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Abstract

Many populations of cells cooperate through the production of extracellular materials. These materials (enzymes,
siderophores) spread by diffusion and can be applied by both the cooperator and cheater (non-producer) cells. In this paper
the problem of coexistence of cooperator and cheater cells is studied on a 1D lattice where cooperator cells produce a
diffusive material which is beneficial to the individuals according to the local concentration of this public good. The
reproduction success of a cell increases linearly with the benefit in the first model version and increases non-linearly
(saturates) in the second version. Two types of update rules are considered; either the cooperative cell stops producing
material before death (death-production-birth, DpB) or it produces the common material before it is selected to die
(production-death-birth, pDB). The empty space is occupied by its neighbors according to their replication rates. By using
analytical and numerical methods I have shown that coexistence of the cooperator and cheater cells is possible although
atypical in the linear version of this 1D model if either DpB or pDB update rule is assumed. While coexistence is impossible in
the non-linear model with pDB update rule, it is one of the typical behaviors in case of the non-linear model with DpB
update rule.
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Introduction

The evolutionary stability of cooperation has been in the focus

of theoretical biology for decades [1–5]. On the one hand,

cooperation is widespread and frequent in nature. More impor-

tantly in all major transitions of evolution it is connected with

cooperation of subunits of the newly evolved replication unit [6].

The spread of cooperative behavior seems to be surprising for the

first sight since cooperation is often costly, and cheaters which do

not cooperate do not bear the cost of it, and thus can exploit

cooperators. Consequently, we might think that cheaters have

greater fitness than cooperators, which leads to the extinction of

cooperators from the population. Motivated by this discrepancy

between field observations and verbal reasoning presented above,

many theoretical explanations were given on the origin and

evolutionary stability of cooperative act, e.g. [2,3].

Knowing that the concept of cooperation covers behaviors from

extracellular enzyme production of bacteria [7–9] through

cooperative hunting [10,11] to eusocial insects [12], it is not

surprising that the explanatory mechanisms have great diversity as

well. However, alternative explanations are present even within

the more narrower areas. For example, there is no consensus as to

the main mechanism explaining the evolutionary stability of

producing extracellular enzymes (or any other molecules as public

good) by microorganisms. One of the widespread explanations is

based on slow cell motion and local interactions among densely

packed cells. Thus, cooperator and cheater cells distribute in

patches. Cooperator cells interact other cooperators (producers)

with higher probability than with cheaters (non producers) if their

motion is slow and progenies are distributed in the vicinity of the

mother cells, so their average fitness will be higher than it would be

in a well mixed system. It is shown that if cooperation is not too

costly and this assortative pairing is strong enough then cooperator

cells can coexist with cheaters even if Prisoner’s Dilemma (PD) (the

strongest dilemma of cooperation) is considered as the basic model

of interaction [3,13–15]. The alternative view emphasizes that

local interaction and limited motion lead to positive genetic

correlation among interacting individuals, thus kin selection can

easily explain the benefit of cooperators [4,8,16,17]. Although

these two explanations seem to be only two sides of the same coin,

it has been shown recently that they are not always completely

identical [12,18,19].

However, one certainly important point is generally neglected in

the strategic models mentioned above, namely that the produced

material, which is a common good for everyone, is frequently a

diffusive molecule. So, while cells move slowly on the surface they live,

the molecules for which competition takes place disperse much

faster. More elaborated models should consider this effect. The

simplest way to build up this effect into the models is that if the

interaction range of individuals is larger than the competition
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range [20–22]. Ifti et al. (2004) used a continuous PD game in a

model (individual exhibits variable investment into cooperation)

where individuals live on a 2D rectangular lattice. They found that

if difference between interaction range and competition range

exceeds a critical level then cooperation is not sustained [20].

Increasing interaction range is not so dramatically detrimental to

cooperators in a nonlinear public goods game on a two

dimensional lattice, where the common benefit is a sigmoid

function of the produced material within the diffusion range. It is

shown that producer and non-producer can coexist even if the

diffusion range is much larger than interaction range, although the

fraction of producers decreases with diffusion range [22].

Interestingly in a spatial model of self replicating macromolecules

which cooperate in maintaining a metabolic cycle and compete for

the same sort of monomers at the same time, some difference

between interaction and competition range is necessary for the

coexistence of replicator molecules and for the decline of cheating

parasites [21,23].

A recent paper by Allen et al. (2013) studied this problem in a

model where public good units move randomly along a graph

[24]. They studied the probability of fixations of rare producer and

non-producer mutants in a case when diffusive public good is in a

linear relation with the fitness of strategies. They defined the

producer cells to be evolutionary supported if the fixation

probability of a single producer among the non-producers is

greater than the fixation probability of a non-producer among

producers. They found for a wide range of graphs (including 1D

and 2D rectangular lattices as well) that producers are evolution-

arily supported if the benefit remains at the producer and the total

benefit retained by the neighbors of it is greater than the cost of

production of the public good [24].

Another recent paper by Borenstein et al. (2013) have studied a

2D lattice model in which cooperator cells produce a diffusive

material which is a common good and fitness is a (linear or

saturating) function of the concentration of diffusive material. The

model assumes that every lattice point is occupied by a cell. They

use a birth-death algorithm: progeny of the neighbors of a

randomly chosen cell replaces this cell proportional to their

relative fitness. Cells die according to an exponential process

inversely related to the fitness of the cell. They concluded that

cooperators cannot coexist with the defectors in this model. This

does happen even if fitness saturates with the concentration of

diffusive material [25]. These results are surprising first because of

the experience of coexistence of cooperators and cheaters in spatial

models of cooperation (see above), second because coexistence of

cooperators and cheaters is typical if public good is a saturating

function of the effort even in well mixed [26–30] and similarly in

spatial models [22,31].

Borenstein et al’.s (2013) 2D model is too complex for analytical

investigations, thus their conclusions are based mainly on

numerical simulations [25]. However, 1D models can more

frequently be analyzed mathematically which helps to understand

the dynamics of the 2D model and/or to reveal the connection

between model details and dynamics. For example the connection

of dimensionality with dynamics is an important question since

biofilms can change from 1D dendrite line to a rather 3D shape,

although they are generally a fractal [32,33]. Further, the

dynamics of spatially explicit models generally depends on the

order of elementary steps, that is, whether birth-death or death-

birth update rules are applied [34–38], and whether interactions

modify fecundity or/and survival [39].

Here I focus on a 1D system similar in some properties to

Borenstein et al.’s 2D model. In the following sections I analyze

the dynamics of this system mathematically and numerically as

well by using two types of death-birth update rules. The first rule

assumes that a cell stops to produce common material before

death, thus concentration distribution is computed without this

producer. This rule is termed as death-production-birth and is

denoted by DpB. The second rule assumes that a producer cell

synthesizes the common material before it dies, so the concentra-

tion distribution of the diffusive material computed before this

death event, and birth success depend on this concentration. So

this will be called the production-death-birth rule denoted by pDB.

I have shown that independently to the used update rule

coexistence is possible in the linear model (fitness increases linearly

with local concentration of the common material) although this

behavior is rather atypical. However, coexistence is a robust

behavior in non-linear model (if fitness is a saturating function of

local concentration of the common material) if the pDB update

rule is used while coexistence is impossible if the DpB update rule

is applied. In the last section, I compare them with results of

previous similar models of bacterial cooperation.

Analysis

Consider an 1D lattice of lattice size N where every lattice point

is occupied by a P (producer) or an NP (non-producer) cell. The

grid is 1-dimensional, thus every cell has two nearest neighbors

except the ends of the lattice where cells have only one neighbor. I

choose this boundary condition, since it follows the biological

situation and makes the calculations simpler. P cells are considered

to be point sources of diffusive materials which is a public good for

every cell in the lattice. The diffusive material decays with a

constant rate. Hence the concentration field c(x) of a single P cell

at x0 is determined by

Lc(x)

Lt
~D

L2c(x)

Lx2
zadx,x0

{bc(x), ð1Þ

where dx,x0
is the Dirac delta which sets the position of the P cell

at x0, a is the rate of production of the material, and b is the decay

rate of it [25]. Since diffusion is much faster than replication I may

consider the steady state solution of (1), that is if
Lc(x)

Lt
~0 [25].

Then the solution of (1) is

c(x)~ae
{

Dx{x0 D
l ð2Þ

where l~
ffiffiffiffiffiffiffiffiffi
D=b

p
is the diffusion length, a~

a

2
ffiffiffiffiffiffiffi
Db
p ~

a

2bl
is the

steady state concentration at the source, Dx{x0D is the distance

from the source [40]. Naturally, if there are more than one P cells

on the lattice then c(x) can be computed as the superposition of

concentration fields of P cells

c(x)~
X
jESP

ae
{

Dx{xj D
l , ð3Þ

where SP is the set of indices on the lattice containing P cells.

It is assumed that fitness differs in the replication rate of

individuals which depends on the local concentration of the

diffusive material and all cells take up this material with the same

efficiency. Since P cells produce a costly material, their replication

rate is decreased by a constant factor. Mixing of cells is limited

along the lattice in this model, consequently a cell can place

progenies only to the neighboring site. Update occurs according to
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either a DpB or a pDB process (Fig. 1). For DpB process, a cell is

chosen randomly to die on the lattice and the concentration of the

diffusive material and replication rates are computed after that in

the neighborhood of this empty site. Then, one of the neighbors’

progeny will occupy the empty cell proportional to its relative

fitness [14,34,36,37]. For pDB update rule, concentration

distribution of diffusive material and replication rates of cells are

computed first, then a cell is selected randomly to die. This empty

grid point is occupied by one of the neighbors according to their

relative replication rates. (That is, the selected cell dies after the

birth of progenies, and if this cell was a P cell, then its produced

common material must be involved in the calculation.) More

details of the algorithm, for example how fitness is calculated is

described in the following. Progenies follow a strategy identical to

their adults, and there are no mutations or recombinations.

Initial condition I: two different arrays of cells
First, I study the case when an array of P cells meets another

array of NP cells. Here I study competition of monomorph arrays

for the space, which does occur when two growing P and NP
arrays meet. (The growth of arrays before meeting is without

competition, thus the dynamics before meeting is of no interest to

me.) I place the origin at the border where P and NP arrays are in

contact (so the origin moves along the moving front). Without loss

of generality I assume that P cells are left to the origin, and NP-s

are right of it (Fig. 1 a.)

Since replication and decay events change the configuration

only if it occurs on the border of P and NP cells, I am interested in

the c(i) concentration in the neighborhood of the border. If the

number of P cells is n in the P cell array then the concentration of

the diffusive material within the NP array at the coordinate iw0
from the border is

cn(i)~
Xn{1

j~0

ae
{

(izj)
l ~Sne{i=l, ð4Þ

where

Sn~a
e{n=l{1

e{1=l{1
ð5Þ

is the sum of a geometric series.

Replication rate depends linearly on concentration
In this section, I study the case when replication rate R of a cell

is a linear function of the the concentration of the diffusive

material within the cell, that is

RJ (c(u)
n (i))!r0zr1c(u)

n (i), ð6Þ

where r0 and r1 are positive constants, c(u)
n (i) is the concentration

of the uptaken material in the cell. r0 is the basic replication rate

independent of the cell type, while r1 scales the concentration of

diffusive material into replication success, J(~NP,P) denotes one

of the two cell types. I assume that the time scale of uptake of

diffusive material is much longer than the diffusion time scale, thus

Figure 1. The initial distributions of P (red) and NP (white) cells with a P array being n cell long (a) and the possible invasion events
at the border of arrays if DpB update rule (b, c) and if pDB update rule is assumed (d, e). For DpB update rule first a cell dies, then the
concentration of the diffusive material is computed and finally reproduction occurs, for pDB update rule first the concentration of the diffusive
material is calculated, then reproduction and finally death take place. Arrows indicate the nearest neighbors competing for the empty site. Origin is
placed at the P cell being at the actual border of P and NP arrays as indicated in figure (c).
doi:10.1371/journal.pone.0100769.g001
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the uptaken material is proportional to local steady state

concentration, that is c(u)
n (i)~ccn(i), where 0vcv1. Therefore

RJ (cn(i))!r0zr1cn(i) with r1~cr1. Since every site is occupied

by a cell, and every cell consumes the material with the same rate,

it follows that the uptake of diffusive material only rescales the

steady state concentration outside of the cells, that is cn(i)
decreases to (1{c)cn(i). Producing the diffusive material is costly

and it decreases the replication rate of P cells with dw0. Since cell

types can change only on the border of P and NP arrays, I am

interested in the replication rate of P and NP cells in the

neighborhood of the border.

By using DpB update rule the size of P’s and NP’s array can

change if either the P or if the NP cell dies on the border, and the

other cell type occupies the empty site (Fig. 1 b,c.). The replication

rate of P on the border is

RP(cn(0))~r0zr1cn(0){d, ð7Þ

while the fitness of the second neighbor NP cells of this P is

RNP(cn(2))~r0zr1cn(2), ð8Þ

where cn(0)~Sn and cn(2)~Sne{2=l. It is clear that if

DRn~RP
n (0){RNP

n (2)w0 then the P array increases with a cell

with higher probability than the probability of remaining the same

size (Fig. 1 b.). Based on this observation, I use the following

definitions:
Spreading. P spreads at state n if DRnw0. If DRnv0 then the

P array remains the same with higher probability than to increase

with a P cell, that is P does not spread. Similarly if DRn{1v0 then

NP spreads on the n array of P-s, and if DRn{1w0 then NP does

not spread (Fig. 1).
Stability. A state of n array of P-s is defined to be locally stable

if DRnv0, and DRn{1w0, that is neither P nor NP spreads at this

state, and the n array of P-s is locally unstable if DRnw0, and

DRn{1v0, that is both P and NP can spread. Naturally, if fitness

differences are zero (DRn{1,DRn~0) then the state is neutrally

stable).

By using the definition of stability introduced above, I can

formulate lemmas which help the analysis.
Lemma 1. By using DpB if DRn{1w0 then DRnw0 for every

n§1, that is, if NP doesn’t spread then P spreads at state n.

Similarly, if DRnv0 then DRn{1v0 for every n§1, that is if P
does not spread then NP spreads at state n.

Proof. According to (4,7,8)

DRn~r1(cn(0){cn(2)){d~r1Sn(1{e{2=l){d: ð9Þ

The lemma follows from the strict monotonicity of Sn in (9).

The corollary of this lemma is Lemma 2:

By using DpB if DR0w0 then DRkw0 for every kw0. That is if

a single P spreads, then it always spreads and fixates in the

population with higher probability than it would be in the neutral

case.

Similarly, if DRnv0 then DRkv0 for every 0ƒkvn. That is if

an NP cell can invade an n array of P-s then it invades every

smaller array of P-s. Thus, NP fixates in the population with a

higher probability than it would be in the neutral case.

The direct consequence of Lemma 1 and Lemma 2 is that if one

of the cell types can spread on the border of the other cell array it

always spreads until fixation. The remaining case is when DRkv0
if 0ƒkvnvN{1, but DRkw0 for N{1wk§n. Knowing that

Sn increases strictly monotonously with n this situation is possible

(see 5,9). Then state n is an unstable equilibrium of P and NP
arrays from which either P or NP spread and fixates.

If pDB update rule is assumed, then conditions of spreading of

NP and P have to be considered separately. Similarly to the DpB

process, P does not spread if DRnv0, and spreads if DRnw0 (NP

cell is deleted, compare Fig. 1 b and d). However, if the P cell

being on the border of P and NP blocks is replaced by a new

progeny by one of its neighbors (Fig 1 e), then the order of

computing the common material and deleting the P cell make

difference. Here fitness of the neighboring P and NP cells will be

QP(cn(0))~r0zr1 Sn{1zae{1=l
� �

{d~

r0zr1 Sn{ae{n=lzae{1=l
� �

{d

ð10Þ

and

QNP(cn(2))~r0zr1Sne{1=l ð11Þ

respectively. (Replication rates are denoted by Q to highlight the

difference between DpB and pDB updates.) NP does not spread if

DQn~QP(cn(0)){QNP(cn(2))

~Sn 1{e{1=l
� �

za e{1=l{e{n=l
� �

:
ð12Þ

Lemma 2 is valid for DRn, that is if a single P spreads (DR0w0)

then P always spreads and fixates. By using pDB update rule a

similar lemma can be formulated for Qn.

Lemma 3. If there is an n for which DQnv0 then DQlv0 for

every lvn.

Proof. DQn is a strictly monotonically increasing function of n

since Sn and e{1=l{e{n=l increase strictly monotonously.

It follows from Lemma 3, that if a single NP spreads

(DQN{1v0), then NP always spreads and fixates in the

population. Further, the direct consequence of Lemma 2 and

Lemma 3 is that if a single cell can invade the population of other

cell type, then it always spreads and fixates. There is a locally

stable polymorph state if DRlv0 and DQlw0 for 0vlvN.

However, the following lemma excludes this possibility:

Lemma 4. DQlvDRl for every 0vlvN.

Proof. Using 9 and 12 and the expression of Sn, after

simplifications we obtain the following relation:

1ze{1=l{2e{n=l
� �

1{e{1=l
� �

v 1{e{n=l
� �

1{e{2=l
� �

:ð13Þ

which simplifies to 0v e{1=l{1
� �2

. That is, Lemma 4 is valid

and, consequently, stable polymorphism is impossible in case of

pDB update rule as well. As in the case of DpB update, it follows

from lemmas 2–4 that an unstable polymorph state is possible.

Summarizing the results: Assuming that replication rate is a

linear function of the local concentration of a diffusive material

and by using the simplest geometry of arrays in 1D lattice (that is

there are two arrays of cells) I have shown that stochastic

coexistence is impossible independently of the applied update rule.

Depending on the parameters either P or NP cells spread and

fixate in the population or there is an unstable state of coexistence

which divide the dynamics into two attractors; then depending on

the initial condition either P or NP fixates in the population.

Diffusive Public Goods and Coexistence of Cooperators and Cheaters
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Replication rate depends non-linearly on concentration
In this section, I study the dynamics of the system when

RJ (cn(i)) is a nonlinear function of cn(i). Motivated by the

Michaelis-Menten kinetics, I consider the following function of

reproductive rate as it depends on local concentrations:

RJ (c(u)
n (i))~r0z

r1c(u)
n (i)

r2zc
(u)
n (i)

{dJ,Pd ð14Þ

where the role of r0 and r1 are the same as before, while r2 gives

the concentration where
r1cn(i)

r2zcn(i)
reaches the half of its maximal

value (r1=2), dJ,P is the Dirac delta (J~P,NP). Biologically, a

function of this form could arise in two different ways. Either the

enzymatic effect of the diffusive material within the cell limits the

speed of the dynamics or the uptake of the material is the limiting

step. Again I assume that the time scale of uptake is much longer

than the diffusion time scale, thus the uptaken material is

proportional to local steady state concentration. In the first case,

uptake rate is proportional to the local extracellular concentration.

Then, the enzymatic effect of the diffusive material is saturated

within the cell. In the second case, uptake rate is saturated as the

concentration of the diffusive material increases. Thus in the first

case c(u)
n (i)~ccn(i) as in the linear model, but R depends

nonlinearly on c(u)
n (i). Because of linear relation between c and c(u)

RJ (cn(i))~RJ
n (i)~r0z

r1cn(i)

c0zcn(i)
{dJ,Pd ð15Þ

with c0~r2=c. Since uptake is linear and assumed to be much

slower than the production-decay dynamics of the diffusive

material, it only rescales the steady state concentration as in the

linear case above.

In the second case c(u)
n (i)~c

cn(i)

c0zcn(i)
and RJ (c(u)

n (i))~

r0zr1c(u)
n (i){dJ,Pd. These relations give back (15) with r1~r1c

and c0~r2. The difference between the two cases in the way they

modify the local concentration of the diffusive material outside the

cells. Again, if production and spontaneous decay are much faster

than uptake, then cn(i) modifies to cn(i){ccn(i)=(c0zcn(i)) which

is a good approximation in the steady state.

As before, I am interested in the fitness difference of P and NP

cells on the border of arrays. By using DpB update rule merely the

DRn~RP
n (0){RNP

n (2) relation has to be studied again. While

DRn is a strictly increasing function of n in the linear model (see 9),

this is not necessarily the case in the saturating fitness function. It is

easy to show that if c0vae{1=l then DRn is a monotonically

decreasing function of n. So if c0vae{1=l, then the following

dynamics are possible:

1. If DR0v0 then DRlv0 for every lƒN. Consequently, NP

always spreads and fixates in the population.

2. If DRN{2w0 then DRlw0 for every lvN{2. In this case, P

always invades and fixates in the population.

3. If DR0w0 and there is a kvN{2 where DRkv0. Then

DRiv0 for every i§k and DRiw0 for ivk. Thus P spreads

until the array of P-s attains size k and does not spread further

from this state since DRkv0. Similarly, NP spreads if the P

array is larger than k. Since DRkv0 and DRk{1w0, neither P

nor NP spreads in the k array of P-s. Consequently, k array of

P is a stable state of P-s and NP-s.

The situation is different if pDB update rule is applied.

According to Lemma 4, coexistence is possible if there are

parameters such that DRnvDQn, that is if

Sn

c0zSn

{
Sne{2=l

c0zSne{2=l
v

Snza(e{1=l{e{n=l)
� �

c0zSnza(e{1=l{e{n=l)
{

Sne{1=l

c0zSne{1=l
:

ð16Þ

However, this is not possible.

Using the defined saturating fitness function, it is clear that

x1

c0zx1
{

x2

c0zx2
w

y1

c0zy1
{

y2

c0zy2
, ð17Þ

if x1wx2, y1wy2, x1vy1, x2vy2 and x1{x2vy1{y2. In the

present case, it is easy to show that SnvSnza(e{1=l{e{n=l),

Sne{2=l
vSne{1=l and Sn(1{e{2=l)vSnza(e{1=l{e{n=l){

Sne{1=l, consequently DRnwDQn. Thus, coexistence is impossi-

ble even if a non-linear saturating fitness function is assumed.

Initial condition II: NP emerges by mutation
Another biologically relevant case is when the population

initially consists only of P cells. Then a P cell mutates into an NP

cell and this NP cell starts to spread. This mutation event can

happen everywhere within the P array, and to model this situation

I consider the initial geometry when two arrays of P cells straddle

an array of NP cells. I place the origin at P cell which contacts an

NP cell from right (Fig. 2) and I compute the concentration of the

common material in the neighborhood of this meeting point.

By using DpB update rule the concentration is

c(0)~Sn1
ze{(lz1)=lSn2

, ð18Þ

at the origin, where Sni
(i~1,2) is the sum of concentrations

arriving from the P cell arrays of length ni. Since the length of the

Figure 2. The geometry when an NP array (white) emerges by mutation within the P-s (red). P arrays contain n1 and n2 number of cells
while NP array is l number of cells long.
doi:10.1371/journal.pone.0100769.g002
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NP array is l, thus the concentration of the material from the P

cells right to the origin decreases with exp½{(lz1)=l� (see Fig. 2).

Similarly the concentration at the P cell which has NP cells to the

right is

c(lz1)~Sn1
e{(lz1)=lzSn2

: ð19Þ

The NP cells being the second nearest neighbors of P cells on

the left and right end of the NP block feel concentrations

c(2)~e{2=lSn1
ze{(l{1)=lSn2

ð20Þ

c(l{2)~e{(l{1)=lSn1
ze{2=lSn2

ð21Þ

respectively. Following the analysis made before the local stability

of a state is studied. I compute the concentrations in the

neighborhood of the borders of arrays after the P cell being on

the border is died. Then, the nearest neighbor P cells feel

concentrations

c{({1)~Sn1{1ze{(lz2)=lSn2
ð22Þ

c{(lz2)~e{(lz2)=lSn1
zSn2{1, ð23Þ

where c{ denotes that the P cell is died on the border. The first

relation refers to the situation when P dies on the left border and

the second relation refers to the situation when P is deleted on the

right border. Similarly, the nearest neighbor NP cells of the empty

sites feel concentrations

c{(1)~Sn1{1e{2=lze{l=lSn2
ð24Þ

c{(l)~e{l=lSn1
ze{2=lSn2{1 ð25Þ

on the right and the left borders, respectively.

Assuming again that replication rates depend linearly on local

concentrations (see 3) neither P nor NP spreads on the left border

if

Sn1
{e{(l{1)=lSn2

vd�

Sn1{1{e{l=lSn2
wd� ð26Þ

and similarly neither P nor NP spreads on the right border if

Sn2
{e{(l{1)=lSn1

vd�

Sn2{1{e{l=lSn1
wd�, ð27Þ

where d�~d=½r1(1{e{2=l)�.
To find coexistence of P and NP, all relations of (26) and (27)

must be valid simultaneously. After studying these relations, it

turns out that there can be locally stable states fn�1,n�2gE s and

unstable states fn��1 ,n��2 gE u at this initial condition (for details, see

graphical representation of relations (26) and (27) is depicted

in Figure S1.

Alternatively, if pDB update rule is applied and the same

computation is used as above then relations (26) and (27) are

replaced by

Sn1
{e{(l{1)=lSn2

vd�

Sn1{1{e{l=lSn2
z (n1)wd� ð28Þ

and

Sn2
{e{(l{1)=lSn1

vd�

Sn2{1{e{l=lSn1
z (n2)wd�, ð29Þ

where (n)~a e{1=l{e{n=l

1{e{2=l w0 for every nw0. Following the

same calculation as presented in text S1, it is easy to see that

including (n) into the relations does not change the general

argumentation. Consequently, there can be a locally stable and an

unstable state where P and NP cells are in coexistence even if

pDB update rule is used.

Nonlinear case
The method described in the previous section is not applicable

in this case. However, I am mainly interested in the possibility of

coexistence, which can be studied without any further calculation,

at least in the DpB case. We can have four characteristically

different dynamics if an NP array is inserted initially into the P

array:

1. There is a state where an NP array coexists between two P

arrays (neither strategy spreads at the borders). According to

the analysis of the linear case, it is possible (e.g. if fitness is

almost linear), but I could not show it for a general saturating

fitness function. Thus, this situation is not considered as a case

of coexistence.

2. The second possibility is when P always spreads and NP does

not spread at both meeting points. Then P wins over NP.

There is no coexistence.

3. Similarly, if NP always spreads and P does not spread at both

meeting points, then NP wins over P.

4. However, if NP spreads at both meeting points, then l

increases, and it is possible that for a sufficiently high l the

effect of the remote P block (*e{l=l) can be neglected. Thus,

pairs of P and NP arrays can be studied separately. But I have

shown that if c0vae{1=l then coexistence is possible.

So without analyzing the nonlinear case mathematically at this

initial condition I have shown that coexistence is possible if DpB

update rule is used because dynamics may lead to a distribution of

P and NP arrays for which the possibility of coexistence has been

proven.

The situation is different if pDB update rule is assumed. Then,

as I have shown earlier coexistence is not possible if pairs of P and

NP arrays can be studied separately. Thus the above described

argumentation is invalid here. It is possible however that balancing

effect of two P arrays can maintain stable coexistence as in the

linear case (it must be true at weakly non-linear fitness). This
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possibility is studied by numerical simulations in the following

section.

Coexistence and the position of NP array: numerical
simulations

I have shown earlier that fn�1,n�2gE s is a locally stable state in

the linear model. However, the analysis could not reveal

completely the direction of motion in the n1, n2 phase space,

although the analysis provided some information about it (see Text

S1). Even this information is missing in the nonlinear case. Thus,

the dynamics is studied by numerical simulations with DpB and

pDB update rules as well.

I consider a 1D lattice of size N where every lattice point is

occupied at most by a cell. P cells are considered as sources of the

diffusive material. I use the following algorithm to simulate the

DpB update rule:

1. A cell is deleted at a randomly selected lattice point.

2. The concentration c(x) is computed according to (3).

3. Replication rates (fitness) of the cells are calculated from the

local concentration of the diffusive material according to linear

or nonlinear relations defined above.

4. The empty cell is occupied by the copy of those neighboring

cells which have a higher replication rate.

5. A new cycle begins.

The algorithm of pDB update rule is very similar except that

steps 1. and 2. are interchanged in the series presented above. This

update cycle is repeated until one of the strategies dies out or the

coexistence of P and NP cells is observed for a long time. I use

deterministic update rule just to fit the algorithm of the numerical

simulations to the analytical studies. Other rules e.g. [14]

considering probability of success as a function of relative fitness

leads qualitatively the same results if selection is not too weak.

By using a wide range of parameters of l and d , I observe that if

coexistence between P and NP is possible in the linear model, then

this state will be realized only if the inner NP block is close to the

center of the lattice independently whether DpB or pDB update

rule is used, that is if Dn1{n2D is less than a critical value (Fig. 3).

Otherwise, either P or NP fixates in the population. If update rule

is stochastic then the system will be fixed fast in one of the

monomorph states independently of the initial condition, since the

population can easily move away from the narrow basin of

attraction of the stable state where P and NP are in coexistence.

The situation is different in the nonlinear case. Then coexistence is

realized independently from the initial condition, only the fraction

of P cells in the equilibrium depends on the initial values of n1 and

n2 (Fig. 4) if DpB update rule is used. However, I have not

experienced coexistence of strategies for a wide parameter range if

Figure 3. Dynamics of the linear model in function of initial sizes of P blocks (n1 and n2 respectively). Colors reflect to the frequency of P
cells in the equilibrium (darker means less fraction of P cells). a) DpB update rule, the cost of producing diffusive material is higher d~1:2, b) DpB
update rule, the cost of producing diffusive material is lower, d~0:5. Other parameters are N~100, a~1, l~10. The depicted values are averages of
50 independent simulations. By using pDB update rules gives practically the same results, so they are not showed.
doi:10.1371/journal.pone.0100769.g003

Figure 4. Dynamics of the nonlinear model with DpB update
rule in function of initial sizes of P blocks (n1 and n2 respectively).
N~100, l~10, c0~0:04, a~1, d~0:01. Values are averages of 50
independent simulations.
doi:10.1371/journal.pone.0100769.g004
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pDB update rule is used (except for the cases when the non-linear

function becomes practically linear).

Randomly placed cells: numerical simulations
In this section, I consider the case when P and NP cells are

initially placed along the lattice at random. I fill up every lattice

point with P cells with probability q and with NP cells with

probability 1{q. The above described analysis would even be

more complex in this case, thus I apply numerical simulations to

reveal the dynamics.

I used the same algorithms (DpB and pDB update rules) and the

same parameter values as in the previous section, but here the

dynamics is studied in function of q. Considering the linear model

I observe again that the coexistence of P and NP cells is not

robust, and can be observed only if P-s are present initially with a

sufficiently high probability (Fig. 5). In concordance with results

presented above, coexistence was not observed for nonlinear

model with pDB update rule even if P cells were placed randomly

along the lattice. On the other side, coexistence remains a robust

behavior even if random initial condition is used in the nonlinear

model with DpB update (Fig. 5 b). Based on the fact that dynamics

of the nonlinear model with DpB update rule is not sensitive to the

initial condition (see Fig. 4, 5 b) an arbitrary random initial

distribution can be selected and the effect of dynamical parameters

on the coexistence can be studied in this case. Probability of

coexistence and the average equilibrium frequency of P cells are

measured in function of the cost of producing of diffusive material

(d ) and diffusion length (l). Based on the simulations it is clear that

strategies can coexist in a wide range of parameters (Fig. 6)

although fitness differences can be very small (10{2{10{4)) in the

studied parameter space.

Discussion

I studied the 1D version of Borenstein et al.’s (2013) model with

linear and non-linear (saturating) fitness function by using two

different types of death-birth update rules. It is shown that

independently of the used update rule coexistence of producers

and non-producers is impossible in the linear model if initially a

producer and a non-producer arrays meet on the lattice. On the

other hand I have shown that coexistence of strategies is possible

for the non-linear model by using this initial distribution of

strategies with DpB update rule, but impossible if pDB update rule

is considered. Furthermore, I have shown that if a non-producer

array is inserted between two producer arrays, then coexistence of

cell types is possible even in the linear model for both update rules.

Numerical simulations verified this result but revealed that basin of

attraction of this stable state is narrow, that is dynamics leads to

this stable state only from very specific initial states. On the

contrary coexistence is non-sensitive to the initial condition for

non-linear model with DpB update rule. It is even more striking

that coexistence is observed at a wide parameter range of diffusion

length and cooperation cost for this model. To sum it up,

coexistence of producers and non-producers is a non-robust

phenomenon in the linear model with both update rules, a typical

phenomenon in the non-linear model with DpB update rule.

However, coexistence is not observed in the non-linear model with

pDB update rule. The observation that update rules modify the

result of selection is not new. It has been shown several times that

death-birth process promotes cooperators in structured popula-

tions [34–37], and well known that details of the spatial model

greatly modifies its behavior [41]. The difference here is that two

alternative death-birth processes can be defined, and saturating

fitness function leads to the robust coexistence of producer and

non-producer cells only of the DpB rule is applied.

Borenstein et al. (2013) have not studied the effect of initial

distribution of cell types on the long term dynamics and they

focused on the model with a birth-death update rule. They used a

stochastic update rule, where the success of the competing cells are

proportional to the growth rates of competitors. In the numerical

simulations I used a model where competitor with higher

replication rate always wins over the competitor with lower

replication rate. Further, they used the standard periodic

boundary condition in the simulations, while I defined a model

Figure 5. Average fraction of P cells (red, solid line) and the estimated probability of coexistence in function of the initial ratio of P-
s (green, dashed line) if P cells are randomly placed initially. Red lines denote the average fraction of P, green lines denote the probability of
coexistence. a) Linear model, DpB update. l~10, d~1:2. (The model with pDB update rule behaves practically identically at these parameters.) b)

Nonlinear model, DpB update. l~10, d~0:01, c0~0:5e{1=l. Plotted values are averages of 500 independent simulations, N~100, a~1 in all
simulations.
doi:10.1371/journal.pone.0100769.g005
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with open ends. So their model differs from mine in many crucial

details, so that, the direct comparison would have only a limited

validity. Because the fitness differences are small for most of the

selected parameters, the deterministic update rule speeds up the

simulations significantly and helps to check the analytical results

more easily. According to numerical simulations, if population size

is not too small and selection is strong, although update is not

deterministic, then the deterministic and stochastic models behave

very similarly (not shown). This is generally not true for 2D

systems where stochastic and deterministic update rules generate

different 2-dimensional patterns which have long range spatial

effect and modify the dynamics significantly [42]. The 1-

dimensional model is much simpler in this sense, stochastic and

deterministic update rules develop the same spatial patterns.

I have shown that initial condition and update rule can have

significant effect on the dynamics of the 1D model with non-

periodic boundary condition. Coexistence is not robust in the

linear model, it is possible at specific initial conditions. The

intuitive reason of the non-robustness of coexistence is that if the

spread of either P or NP is favored then spread is more favored if

their number increases (see Lemmas 1–4). Only very specific initial

geometry can smooth this robust effect. The situation is

characteristically different if replication rate depends nonlinearly

on the common material. Coexistence is a typical and robust

behavior if DpB update rule is applied, while coexistence is

impossible if pDB is used. Interestingly, the general theoretical

[26,27,30] and experimental [7,43] results support that saturating

effect of public good on fitness can stabilize coexistence of

producer and non-producer cell types even in well-mixed models.

Although I presented a spatially structured model now, where

individuals interact only with their neighbors, diffusion of limiting

resource smooths out local differences, and thus resembles in a

sense to models of well-mixed populations. On the other hand, the

diffusion and saturating effect on the fitness smooth out the

differences among individuals, thus relative fitness differences are

generally small, which means that while stable coexistence is

typical, it is generally closely neutral and leads to high fluctuations

in frequencies of cell types.

As I mentioned in the Introduction, Allen et al. (2013) studied

the probability of fixations of rare producer and non-producer

mutants for a wide range of graphs (including 1D and 2D

rectangular lattices as well). (Their work does not examine the

possibility of coexistence. In a finite stochastic population one of

the strategies fixates sooner or later. However, fixation time

increases polynomially or exponentially with population size if

there is a stochastically stable polymorph state, so coexistence (as a

long term metastable state) is practically present for larger

populations [44]). They showed that producers are evolutionarily

supported if the benefit remains at the producer plus the total

benefit retained by the neighbors of it is greater than the cost of

production of the public good [24].

Considering the linear version I receive a similar relation in the

model. From the calculations above it is clear that a single

producer cell will spread and fixate in the population if the benefit

retained by the cell minus the benefit arriving at the nearest non-

producing cell is greater than the cost of cooperation, that is

r1a(1{e{2l)wd: ð30Þ

(This relation comes from rearranging DR0w0 in (9).) In

agreement with the intuition, if lww1 (public good is distributed

evenly) then the maximum benefit should be very high (r1aww1)

to support producers. Contrariwise, if lvv1 (good is private)

then public good is supported if private benefit is larger than the

cost of producing it (r1awd ). Another recent study show that

extended durability of public goods reduces the selective advan-

tage of cheater strategy if public good production is regulated

according to the concentration of the diffusive material [45]. In the

present model, producing more durable public goods means that

parameter b becomes smaller. To explain the previous relation in

function of diffusion constant and spontaneous decay of diffusive

material b one receive

Figure 6. The qualitative dynamics of the nonlinear model with DpB update rule in function of the diffusion length (l) and the cost
of producing diffusive material (d). a) The average probability of coexistence. b) The average frequency of P in equilibrium. Values are averages

of 50 independent simulations, initially P and NP cells are distributed randomly with the same probability, N~100, a~1=l, c0~0:5ae{1=l.
doi:10.1371/journal.pone.0100769.g006
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)wd: ð31Þ

It is clear that if the diffusion rate is constant and public good is

more durable (b decreases) then the relation is more easily satisfied

(right hand side increases). If b?0 then r1a=Dwd gives the

condition for the cooperators to spread and fixate, that is the

production speed and the diffusion speed of the material

determine the success of producers.

Earlier studies estimated l to be on order of one (roughly

between 1 and 10) in experimental situations [24,25]. The

numerical simulations support that coexistence of producers and

non-producers is possible in this region, mainly for the non-linear

model with death-birth update rule if the cost of producing this

material is not too high (see Fig. 3.,6.). Interestingly, Julou et al.

(2013) have shown experimentally that l can even be much

smaller in bacterial colonies growing on solid phase. Here mainly

the local exchange of material among contacting cells determines

the dynamics.

My simplified model neglects numerous details which are

present in real biofilms. For example bacteria grow on a surface on

the border of liquid and solid phases. They can be in competition

for space, for limiting resources on the surface and for O2 arriving

from the water [8,46]. Furthermore, bacteria communicate each

other by quorum sensing, and collective action is not only

production of common material but they can change their motion

strategy as well according to local environmental and social

circumstances [47–50]. It is useful to compare the results of these

complex models with my results regarding the coexistence of

cooperators and cheaters. Xavier and Foster (2007) studied

competition for the soluted O2 in a biofilm by a specific individual

based model [46]. Producer cells extract extracellular polymeric

substances (EPS) which is assumed to help to maintain the

structure of the biofilm. According to the simulations, the EPS

producing cells outgrow the cheater cells and reach higher

concentration of diffusive O2, which is a growth limiting factor

in the system. Depending on the parameters and initial conditions

either producers or cheaters win the competition, but coexistence

is observed in certain cases. Unfortunately, this situation is not

studied in detail. On the other hand a more recent study on this

system does not mention the possibility of coexistence [51], but

emphasizes that depending on nutrient availability and diffusion

selection may result in 1) either spatial segregation of lineages and

spread of producers or 2) mixing of types and winning of non-

producers.

Supporting Information

Figure S1 Graphical representation of stable and
unstable meeting points of P and NP cells in function
of n1 and n2. Solid lines denote the stable while dashed lines

denote the unstable states. a) The complete phase space. Arrows

represent the motion qualitatively. Rectangles around the

intersections are magnified in figure b) and c). b) The locally

stable state. fY (2)
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z g, fX (1)
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(1)
z g, fX (2)
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(2)
z g and

fY (1)
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z g are the intersections of m1,z, n2,z, n1,z and m2,z

which determine s. c) The locally unstable state. Intersections of

n1,{, m1,{, n2,{ and m2,{ determine u. N~100, l~20, a~1,

d~0:5.

(EPS)

Text S1 Mathematical Details. The proof that (26) and (27)

can be valid simultaneously.

(PDF)

Acknowledgments

The author wishes to thank B. Allen, M. Archetti, D. B. Borenstein, J.

Podani and an anonymous referee for valuable discussions and helpful

comments.

Author Contributions

Conceived and designed the experiments: IS. Analyzed the data: IS. Wrote

the paper: IS. Made the matematical and numerical analysis: IS.

References

1. Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:

1390–1396.

2. Sachs J, Mueller UG, Wilcox T, Bull JJ (2004) The evolution of cooperation.

Quarterly Review of Biology 79: 135–160.

3. Nowak MA (2006) Five rules for the evolution of cooperation. Science 314:
1560–1563.

4. West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for

microorganisms. Nature 4: 597–607.

5. West SA, Griffin AS, Gardner A (2007) Evolutionary explanations for
cooperation. Current Biology 17: R661–R672.
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