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ABSTRACT

Nanoparticles offer alternative options in cancer therapy both as drug delivery carriers and as direct therapeutic agents for

cancer cell inactivation. More recently, gold nanoparticles (AuNPs) have emerged as promising radiosensitizers achieving

significantly elevated radiation dose enhancement factors when irradiated with both kilo-electron-volt and mega-electron-

volt X-rays. Use of AuNPs in radiobiology is now being intensely driven by the desire to achieve precise energy deposition in

tumours. As a consequence, there is a growing demand for efficient and simple techniques for detection, imaging and char-

acterization of AuNPs in both biological and tumour samples. Spatially accurate imaging on the nanoscale poses a serious

challenge requiring high- or super-resolution imaging techniques. In this mini review, we discuss the challenges in using AuNPs

as radiosensitizers as well as various current and novel imaging techniques designed to validate the uptake, distribution and

localization in mammalian cells. In our own work, we have used multiphoton excited plasmon resonance imaging to map the

AuNP intracellular distribution. The benefits and limitations of this approachwill also be discussed in some detail. In some cases,

the same “excitation”mechanism as is used in an imagingmodality can be harnessed tomake it also a part of therapymodality

(e.g. phototherapy)—such examples are discussed in passing as extensions to the imaging modality concerned.

INTRODUCTION
The use of gold nanoparticles (AuNPs) dates back to an-
cient Roman times to stain figurines and glasses for dec-
orative purposes. The first known pure colloidal gold (Au)
(suspension of submicrometre-sized particles of Au) was
from the work by Faraday1 in the 1850s. Here, we refer to
nanoparticles (NPs) as those with size #100 nm. More
recently, focus has turned to the therapeutic applications of
these materials.

Refined production of existing materials on the nanoscale
has driven the nanomedicine revolution for both diagnostic
and therapeutic applications.2 AuNPs have been used in a
variety of ways, including as a drug delivery system designed
to optimize the biodistribution of their cargo in cells, tissues
and organs.3–5 These have proven particularly effective for
unstable molecules subject to enzymatic degradation such as
DNA, proteins and small-interference RNA oligonucleotides.
AuNPs have also improved systemic delivery to hard to
reach organs such as the brain.6 NP uptake and localization
is dependent on size, shape, surface chemistry and the

addition of secondary functional groups.7 In this regard,
target cell type and tissue are critical.

Functionalization of AuNPs confers additional levels of tar-
geting complexity to the NP. These targeting motifs can be
used to isolate specific cell populations, thereby providing
a means of systemic targeting. For example, specific cell sur-
face proteins such as transferrin are more commonly over-
expressed on many tumour cells.8 This transferrin-targeting
strategy mimics the selectivity of many chemotherapy agents
that preferentially target cells with a high proliferative ca-
pacity over quiescent or slowly dividing normal cells.
Furthermore, high transferrin expression is particularly
associated with a malignant phenotype in tumours re-
sistant to conventional therapeutics such as human pan-
creatic cancer;9 therefore, transferrin–antibody conjugated
AuNPs could provide novel alternative treatment options.

A key goal of radiotherapy is to increase the radiation dose
deposited in the target tissue while minimizing the dose to
the surrounding healthy tissue. Progress has been realized
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through delivery methods involving fractionated dose and the
use of multiple beams delivered in various planes thus permit-
ting dose accumulation in the target volume.10 Despite these
advances, there remains a need to develop new methods, per-
haps through the development of molecular targeted radio-
sensitizing agents, to further minimize non-target radiation
damage while simultaneously reducing the risk of secondary
cancer development in the normal tissue.

There are a plethora of NP cores under development for health
and life science applications. A keywords search in the published
literature database (Web of Science) shows that about 50% of
this activity concerns AuNPs. It is noteworthy that a larger pro-
portion is found when considering functionalized NPs, reflecting
AuNPs’ ease of functionalization with the aim of manipulating
their uptake and localization. This highlights the importance of
being able to accurately determine NP localization using repro-
ducible imaging approaches.

Tumour-targeted AuNPs may also offer some advantages of
heavy ion therapy, by utilizing widely available hospital linear
accelerators.4 The idea of an increased dose in the presence of
high-Z materials is not new and was first proposed in 1949.11

High-Z materials such as gadolinium and iodine have been used
as contrast agents for decades with several studies reporting that
these agents are capable of in vitro and in vivo damage when
used in conjunction with radiation.12–15 Being a high-Z material
(ZAu5 79), AuNPs are obvious candidates as potential contrast
agents. This application is particularly relevant if targeting effi-
cacy is demonstrated, thereby limiting the cost implications
whilst improving the expected therapeutic outcome by im-
proving target specificity. AuNPs can be synthesized in the lab-
oratory by a variety of different methods, but most commonly,
synthesis involves the reduction of Au salt (chloroauric acid) in
the presence of a stabilizer.16 The versatility of AuNPs with re-
spect to size, shape, concentration, surface charge and functional

groups, combined with the physical properties of Au mean that
these agents can be tailored to meet virtually any need in terms
of imaging and therapeutic application Figure 1.18,19

Furthermore, exploiting the increased mass absorption co-
efficient of Au with the aim of enhancing radiation damage
through the production of secondary electrons and free radical
species has yielded impressive radiosensitization enhancement
factors12 using relatively low AuNP concentrations. Jain et al20

demonstrated this using a commercial thiol-capped 2-nm AuNP
at 0.05% wt/wt Au concentration. Under these conditions, dose
enhancement ratios of 1.41 and 1.29 were achieved using
160-kVp and 6-MV X-rays, respectively, findings that were
supported by other “first generation” NP studies.21 This ap-
proach has been subsequently optimized through the conjuga-
tion of additional ligands designed to confer superior stability
and targeting capabilities.

To date, a major bottleneck in AuNP research relates to effective
imaging providing critical information on the kinetics of NP
uptake and intracellular distribution (Figure 2).19 Several
approaches have been developed for this purpose, including the
incorporation of a fluorescent tag on the AuNP, thus inferring
the subcellular distribution from the corresponding fluorescence
signal. However, the ultimate fate of the tag together with the
AuNP needs to be confirmed before a firm conclusion may be
made. Therefore, this approach is only as secure as the chemical
linker attaching the fluorophore tag to the NP. In addition,
conjugation of the fluorophore may sterically hinder interaction
of functional groups with target receptors or simply alter the
intracellular trafficking of the NP, therefore providing an un-
representative picture of intracellular localization. AuNPs are
typically endocytosed by non-specific receptor-mediated endo-
cytosis, resulting in AuNP loaded vesicles fusing with early
endosomes, where elevated pH promotes NP agglomeration and
detachment of functional groups, ultimately compromising

Figure 1. Absorption spectra of 9-, 22-, 48- and 99-nm gold nanoparticles demonstrating a change in surface plasmon resonance

with particle diameter. Reproduced from Link and El-Sayed with permission from American Chemical Society.17
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efficacy.22 Thus, the fluorescent tag can become detached so that
the resultant image does not report on the Au distribution but
instead only reports the fluorescent moiety’s distribution. In-
deed, this is expected to happen as AuNPs are observed to form
clusters inside various cell compartments suggesting their coat-
ings are compromised by the cellular chemistry.7 Oh et al22

showed that AuNPs’ cellular uptake was directly dependent on
the surface conjugation of a cell-penetrating peptide and that the
ultimate intracellular destination was further determined by the
diameter of the AuNPs. Also, the smallest (2.4-nm) AuNPs used
were found to localize in the nucleus, while intermediate (5.5-
and 8.2-nm) particles were largely retained within the cyto-
plasm, accumulating in relatively high concentration in a
perinuclear manner, close to the nuclear membrane.22 It is an
advantage, and indeed now necessary in clinical treatments, to
apply two or more biomedical imaging techniques (multi-
modality imaging), therefore improving the reliability of diag-
nostics and treatments, since each imaging technique exhibits its
own specific advantages and limitations. For example, detection
sensitivities, speed, cost and spatial resolution are all significant
issues that should be considered.

In this review, we will detail a number of existing and novel
imaging techniques for AuNPs highlighting both strengths and
limitations of such approaches, Figure 2.

SOLUTION PHASE GOLD
NANOPARTICLES CHARACTERIZATION
AuNPs may be synthesized by a number of methods, including
citrate reduction of Au[III] derivatives such as aurochloric acid
(HAuCl4) in water to Au(0) and the Brust–Schiffrin synthesis
and stabilization by thiols.23,24 Recently, a number of one-pot
syntheses have been reported for sub 3-nm particle sizes via
thio-based multidentate fullerene adducts.25 The documented
cytotoxicity of AuNPs (at certain sizes) means new methods of
rendering them safe for cancer therapy is urgently needed.

Various approaches developed to achieve this end include
AuNP encapsulation in other biologically safe and compatible
materials, such as porous Au nanocups and nanospheres.26

Hybrid metal oxide such as copper or iron oxide AuNPs with
core-shell structure have also been proposed.27 Even a graphene-
based AuNP hybrid has been developed.28 The size of AuNPs
produced by conventional techniques may be further tuned or
controlled from a few nanometres to tens of nanometres by
femtosecond laser fragmentation in water.29 Although the syn-
thesis and use of AuNPs for electrochemical applications and
as novel sensors for disease states is becoming a significant field,
it will not be discussed in this review since it is beyond the scope
of this article. However, it is worth highlighting the advances
currently being made in this research area.30

A number of well-established techniques exist for the physical
characterization of AuNPs in solution. Dynamic light scattering
(DLS) or photon correlation spectroscopy are techniques that
are capable of detailing particle size and are routinely used for
calculating the hydrodynamic size of NPs and colloids in solu-
tion phase down to 1 nm.31 Furthermore, the surface plasmon
resonance (SPR) of AuNPs (see the Raman microspectroscopy
section) provides a powerful tool for AuNPs conjugated to
biomaterials as well as biomolecular binding studies. DLS is able
to directly and quantitatively measure the binding stoichiometry
between a DNA- or protein-conjugated AuNP probe and a target
analyte protein in solution.32,33 Although this is not an imaging
technique, it is worth mentioning in the context of the broad
methods for AuNPs research. However, despite the extensive use
of DLS for nanometer size determination, it has specific dis-
advantages when used with AuNPs. For example, it has been
reported that rotational diffusion in particles.30–40 nm, which
lack spherical geometries, produces strong scattering effects
yielding a false peak in a size range of about 5–10 nm. In this
case, the uncritical application of the DLS method may yield
particle volume or number size distributions different from
those obtained by other methods such as transmission electron
microscopy (see transmission and scanning electron micro-
scopes section). The impact of particle size is also evident with
smaller diameter particles (,20 nm) that occasionally lead to the
observation of peaks at larger sizes, an artefact of particle ag-
glomeration rather than individual particles.34 Furthermore, the
sensitivity of DLS to AuNP size determination is not consistent
from instrument to instrument. The principle of DLS is based
on the determination of the autocorrelation function for fluc-
tuations of scattered light intensities. So far there are no reports
using DLS in the imaging mode, which limits the technique to
only solution studies.

TRANSMISSION AND SCANNING
ELECTRON MICROSCOPES
Owing to the nanometre resolution offered by transmission
electron microscope (TEM) and scanning electron microscope
(SEM), straight forward visualization of metallic NPs down to
a few nanometres should be possible almost without the re-
quirement for any special preparation step. The high electron
density of Au means it is again ideally suited for electron mi-
croscopy imaging. Indeed, several reports have used TEM and
SEM as the main characterization methods for AuNPs following

Figure 2. Functional imaging platforms for AuNPs—towards

multiply therapeutic methods and multimodality assessment.

AuNP, gold nanoparticles; FLIM, fluorescence lifetime imaging

microscopy; SEM, scanning electron microscopy; SERS, surface-

enhanced Raman spectroscopy; SORS, spatially offset Raman

spectroscopy; TEM, transmission electron microscopy.
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synthesis.35 Using these techniques, the size and shape of AuNP
down to 1 nm may be observed. By extension, X-ray absorption
and reflectivity measurements may also be used to image the
AuNPs.36 Despite the superior nanoscale resolution possible
using these techniques, sample preparation is time consuming
and perhaps more importantly relatively destructive, requiring
the drying of samples on specialized substrates, ultrathin sec-
tioning and finishing using metal coatings used to provided
adequate contrast, decrease charging artefacts and reduce
microscope-generated radiation damage. Furthermore, the
conductive metal coating used is usually composed of a few
nanometre size clusters, which share similar physical properties
to the AuNPs employed in medical applications. Therefore, the
highly invasive sample preparation steps are not considered
compatible with the preparation of live mammalian cells or
tumour tissues. Hartsuiker et al37 have reported a novel sample
preparation protocol where the influence of “charging” on the
quality of SEM images could be limited by directly depositing
the biological cells on a conductive (Au) surface. To date, some
approaches have been developed to minimize these complica-
tions such as growing the cells on glass pre-coated with a chro-
mium layer or by developing improved conductive holders
composed of a silicone substrate coated with copper. With the
later, SEM was used to image 5-nm AuNPs penetrating the skin
barrier without the need for heavy metal contrast stains.35

RAMAN MICROSPECTROSCOPY OF
GOLD NANOPARTICLES
AuNPs absorb and scatter electromagnetic radiation with ex-
tremely high efficiency. This strong interaction with light is
owing to the conduction of electrons on the metal surface un-
dergoing a collective oscillation upon absorption of a specific
wavelength of light. This specific wavelength is related to the size
of the NP (Figure 1). The oscillations are known collectively as
SPR and can be exploited for gains in spectroscopy, imaging and
therapy. Surface-enhanced Raman spectroscopy (SERS) is a
method to enhance the normally poor Raman scattering by
several orders of magnitude. Generally, in this technique, mol-
ecules are adsorbed on a rough metal surface, such as silver (Ag)
or Au for Raman scattering enhancement. The mechanism
leading to the enhancement is not fully understood, but a factor
of 106–107 electromagnetic enhancement is responsible for the
increase of Raman scattering, which occurs as the surface plas-
mon is excited by the incident light and amplifies the electro-
magnetic field of the metal surface.38

AuNPs have been used in SERS owing to their unique physical
characteristics that are critically linked to NP size and shape. It
should be noted that Ag is a better SERS agent in solution than
Au.39 However, the broader biocompatibility profile of Au makes it
a more attractive choice for most biomedical applications. It has
been suggested in several reports that the shape as well as size of the
AuNP is significant for its SERS effect,40,41 although the size and
shape required for the optimum SERS effect is still under discus-
sion. Hong and Li42 have investigated a AuNP size range from 17 to
80nm (nearly spherical in shape) for the SERS effect and concluded
that 50nm was the optimum size for the enhancement together
with reduced cellular cytoxicity. This AuNP’s dimensions are within
the size used in medical applications including radiobiology.

One application of SERS is discrimination between cancer and
non-cancer cells with enhanced signal detection, giving it a role in
disease detection. SERS benefits from the chemical specificity of-
fered by Raman spectroscopy—one of the reasons is that this form
of spectroscopy has been widely applied in biomedical and clinical
diagnostic applications. Direct conjugation of AuNPs to biomarkers
allows them to act as biospecific nanoantennae partially over-
coming the inherently weak signal associated with Raman spec-
troscopy. The recent development of spatially offset Raman
spectroscopy (SORS and its variants) for non-invasive detection of
small, deeply buried lesions (up to 6 cm) makes it possible.43,44

Matousek et al have recently demonstrated the technique for non-
invasive breast cancer detection possibility at depths around 2 cm.45

The combination of SERS from AuNPs and SORS has further
improved the prospect for in vivo, non-invasive, specific detection
of molecular changes associated with disease up to depths of
around 5 cm representing a significant improvement over tradi-
tionally detected Raman signals by two orders of magnitude
(Figure 3).45 Therefore, dual detection approaches utilizing the
specificity of the Raman spectra signature, combined with the use
of functionalized AuNPs for tumour targeting, could provide
a strategy for improved definition of tumour boundaries, thus
permitting improved radiotherapy delivery to the tumour volume.

Adopting a similar strategy, AuNPs complexed with dextran-
coated superparamagnetic iron oxide NPs were established for
non-invasive combination in vivo imaging, combining MRI and
Raman spectroscopy.46,47 This multimodal approach offers the
combination of different modalities into one system thus com-
pensating for the deficiencies of single utility approaches. The
SERS capability in this combination is particularly valuable,
since it is highly sensitive and the detailed information gained by
this method can readily be distinguished from background tissue
signatures.

AuNPs are surrounded with Raman reporters, which provide
light emission that is .200 times brighter than quantum dots.
It was found that the Raman reporters were stabilized when
the NPs were encapsulated with a thiol-modified polyethylene
glycol (PEG) coat. The same combined multicomponent AuNP
(or nano crystals) has been reported as a nanotheranostic agent
for successful bimodal ultrasound/MRI and guided photothermal
ablation in human tumour xenograft models48 (see the Multi-
photon detection and imaging of gold nanoparticles section).

HYPERSPECTRAL IMAGING
Hyperspectral microscopy allows simultaneous spatial and
spectroscopic characterization of non-fluorescent samples. In
practice, the technique can be simple and relatively straight
forward, requiring only a simple microscopy set-up together
with a spectral detection camera with the flexibility of expanding
the set-up to include more expensive supercontinuum lasers.49

Hyperspectral microscopy involves excitation of the sample with
a range of wavelengths (or white light) simultaneously followed
by detection of the dispersed spectral component by the sample
under investigation, in this case AuNPs. The spectral compo-
nents may then be used to characterize the AuNP following the
dispersion through a prism or by a diffraction grating. In
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general, the usual two-dimensional (x, y) image is accompa-
nied by a third component, wavelength, to give an image, that
is (x, y, l). The data set is therefore composed of images
representing a narrow wavelength range of the electromag-
netic spectrum.

Patskovsky et al50 have used hyperspectral dark-field mi-
croscopy to detect and image PEGylated AuNPs targeting

CD44-expressing cancer cells. A tuneable filter was used to
sweep the white light illumination source from a super-
continuum laser over a spectral range from 400 to 1000 nm.
Although the advantage of the added dark-field methods to
the hyperspectral technique is not immediately obvious, the
authors believe that this allowed them to differentiate be-
tween AuNPs that were cell bound and those randomly at-
tached to the glass surface.

Figure 3. Surface-enhanced Raman spectroscopy (SERS) nanoparticle (NP) signals (a) diffuse scattering of the Raman photons

produced by the NPs deep within phantom tissue. False colour images of the SERS NP signals, measured in a 113 11 grid, pixel size

2mm. Left image shows all signals plotted together (with pixel colour mix showing combined signals) with the approximate

injection points marked, right image shows each “flavour” separately. Red is 3403, green is 3420, blue is 3421, yellow is 3440. (b)

Raw spectra of NP flavour 3403 with 33 1010 particles in 50ml for 47mm (range 45–50mm)350350mm tissue block (top frame)

and 1.83 109 particles in 3ml for 20-mm thick350350mm tissue block (bottom measured in a 113 11 grid, pixel size 2mm through

thick tissue material). Reproduced from Stone et al with permission from Royal Society of Chemistry.45 For colour image see online.
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PHOTOTHERMAL OPTICAL COHERENCE
TOMOGRAPHY AND PHOTOTHERMAL IMAGING
AND THERAPY
Gold nanorods (AuNRs) have also been used as a potentially
powerful tool for molecular imaging in photothermal optical
coherence tomography (PT-OCT).51,52 In vivo PT-OCT images
showed an increase in signal in the presence of AuNRs compared
with control samples. Additionally, in vivo PT-OCT AuNR sig-
nals were spatially distinct from blood vessels imaged with
Doppler optical coherence tomography. Similarly, graphene-
isolated-Au-nanocrystal nanostructures for multimodal cell
imaging and photothermal-enhanced chemotherapy have been
proposed.53 In the above report, the authors applied a thin layer
of graphene on the surfaces of the AuNPs or AuNR crystals. This
led to some unique capabilities: (1) the surface-enhanced-
Raman-scattering substrate quenches background fluorescence
and reduces photocarbonization or photobleaching of analytes;
(2) the AuNPS may be used for multimodal cell imaging by both
Raman spectroscopy and near-infrared (NIR) two-photon lu-
minescence; (3) the graphene-isolated AuNPs provide a plat-
form for loading anticancer drugs for therapy as discussed
above; (4) the NIR absorption properties nano material with
graphene gives photothermal therapeutic capability in combi-
nation with chemotherapy. Controlled release of chemotherapy
molecules from the graphene-isolated AuNPs may be achieved
through NIR heating, significantly reducing the possibility of
side effects in chemotherapy. The decorated graphene AuNPs
have high surface areas and stable thin shells, as well as unique
optical and photothermal properties, making them promising
nanostructures for biomedical applications and in particular
tumour inactivation. Although such exotic AuNPs have not been
investigated in conjunction with ionizing radiation, there is no
reason why an increased radiobiological effectiveness in cell
killing should not be possible. It is interesting to note that
radioactive-iodine-labelled AuNRs have been designed and
synthesized for target selective single-photon emission CT
(SPECT) and X-ray CT imaging and subsequent thermal abla-
tion of folate-receptor-overexpressing cancers via photo thermal
therapy.54 Similarly, patients with localized prostate cancer are
often treated with brachytherapy using iodine-125 (125I) or
palladium-103, which emit X-rays and gamma rays of maximum
energy 35 and 21 keV, respectively. Cho et al55 specifically
modelled 125I brachytherapy seeds in tumours loaded with
18mg Au g21. Thus, a combined localized AuNP radiation and
photothermal therapy (PTT) represents a future possibility.

PTT, unlike photodynamic therapy (PDT), does not involve
chemical photosensitizers for the generation of reactive oxygen
species to produce the targeted killing of cancer tissue. Rather, it
requires the passive accumulation of NPs within the tumour
mass owing to the poor structural integrity of the tumour vas-
culature and the subsequent laser excitation of the NPs to
generate ablative intracellular temperatures. PTT results in
a temperature increase (approximately 10°C) in the environment
surrounding the target, leading to thermoelastic expansion of
the sample and shifts in the local refraction index.56,57 PTTwith
AuNPs have been investigated as potential candidates in this
anticancer strategy.58 However, the optimal absorption wavelength
of spherical AuNPs with diameters ranging between 10 and

80nm42 is ,580 nm, thus falling short of the so-called typical
transparent tissue window of 650–1350nm, where the excitation
light source has the maximum ability to penetrate deep (several
millimetres) into tissue. This property clearly limits the usefulness
of spherical AuNPs in this context. However, altering the geom-
etry of the NPs to produce AuNRs can reduce this effect by tuning
the optimal absorption wavelength to 1000nm. This approach
was adopted by Popp et al59 who synthesized a PEG coating to
reduce the aggregation and suspected toxicity associated with
AuNPs of ,10nm. The accumulated AuNPs may then be irra-
diated with varying radiation energies to create sufficient heat for
the cancer cell killing. The PEG stabilized AuNRs for the PTT
treatment used a high powered light-emitting diodes or laser
excitation source in the treatment of a murine melanoma model.
Three key parameters have been highlighted as essential features
for PTT: (1) accurate identification of the location and size of
tumours together with the presence of nanoscale photoabsorbers
for photonic irradiation before therapy; (2) monitoring the
treatment procedure in real-time during therapy to ensure com-
plete eradication of microscopic tumour; (3) assessment of the
effectiveness of the therapy following the treatment.48 Imaging
therefore plays a critical role in the monitoring process of PTT.
The intrinsic luminescence following PTT may be used to detect
the AuNPs.60 In general, the PDT drugs are fluorescent and can
therefore be used to image the tumour environment whilst new
reports are beginning to emerge for the use of PT imaging using
the same NPs for PTT.60

MULTIPHOTON DETECTION AND IMAGING OF
GOLD NANOPARTICLES
In the Raman Microspectroscopy of Gold Nanoparticles section,
we discussed efficient plasmon resonance from AuNPs upon one-
photon excitation with visible light. The SPR is known to be
wavelength dependent, being blue-shifted for smaller particle
size.61 This resonance can be excited through two-photon exci-
tation using picosecond and femtosecond laser pulses. Two- and
three-photon processes [collectively termed multiphoton (MP)
process] have now been reported for AuNPs.62 MP absorption,
first proposed in 1931 by Göppert-Meyer63 and demonstrated
with lasers in the 1960s64 is now widely employed in MP excited
fluorescence microscopy.65,66 Two- or three-photon excitation,
which have very low cross-sections, most readily occur at a high
photon density within the femtolitre focal volume of a subpico-
second pulsed-laser excitation beam, which may then be scanned
across a sample to construct a fluorescence image.67,68 An im-
portant advantage in both biological imaging and phototherapy is
that MP excitation shifts the required wavelength to the red or
NIR spectral regions where light transmission in human and
animal tissues is much greater than at shorter wavelengths.69

However, a major concern relates to the depths that may be
probed within a sample, which is dependent upon several factors:
light penetration and good transmission with low scattering
combining to permit the necessary high peak laser power at the
focus.70 For three-dimensional imaging of intact tissues, the
choice of the wavelength is important, and recent work71 suggests
that wavelengths even longer than the commonly used range of
800–1000nm may be optimal. For fixed tissues, optical clearing
methods have been devised, which substantially increase the
sample transparency.72 However, at this early stage of utilization
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of MP imaging of AuNPs, the work primarily centres on cells
grown in monolayers; therefore, the issue of light penetration can
be ignored in this present review. MP excitation delivery to deep-
lying (several millimetres) tumours is also being addressed by
microscope manufacturers who are now offering specially designed
lenses to optimize deep light penetration in tissues, which combine
specifications such as long working distance, silicon oil immersion
for refractive index matching, chromatic aberration minimization
and high numerical aperture. AuNPs combined MP imaging could
therefore offer a novel opportunity to study the outcome of up-
take, distribution and radiobiological effectiveness following irra-
diation by imaging in fixed, live cells and tissues.73

The luminescence from AuNPs excited with the MP process
overlaps with that from the autofluorescence from cells and
tissues (,600 nm). Therefore, a method to differentiate between
AuNP fluorescence from cellular autofluorescence is necessary.

Fluorescence lifetime imaging microscopy (FLIM) has the po-
tential to provide such discrimination. Utilizing confocal, single
and MP excited state emission microscopy together with time-
correlated single-photon counting provides an unambiguous
determination of the location of fluorophores on a pixel-by-pixel
basis.74 The fluorescence lifetime for a particular molecular en-
vironment is exact for every fluorescent molecule and defines the
average time a molecule spends in the excited state before
returning to the ground state, which is typically in the range of
several nanoseconds for fluorescent proteins. The decay of
fluorescence does not depend on its concentration (,1mM) but
is sensitive to events in its local microenvironment. When ex-
cited with pulsed laser wavelength, the plasmon resonance
generated from AuNPs also follows closely the laser pulse length

characteristics.75 This highlights the requirement for femtosecond
lasers for MP excitation, which are superior to using nanosecond
or continuous wave laser pulses. Furthermore the MP process has
the potential of generating ultrashort plasmon resonance (in
femtoseconds) as well as second and third harmonic generations.76

Therefore, the time signature of the resultant subsequent decay
may be used to distinguish between the prompt decay owing to Au
and slower decay processes indicating autofluorescence arising
from surrounding biological matter (Figure 4). As is illustrated in
Figure 1, the maximum absorbance spectra of AuNPs is dependent
on size. This property can be used to discriminate between
clumped and unclumped AuNPs in cells since clumps act like
a single larger NP. When the excitation laser is tuned to a shorter
wavelength, the distribution of smaller clumps and unclumped
NPs may also be observed (Figure 5). Varying the excitation
wavelength from 570 to 900 nm, we are able to selectively image
AuNPs of varying sizes. Larger aggregates are observed with ex-
citation wavelength .700nm while excitation with #600nm
shows less aggregate particles. The exact sizes of AuNPs imaged by
the technique at the #600nm are not fully characterized as yet.
The small insert in this image above the peak in the temporal
profile in Figure 5 shows the power of this technique combined
with confocal fluorescence microscopy. Here, a three-colour image
is shown with green showing the AuNP density measured by MP
FLIM. The blue shows the nuclear DNA and the magenta DNA
damage, both measured using confocal microscopy. Measurements
of this kind have been used to determine mechanisms of
DNA damage enhancement induced by AuNPs upon irradiation
[H McQuaid, 2015, personal communication].

Images are produced by raster scanning the tightly focused spot of
the excitation laser across the sample whilst recording the higher

Figure 4. The surface plasmon resonance observed through multiphoton excitation with the laser tuned to 900nm. Aggregates of

gold nanoparticles can be seen with characteristically short decay time, compared with the longer decay time of the cytoplasm. See

the Do gold nanoparticles induce cellular DNA damage? section for details.
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energy photons produced with a fast photomultiplier. The MP-
FLIM technique could be built as a standalone unit or constructed
around a standard confocal or steady-state MP set-up. The former
system provides a more flexible set-up where the detectors are
optimized for detection from ultraviolet (UV) to visible.76 In the
latter set-up, the functionality of a standard confocal micros-
copy is extended to incorporate MP lasers as well as an optional
output for collecting the second harmonic generation and plas-
mon resonance from the AuNPs following excitation (Figure 6)
[H McQuaid, 2015, personal communication]. We have shown
using this approach that the fast component of AuNPs’ higher
energy photon as well as the fluorescence emission from fluores-
cent probes as labels may be observed simultaneously (Figure 7).

MP laser induced breakdown spectroscopy (LIBS) is a technique
(that shares much of the same hardware as MP microscopy)
being applied to imaging gadolinium-based NPs and is expected
to find application in AuNP imaging. Although the average laser
powers used for MP imaging is low enough (,5mW) not to
cause ionization of the NPs, a doubling of the imaging laser
power may be sufficient to initiate this LIBS (generation of
a plasma plume) and the imaging thereof.77 This approach
further adds to the non-fluorescent imaging techniques that may
be useful for AuNPs research and application.

DO GOLD NANOPARTICLES INDUCE CELLULAR
DNA DAMAGE?
The classical concept of radiation action in tumour and cell killing
is by cellular DNA damage and in particular the induction of
DNA double-strand breaks that are thought to be the most del-
eterious. There is still a debate on whether tumour and cellular
inactivation by combined X-rays (low linear energy transfer) and
in the presence of AuNPs is driven by DNA damaging

mechanisms, with various conflicting reports published.20,78–81

Much of the early work, investigating the radiosensitizing po-
tential of AuNPs was performed using extrachromosomal plasmid
DNA isolated from transformed competent bacteria. These assays
provided a sensitive, rapid and low-cost approach for evaluating
the DNA damaging potential of exogenous agents, both alone and
in combination with radiation. Using this model, Butterworth
et al examined the impact of AuNP size, concentration and the
scavenging environment on radiosensitization, reporting two-fold
AuNP-induced dose enhancement factors for both single- and
double-stranded DNA lesions.81 However, despite a more detailed
understanding of the abundance and limited functional range of
the various secondary electron species produced following AuNP/
radiation interactions,12 the induction of intracellular DNA
double-strand break damage remained widely accepted as the
obvious mechanism resulting in additional cell death. Within the
cellular environment, TEM observations of AuNP entrapment
in endosomal/lysosomal compartments were commonly reported,
with no apparent nuclear accumulation.7,81 Indeed, various
images present large NP aggregations micrometres from the nu-
clear membrane. When considered alongside Monte Carlo cal-
culations, modelling dose distribution on the nanoscale, which
indicate 99.9% of the enhanced dose deposited, has a maximum
range of 50nm; it seems unlikely that increased cell killing effects
are solely attributable to increased DNA double-strand break in-
duction.12 This was apparent when Jain et al20 observed no in-
crease in DNA damage yields across three cell lines of different
origin, despite reporting clear AuNP-mediated radiosensitization
in MDA-MB-231 cells, indicating radiosensitization was driven by
alternative mechanisms. Second generation AuNPs, conjugated
with functional groups, have been developed to help overcome
the issues of endosomal entrapment and to promote nuclear ac-
cumulation.21 Conjugation of short biomimetic peptides of viral

Figure 5. The surface plasmon resonance observed through multiphoton excitation with the laser tuned to 600nm. Smaller

nanoparticle aggregates are now detected both in the cytoplasm and (with much lower concentration) in the nucleus. The insert

also shows results from a co-staining experiments where gold nanoparticle location and DNA damage post-irradiation are

correlated. See the Do gold nanoparticles induce cellular DNA damage? section for details.

BJR SW Botchway et al

8 of 13 birpublications.org/bjr Br J Radiol;88:20150170

http://birpublications.org/bjr


origin have improved AuNP uptake, allowing the use of lower
therapeutic concentrations while simultaneously promoting endo-
somal escape and nuclear targeting.81,82 In the later study,82 this
equated to a five-fold enhancement of uptake relative to unfunc-
tionalized control NPs, along with a two-fold reduction in the
exocytotic potential. The impact of effective functional groups was
neatly demonstrated when comparing DNA double-strand break
induction using human epidermal growth factor receptor-2 tar-
geted AuNPs relative to non-targeted NPs. Radiosensitization and
low-level DNA damage induction were observed without conju-
gation of trastuzumab, equating to a dose enhancement factor of
1.3 and increased g-H2AX foci yields of 1.7-fold over radiation
only. However, the targeting efficacy conferred by the monoclonal
antibody increased the radiosensitizing effect by two folds, and the
DNA damage yields by 3.28 folds. In vivo, the significance of this
translated into a 46% regression in tumour volume relative to
a 16% increase in radiation-only treated animals over a time-
matched period of 118 days.79

GENERAL MATERIALS AND METHODS FOR USE
OF GOLD NANOPARTICLES IN CELLS AND
MULTIPHOTON IMAGING
For MP plasmon resonance imaging, cells were seeded onto
sterile 16-mm2 round coverslips placed in six-well plates at a density

of 13 105 cells per well. Cells were left to propagate for 4–6 h
before treatment with 2-nm AuNPs at a concentration of 12mM
for 24 h. Cells were then fixed with a solution of 50% acetone
and 50% methanol for 10 min before being washed with
phosphate-buffered saline (PBS) and nuclei stained with 4’,
6-diamidino-2-phenylindole (DAPI) at a concentration of
20mgml21 for 10 min. DAPI was removed and cells were
washed in PBS twice before being mounted onto glass micro-
scope slides with 5ml of VECTASHIELD® Mounting Media (Vector
Labs Ltd, London, UK) and sealed with nail varnish.20

To detect the AuNPs’ localization in cells, the samples were illu-
minated with tightly focused (,500-nm beam waist) laser pulses of
short duration (approximately 200 fs) through a 360 water im-
mersion objective (NA 1.20), at a wavelength of 580–900nm. The
wavelength (.700nm) and characteristic pulses were produced
using either the titanium–sapphire laser (Mira 900F; Coherent Ltd,
Ely, UK) or an optical parametric oscillator (,650nm) (OPO;
APE, Berlin, Germany) pumped by the titanium–sapphire laser.
The decay of the SPR resulted in both visible and UV photons,
which after passing through an UV bandpass filter (U340; Comar
Instruments, Cambridge, UK), was detected using a R3809-U
photomultiplier tube (Hamamatsu Photonics, Hamamatsu City,
Shizuoka Pref., Japan). The lifetime of the decay was measured

Figure 6. Schematic layouts of the modifications to the standard Nikon confocal microscope for multiphoton (MP) excitation and

fluorescence lifetime imaging microscopy (FLIM) to enable plasmon resonance imaging of gold nanoparticles. Reproduced from

Botchway et al with permission from John Wiley and Sons.77 CCD, charge coupled device; CFD, constant fraction discriminator;

CLSF, eclipse (version 1 and 2), confocal laser scanning fluorescence; CW, continuous wave; MCP-PMT, micro-channel plate

photomultiplier tube; ND, neutral density; NIR, near-infrared.
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using a Becker & Hickl time-correlated single-photon counting
system (SPC830) and analysis software (SPCImage v. 3.9; Becker &
Hickl GmbH, Berlin, Germany). This process was repeated many
times as the laser was raster-scanned across the sample to accu-
mulate the signal depending on the concentration of AuNPs and
intensity recorded. For each location, the lifetime spectrum was
analysed in terms of a fast and slow component to generate an
image of the subcellular AuNPs distribution since the fast com-
ponent corresponds to the decay of the plasmon resonance of the
AuNPs while the slow component arises from non-linear excitation
of the cytoplasm or nuclear DNA.

CONCLUSION
At the time of writing this review, there are no imaging tech-
niques capable of imaging AuNPs ,20 nm in size under phys-
iological conditions in cells. All the techniques described here
have some advantages and significant disadvantages. However,
the MP plasmon resonance combined FLIM is proving to be
a powerful approach to imaging AuNPs and the clusters that
form upon accumulation in cells. The ability to co-register MP
(Au location) images with traditional confocal images is useful
for both mechanistic and uptake studies. In this regard, the fate
and speciation of AuNPs attached to other ligands may be fol-
lowed so that (a) the excited state lifetime of a ligand, if longer

than the extremely short plasmon resonance, may be used to
detect its location vs (b) that of the AuNPs if the two separate
upon uptake. Future developments should allow these benefits
to be extended to shorter times and with more comprehensive
dynamical information through the implementation of new data
acquisition modes to be used alongside live-cell imaging.

The mechanism of AuNP-induced tumour destruction and cell
killing is still being debated as the classical DNA damage, par-
ticularly double-strand breaks does not appear to apply. The
multimodality imaging and tumour therapy has been high-
lighted in some reports but not fully explored. It is expected that
these combinatorial therapy/imaging approaches described here
would gain in popularity and importance once the techniques
become better understood.
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