cellular heterogeneity
by distinguishing between well-defined cell-populations (stromal
cells, lymphocytes, cancer cells). However, so far qualitative
details of how this diversity inmorphology is structured (i.e., how
many subpopulations are present and what their geographical
boundaries are on the H&E slide) are unknown.

As a step toward a computer-aided cancer diagnosis system,
persistent homology has been used to develop an automated
tumor segmentation approach for Hematoxylin & Eosin (H&E)
stained colorectal cancer histology whole slide images (WSI)
(Qaiser et al., 2016). The authors exploit the fact that nuclei
in tumor regions have atypical characteristics such as non-
uniform chromatin texture, irregularity in shape and size, and
clustering of nuclei, and use persistent homology profiles to
characterize the degree of connectivity among nuclei and to
classify cancerous regions based on this information. Specifically,
once a WSI has been obtained, it is first divided into patches,
each of which has a persistent homology profile. Given two
patches, the symmetrized Kullback-Leibler divergence (KLD)
can be computed between the respective persistent homology
profiles, which serves as a metric for interpatch distance. Then
an input patch is classified as cancerous or non-cancerous by
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a kNN classifier, based on KLD distances between its persistent
homology patch and those of each representative patches. These
exemplar patches are chosen by training a CNN and selecting
patches whose activation during training is large (separately
for cancerous and non-cancerous classes). The benefit of this
approach over previous approaches is that only the subset of
highly activated patches from the convolutional layers are used
as exemplars rather than the set of all patches in the training
data. This method was compared against standard CNN and
HyMaP (Khan et al., 2013) approaches on 74 H&E stained WSIs
of colorectal cancers; in addition to being computationally less
expensive than the other two methods, it was also shown to have
better precision and segmentation accuracy.

Another example of tumor segmentation and algorithmic
diagnosis is a recent study which aimed to segment a diseased
area of skin and classify the type of skin lesion into one of
seven classes in a given dermatoscopic image (Tschandl et al.,
2018) using persistent homology (Chung et al., 2018). Like the
colorectal image segmentation study (Qaiser et al., 2016), the
segmentation algorithm used is a concept similar to persistent
homology (Edelsbrunner et al., 2002). Linear support vector
machines (SVMs) were used for classification on the persistence
statistics (Chung et al., 2018) and persistence curves (Chung
and Lawson, 2019) were derived from persistence diagrams.
Specifically, given an image, a segmentation algorithm was
first implemented to obtain an image mask: a binary image
in which each pixel is colored either white (if it part of the
healthy skin) or black (if it is part of a lesion). Once the
mask was applied to the original image, the RGB color space is
transformed into an RGB, HSV, or XYZ color space and each
channel was extracted. Persistent homology software was then
used to compute persistence diagrams for each channel; from
each diagram, persistence statistics and curves were computed
as features. Finally, a multi-class SVM was used to classify the
input into one of the seven types of skin lesions. When this
approach was applied to a validation set of 5,000 images, the
highest resulting accuracy scores were 65.6, 66, and 67.2%.

Similar persistent homology techniques were used to classify
H&E stained stage T3 and stage T4 colorectal adenocarcinomas
images as benign or malignant (Chittajallu et al., 2018).
To do this, given an image, it was first color normalized
(Reinhard et al., 2001) and the nuclear stain and minimum
cross entropy thresholding (Li and Tam, 1998) for nuclear
foreground segmentation were extracted using an unsupervised
color deconvolution method (Macenko et al., 2009). Then, a
fast difference-of-Gaussian implementation of the scale-adaptive
Laplacian-of-Gaussian filter of Al-Kofahi et al. (2010) was
performed to detect nuclei centroids. Then, by considering the
set of nuclei centroids as a point cloud, the persistence diagram
of its Vietoris-Rips filtration for the one dimensional homology
groups (loops) was computed using a fast multiscale approach
(Doyle et al., 2008). Then, persistence landscape (Bubenik,
2015) and image (Adams et al., 2017) representations were
computed and used as features to characterize loops formed by
glandular epithelial cell nuclei. Then given training images with
benign/malignant labels, a random forest classifier was trained
using these topological features. PCA was used to reduce the

dimensionality of each feature group so as to preserve 99% of
the variance. Hyperparameter optimization was also performed
via cross-validation using a tree-structured parzen estimator
(Bergstra et al., 2011). When this method was applied to testing
data consisting of 80 images, an accuracy of 85%, AUC of
0.85, precision of 78%, and recall of 95% was obtained, an
improvement over the traditional cell graph property approach
in all areas (Doyle et al., 2008).

5. DISEASE CLASSIFICATION

Cancers of unknown primary represent 3–5% of all cancer cases,
whereby physicians find one or multiple metastases but fail to
locate the primary tumor. Pathologic evaluation of a metastatic
biopsy often does not provide a definitive answer. Molecular data
ranging from gene expression to somatic mutations have been
shown to significantly aid classification of metastatic biopsies to
their corresponding primary tumor site (Ferracin et al., 2011;
Marquard et al., 2015; Vikeså et al., 2015; Moran et al., 2016;
Søndergaard et al., 2017).

One study used persistent homology on 150 non-contrast-
enhanced fat-suppressed 3D T1-weighted magnetic resonance
(MR) images to classify hepatic tumors into three classes:
hepatocellular carcinomas (HCC), metastatic tumors (MT), and
hepatic hemangiomas (HH) (Oyama et al., 2019). To do this,
for each image, a 3D region of interest (ROI) in the shape of
a rectangular solid enclosing the entire lesion was created by
an experienced radiologist. Then, gray-scale values of the voxels
in each ROI were normalized and persistence diagrams were
created for dimensions 0, 1, and 2 using HomCloud (Kimura
et al., 2018; Obayashi and Hiraoka, 2018). These diagrams were
vectorized into persistence images (Adams et al., 2015). Feature
vectors were then obtained from these images and inputted
into logistic regression with an elastic net penalty and extreme
gradient boostingmachine learningmodels for classification. The
results from classification showed that dimension 1 persistence
images had the highest accuracy rates: 85% for classifying HCC
and MT, 84% for HCC and HH, and 74% for HH and MT.

An alternative method to accurately classify tumor subtypes is
through the use of high throughput genomics (Nutt et al., 2003;
Freije et al., 2004). Aiming to produce more robust algorithms
than traditional classification methods, given gene expression
profile data, researchers used statistical invariants and persistent
homology to identify core patient groups associated with the
classical, mesenchymal, and proneural subtypes of GBM and a
compact set of genes most useful for this partitioning (Seemann
et al., 2012). To do this, a sufficient, but compact, panel of
genes to be used for clustering was predetermined using non-
dimensionalized standard deviation (to ensure bimodality of
gene expression distribution across patient samples; Phillips
et al., 2006; Verhaak et al., 2010) and persistent homology
(to find groups of genes whose expression levels change
coherently among patient samples; Carlsson, 2009; Horak et al.,
2009). Then, a hierarchical partitioning of patient samples
based on gene expression levels is performed using persistent
homology; specifically, samples are repeatedly bisected until
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further partitioning is not possible, thus obtaining the number
of clusters that exists and some notion of genetic proximity of
the clusters. Each bisection was implemented using 30 genes.
A predictive model was then implemented to assign cancer
subtypes to each cluster. Applying this approach to the 20 GBM
test samples, fifteen predictions were in accordance with results
from standard clustering calculations (Verhaak et al., 2010), five
of which were unassigned by both algorithms. Of the remaining
five samples, four were classified as “neural” by the clustering
algorithm, but were unassigned by this approach since the neural
group was not found in a single cluster.

Another example of the use of persistent and computational
homology on gene expression data is in Arsuaga et al. (2012),
whereby, upon application to a breast cancer gene expression
dataset, the algorithm was able to distinguish among most breast
cancer subtypes. This paper extended the work of DeWoskin
et al. (2010) to gene expression data, under the assumption that
gene expression is a measure of the underlying copy number
changes (Neve et al., 2006; Horlings et al., 2010). Before applying
the sliding window algorithm developed in DeWoskin et al.
(2010) to gene expression data, theoretical work was done to
show that under idealized conditions, the point cloud defined
by the algorithm is a good representation of the original data.
Hence, analysis of the point cloud is applicable to the original
data set. This was done using Taken’s embedding theorem,
an extension of Whitney’s embedding theorem to dynamical
systems theory, and a circularization technique. To apply the
sliding window algorithm to gene expression data, instead of pre-
selecting differentially expressed genes like traditional clustering
algorithms, all genes were ordered by their location in the
genomes. Then, the sliding window algorithm was applied to
generate point clouds, upon which topological and statistical
analysis was performed. It was shown that when only β0 was
used, the algorithm could distinguish between less aggressive
subtypes, like normal and luminal-A, and more aggressive ones,
such as luminal B, basal-like, and Her2. It was also noted that the
algorithm could not distinguish luminal B from Her2 and basal-
like, implying the close similarities among these subtypes. Thus,
it was noted that breast cancer subtypes can not only be classified
by specific sets of genes, but also by certain global relationships
among all genes.

6. CELLULAR ARCHITECTURE

Imaging is an essential part of cancer clinical protocols,
providing physicians with morphological, structural, and
metabolic information about patient tumors, thereby assisting
in clinical decision making and treatment planning (Fass,
2008). The development of new image segmentation tools
(Zhang et al., 2001; Hong and Brady, 2003; Xiaohua et al.,
2004) and quantitative multiplex immunofluorescence (Stack
et al., 2014; Dimitriou et al., 2019; Abousamra et al., 2020)
have set the stage for topological data analysis and persistent
homology techniques to be harnessed for interpretation
of high-dimensional information in histopathological
imaging data.

One example of this is using persistent homology techniques
to investigate architectural characteristics of cellular organization
and nuclear arrangements from microarray tissue samples to
distinguish among genetically derived breast cancer subtypes
(Basal, Luminal A, Luminal B, and HER2; Singh et al., 2014).
This was done through distinct topological characterizations
such as nuclear connectivity (generators of zero dimensional
homology groups) and loops (generators of one dimensional
homology groups) based on Vietoris-Rips filtration of nuclei
centers (Mischaikow and Nanda, 2013). When its performance
was compared to a standard distance weighted discrimination
classifier (Marron and Todd, 2007), nearly a four times
improvement in classification accuracy was noted. Furthermore,
for certain combinations of feature weightings, it was shown
that topological features provide complementary information to
patch based image appearance features. By using such topological
features, they solve/address two main challenges in obtaining
accurate cellular architectural characterization: the heterogeneity
of spatial arrangements, both among patients and within
single tumor samples, and differences in stain intensity which
require manually determined phenotypic thresholds (Engers,
2007; Truesdale et al., 2011; Goodman et al., 2012; Helpap
et al., 2012; Truong et al., 2013; Epstein et al., 2016; Evans
et al., 2016). This improves performance over existing standard
classifiers, which are more sensitive to noise, cannot model
stain concentration variations, and have issues with larger cell
arrangements (Aukerman et al., 2020).

In another paper, researchers used TDA to cluster prostate
cancer histology into architectural groups consistent with the
continuum of Gleason patterns, the most widely accepted system
for evaluating prostate cancer architecture (Humphrey, 2004;
Lawson et al., 2019). Persistent homology was used to compute
persistence intensity diagrams (of zero and one dimensional
components) of purely graded prostate cancer histopathology
images of Gleason patterns 3–5. This revealed key insights
into characteristics such as nuclei density, glandular shape, and
inter-glandular arrangement. Furthermore, persistent homology
was able to cluster these images into architectural groups
through a rank descending persistence vector–the six resulting
clusters provided a stable architectural continuum from well
differentiated to poorly differentiated adenocarcinoma at an even
finer level than the standard Gleason scale.

Persistent homology has also been used to characterize
the spatial arrangement of immune and epithelial (tumor)
cells within the breast cancer immune microenvironment from
quantitative multiplex immunofluorescence (qmIF) imaging
(Aukerman et al., 2020). Stain intensities and spatial coordinates
of individual cells were collected from qmIF through nuclear
segmentation, cytoplasmic definition, and stain quantification.
In order to incorporate these stain intensities, instead of directly
using a Rips or Cech filtration on the point cloud data (Chazal
et al., 2009), a discretization process was first implemented to
convert the point cloud data with stain intensity values into
an image. Then, persistence diagrams were created from these
images by using the opposite of the pixel stain intensity as
the filter function. These diagrams were assessed as potential
biomarkers of cancer subtype and prognostic biomarkers of
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overall survival using kernel mean embeddings (Gretton et al.,
2012) with the sliced Wasserstein kernel (Carrière et al., 2017)
and were shown to outperform the standard nearest neighbor
analysis with a standard Gaussian kernel. Furthermore, a
correlation analysis using constrained covariance (Herbrich et al.,
2005) showed that the correlation between nearest neighbor and
persistence diagrams were always <0.1, implying the features are
nearly statistically independent and thus complementary.

7. DISCUSSION

As we have seen in this paper, TDA has proven to be a powerful
tool, yielding critical insights in the treatment prognosis, tumor
segmentation and diagnosis, disease classification, and cellular
architecture of cancer. But despite the many recent successes
of TDA in the field of oncology, it is still a nascent field with
much fruitful work yet to be done. Experimentally, to biologically
validate the TDA methodology and results, it would be worth
performing thorough studies to assess whether geometric
and topological connectivity implies functional connectivity.
Computationally, one area which deserves further exploration
is the use of TDA to analyze time-series data (Ravishanker
and Chen, 2019) in cancer. This has been done extensively in
several other fields including climate analysis (Berwald et al.,
2014), tracking stability of dynamical systems (Khasawneh and
Munch, 2016), clustering populations of Tribolium flour beetles
(Pereira and de Mello, 2015), analyzing motion sensor data
during sports activities (Stolz et al., 2017), and financial time
series data (Gidea, 2017; Truong, 2017; Gidea and Katz, 2018;
Gidea et al., 2020). Though time series oncological data have
been analyzed with varying degrees of success (Aoto et al., 2018;
Kourou et al., 2020), TDA techniques of any sort have yet to be
applied. Applying persistent homology techniques to time series
microarray, cell anatomy imaging, or gene/pathway expression
data, for example, may further help in disease classification,
identifying intra-tumoral selection events, and contribute to a
greater understanding of tumorigenesis. Another possible avenue

of research is to investigate the process of angiogenesis, an
inherently geometric and spatially dependent process, using
persistent homology techniques. Specifically, we anticipate that
TDA will help us understand the changes that occur in tumor
vasculature morphology during cancer progression and under
treatments. More importantly, we hope that connections between
cancer vessel network and treatment prognosis can be found,
such as by testing vessel normalization theory (Jain, 2005). In
addition to the ideas presented above, it is worth noting that
research into the use of TDA in oncology is sparse and, as
such, there is much important and clinically relevant work to
be done in simply applying well-understood persistent homology
algorithms to broader classes of cancer data sets (note that most
TDA analyses have been concentrated in just melanoma, brain,
breast, and colorectal cancers) and in performing longitudinal
studies across several cancer types.

AUTHOR CONTRIBUTIONS

AB conceptualized the project and wrote the sections 3–7. AB
and ID wrote the section 1. ID wrote the section 2. NA wrote the
sections 1, 3, 4, and 5. All authors contributed to the article and
approved the submitted version.

FUNDING

AB was supported by the National Science Foundation Graduate
Research Fellowship Program under Grant No. 1746051.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not
necessarily reflect the views of the National Science Foundation.

ACKNOWLEDGMENTS

The authors would like to thank Ethan Rooke and Hind
Benmerabet for their insightful comments on a draft of
this manuscript.

REFERENCES

Abousamra, S., Fassler, D., Hou, L., Zhang, Y., Gupta, R., Kurc, T., et al. (2020).

“Weakly-supervised deep stain decomposition for multiplex IHC images,”

in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI),

481–485. doi: 10.1109/ISBI45749.2020.9098652

Adams, H., Chepushtanova, S., Emerson, T., Hanson, E., Kirby, M., Motta, F.,

et al. (2015). Persistence images: a stable vector representation of persistent

homology. J. Mach. Learn. Res. 18, 1–35. Available online at: http://jmlr.org/

papers/v18/16-337.html

Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P.,

et al. (2017). Persistence images: a stable vector representation of persistent

homology. J. Mach. Learn. Res. 18, 1–35. Available online at: http://jmlr.org/

papers/v18/16-337.html

Aiello, M., Cavaliere, C., D’Albore, A., and Salvatore, M. (2019). The challenges

of diagnostic imaging in the era of big data. J. Clin. Med. 8:316.

doi: 10.3390/jcm8030316

Al-Kofahi, Y., Lassoued, W., Lee, W., and Roysam, B. (2010). Improved

automatic detection and segmentation of cell nuclei in histopathology

images. IEEE Trans. Bio-Med. Eng. 57, 841–852. doi: 10.1109/TBME.2009.20

35102

Almendro, V., Cheng, Y. K., Randles, A., Itzkovitz, S., Marusyk, A., Ametller,

E., et al. (2014). Inference of tumor evolution during chemotherapy by

computational modeling and in situ analysis of genetic and phenotypic

cellular diversity. Cell Rep. 6, 514–527. doi: 10.1016/j.celrep.2013.

12.041

Alyass, A., Turcotte, M., and Meyre, D. (2015). From big data analysis to

personalized medicine for all: challenges and opportunities. BMC Med.

Genomics 8:33. doi: 10.1186/s12920-015-0108-y

Andor, N., Graham, T. A., Jansen, M., Xia, L. C., Aktipis, C. A., Petritsch, C.,

et al. (2016). Pan-cancer analysis of the extent and consequences of intratumor

heterogeneity. Nat. Med. 22, 105–113. doi: 10.1038/nm.3984

Aoto, Y., Okumura, K., Hachiya, T., Hase, S., Wakabayashi, Y., Ishikawa, F., et al.

(2018). Time-series analysis of tumorigenesis in a murine skin carcinogenesis

model. Sci. Rep. 8:12994. doi: 10.1038/s41598-018-31349-x

Aparicio, S., and Caldas, C. (2013). The implications of clonal genome

evolution for cancer medicine. N. Engl. J. Med. 368, 842–851.

doi: 10.1056/NEJMra1204892

Frontiers in Artificial Intelligence | www.frontiersin.org 10 April 2021 | Volume 4 | Article 659037

https://doi.org/10.1109/ISBI45749.2020.9098652
http://jmlr.org/papers/v18/16-337.html
http://jmlr.org/papers/v18/16-337.html
http://jmlr.org/papers/v18/16-337.html
http://jmlr.org/papers/v18/16-337.html
https://doi.org/10.3390/jcm8030316
https://doi.org/10.1109/TBME.2009.2035102
https://doi.org/10.1016/j.celrep.2013.12.041
https://doi.org/10.1186/s12920-015-0108-y
https://doi.org/10.1038/nm.3984
https://doi.org/10.1038/s41598-018-31349-x
https://doi.org/10.1056/NEJMra1204892
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Bukkuri et al. Applications of TDA in Oncology

Arsuaga, J., Baas, N. A., Daniel DeWoskin, Mizuno, H., Pankov, A., and Park,

C. (2012). Topological analysis of gene expression arrays identifies high

risk molecular subtypes in breast cancer. Applicable Algebra in Engineering,

Communications and Comput. 23, 3–15. doi: 10.1007/s00200-012-0166-8

Aukerman, A., Carriére, M., Chen, C., Gardner, K., Rabadán, R., and

Vanguri, R. (2020). “Persistent homology based characterization of the breast

cancer immune microenvironment: a feasibility study,” in 36th International

Symposium on Computational Geometry, Vol. 11 (Dagstuhl), 1–11.

Bauer, U. (2019). Ripser: efficient computation of Vietoris-Rips persistence

barcodes. arXiv: 1908.02518v1.

Bauer, U., and Lesnick, M. (2014). “Induced matchings of barcodes and the

algebraic stability of persistence,” in Computational Geometry (SoCG’14) (New

York, NY: ACM), 355–364. doi: 10.1145/2582112.2582168

Bendich, P., Marron, J. S., Miller, E., Pieloch, A., and Skwerer, S. (2016).

Persistent homology analysis of brain artery trees. Ann. Appl. Stat. 10, 198–218.

doi: 10.1214/15-AOAS886

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for

hyper-parameter optimization. Adv. Neural Inform. Process. Syst. 24,

1–9. Available online at: https://proceedings.neurips.cc/paper/2011/file/

86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

Berwald, J. J., Gidea, M., and Vejdemo-Johansson, M. (2014). Automatic

recognition and tagging of topologically different regimes in dynamical

systems. Discont. Nonlin. Complex. 3, 413–426. doi: 10.5890/DNC.2014.12.004

Boissonnat, J.-D., and Pritam, S. (2020). “Edge collapse and persistence of flag

complexes,” in 36th International Symposium on Computational Geometry

(SoCG 2020), Vol. 164 of Leibniz International Proceedings in Informatics

(LIPIcs), eds S. Cabello and D. Z. Chen (Dagstuhl: Schloss Dagstuhl-Leibniz-

Zentrum für Informatik), 19:1–19:15.

Bubenik, P. (2015). Statistical topological data analysis using persistence

landscapes. J. Mach. Learn. Res. 16, 77–102. Available online at: http://jmlr.org/

papers/v16/bubenik15a.html

Bubenik, P. (2020). “The persistence landscape and some of its properties,” in

Topological Data Analysis, eds N. Baas, G. Carlsson, G. Quick, M. Szymik, M.

Thaule (Geiranger: Springer), 97–117. doi: 10.1007/978-3-030-43408-3_4

Bubenik, P., Hull, M., Patel, D., andWhittle, B. (2020). Persistent homology detects

curvature. Inverse Probl. 36:025008. doi: 10.1088/1361-6420/ab4ac0

Bubenik, P., and Scott, J. A. (2014). Categorification of persistent homology.

Discrete Comput. Geom. 51, 600–627. doi: 10.1007/s00454-014-9573-x

Bukkuri, A. (2020). Optimal control analysis of combined chemotherapy-

immunotherapy treatment regimens in a PKPD cancer evolution model.

Biomath 9, 1–12. doi: 10.11145/j.biomath.2020.02.137

Camara, P. G., Rosenbloom, D. I., Emmett, K. J., Levine, A. J., and

Rabadan, R. (2016). Topological data analysis generates high-resolution,

genome-wide maps of human recombination. Cell Syst. 3, 83–94.

doi: 10.1016/j.cels.2016.05.008

Carlsson, G. (2009). Topology and data. Bull. Am. Math. Soc. 46, 255–308.

doi: 10.1090/S0273-0979-09-01249-X

Carlsson, G., Zomorodian, A., Collins, A., and Guibas, L. J. (2005).

Persistence barcodes for shapes. Int. J. Shape Model. 11, 149–187.

doi: 10.1142/S0218654305000761

Carriére, M., Cuturi, M., and Oudot, S. (2017). “Sliced Wasserstein kernel for

persistence diagrams,” in Proceedings of Machine Learning Research (Sydney,

NSW).

Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L., and Oudot, S. (2009).

“Proximity of persistence modules and their diagrams,” in Proceedings of the

Twenty-Fifth Annual Symposium on Computational Geometry (Aarhus: ACM),

237–246. doi: 10.1145/1542362.1542407

Chazal, F., de Silva, V., Glisse, M., and Oudot, S. (2016). The Structure

and Stability of Persistence Modules. SpringerBriefs in Mathematics. Cham:

Springer. doi: 10.1007/978-3-319-42545-0_2

Chazal, F., Fasy, B., Lecci, F., Michel, B., Rinaldo, A., and Wasserman, L. (2017).

Robust topological inference: distance to a measure and kernel distance. J.

Mach. Learn. Res. 18:40. Available online at: http://jmlr.org/papers/v18/15-484.

html

Chittajallu, D. R., Siekierski, N., Lee, S., Gerber, S., Beezley, J., Manthey,

D., et al. (2018). “Vectorized persistent homology representations for

characterizing glandular architecture in histology images,” in 2018 IEEE

15th International Symposium on Biomedical Imaging (Washington, DC).

doi: 10.1109/ISBI.2018.8363562

Chung, Y.-M., Hu, C.-S., Lawson, A., and Smyth, C. (2018). “Topological

approaches to skin disease image analysis,” in IEEE International

Conference on Big Data (Big Data) (Seattle, WA), 100–105.

doi: 10.1109/BigData.2018.8622175

Chung, Y.-M., and Lawson, A. (2019). Persistence curves: a canonical framework

for summarizing persistence diagrams. arXiv: 1904.07768.

Climent, J., Dimitrow, P., Fridlyand, J., Palacios, J., Siebert, R., Albertson,

D. G., et al. (2007). Deletion of chromosome 11q predicts response to

anthracycline-based chemotherapy in early breast cancer. Cancer Res. 67,

818–826. doi: 10.1158/0008-5472.CAN-06-3307

Cohen-Steiner, D., Edelsbrunner, H., and Harer, J. (2007). Stability

of persistence diagrams. Discrete Comput. Geom. 37, 103–120.

doi: 10.1007/s00454-006-1276-5

Crawford, L., Monod, A., Chen, A. X., Mukherjee, S., and Rabadán, R.

(2020). Predicting clinical outcomes in glioblastoma: an application of

topological and functional data analysis. J. Am. Stat. Assoc. 115, 1139–1150.

doi: 10.1080/01621459.2019.1671198

De Silva, V., and Carlsson, G. (2004). “Topological estimation using witness

complexes,” in Eurographics Symposium on Point-Based Graphics (Zurich),

157–166. doi: 10.2312/SPBG/SPBG04/157-166

Dequeant, M.-L., Ahnert, S., Edelsbrunner, H., Fink, T. M., Glynn, E. F.,

Hattem, G., et al. (2008). Comparison of pattern detection methods in

microarray time series of the segmentation clock. PLoS ONE 3:e2856.

doi: 10.1371/journal.pone.0002856

DeWoskin, D., Climent, J., Cruz-White, I., Vazquez, M., Park, C., and Arsuaga,

J. (2010). Applications of computational homology to the analysis of

treatment response in breast cancer patients. Topol. Appl. 157, 157–164.

doi: 10.1016/j.topol.2009.04.036

Dilsizian, S. E., and Siegel, E. L. (2014). Artificial intelligence in medicine and

cardiac imaging: harnessing big data and advanced computing to provide

personalized medical diagnosis and treatment. Curr. Cardiol. Rep. 16:441.

doi: 10.1007/s11886-013-0441-8
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