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Abstract
Entomopathogenic nematodes within the genus Steinernema are 
used as biological control agents against significant agricultural 
pests. Steinernema diaprepesi is native to Florida and very effective in 
controlling citrus root weevil, a devastating pest of citrus, ornamental 
plants, and vegetables. Here, we present the draft genome of 
Steinernema diaprepesi, which is a valuable tool for understanding 
the efficacy of this nematode as a biological control agent.
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Citrus root weevil, Diaprepes abbreviates, is an 
important pest of citrus, ornamental plants, and other 
vegetables in Florida and is spreading throughout 
southern Texas and southern California (Lapointe et al., 
2007; Stuart et al., 2008; Cherry et al., 2011). Root 
weevil is polyphagous, its increasing geographical 
distribution has made them a subject of quarantine 
and eradication programs (Stuart et al., 2008; 
Campos-Herrera et al., 2015). Soil-applied halogenated 
hydrocarbons are effective against this insect, but 
have since been deregistered. Currently, there are no 
effective registered pesticides against this insect pest 
(Campos-Herrera et al., 2015). Studies on the use of 
biological control agent to manage this weevil has been 
of interest for the past couple of decades (Beavers  
et al., 1983; Shapiro et al., 2000) and as a result, the 
use of entomopathogenic nematodes as control 
agents was found to be effective on D. abbreviates 
larva (McCoy et al., 2002; Ali et al., 2010; Duncan et al., 
2013). Entomopathogenic nematodes endemic to 
citrus growing regions in Florida include Steinernema 
diaprepesi and S. khuongi and their role in determining 
the distribution of root weevil is also evident (Nguyen 
and Duncan, 2002; Duncan et al., 2003; Stuart et al., 
2008; Campos-Herrera et al., 2013; Stock et al., 2018).

The endemic entomopathogenic nematode 
S. diaprepesi is commercially applied to control citrus 
root weevil. As an obligate parasite, S. diaprepesi 
relies on the toxin produced by its symbiotic bacteria 
Xenorhabdus doucetiae to kill insect hosts (Goodrich-

Blair and Clarke, 2007; Stock and Blair, 2008; Castillo 
et al., 2011). The genome of any organism is the basis 
of the biological, molecular, and cellular processes 
that are vital for development and reproduction as 
it encodes the entire inheritance message of living 
organisms. Improved understanding of the genome 
aid in the knowledge of complex gene networks, 
molecular mechanisms of underpinning symbiosis 
and pathogenicity, and also provides a foundation for 
engineering trait improvements (Bolger, Weisshaar, 
Scholz, Stein, Usadel and Mayer, 2014; Lu et al., 2016; 
Rodríguez-Leal et al., 2017). The full genome sequence 
of X. doucetiae is currently available and provides a 
resource for understanding the evolution of virulence 
genes in bacteria. However, there is little information 
about the genome of the nematode (Ogier et al., 2014).

In this study, the genome of S. diaprepesi was 
sequenced and assembled. This information will 
be very valuable to understand the mechanism 
of evolution, molecular processes that determine 
parasitism and symbiosis within this complex system 
followed by the genetic features that make this 
nematode more effective against citrus root weevil 
and the extent of their host range.

Nematode samples for genome sequencing 
were received from Dr. Duncan’s lab at UF/IFAS 
Citrus Research and Education Center. To confirm 
the identity of nematodes, we sequenced the ITS 
region of the ribosomal DNA. The primers used were 
AB28: 5´-ATATGCTTAAGTTCAGCGGGT-3´ and TW81: 



2

A draft genome of Steinernema diaprepesi: Baniya et al.

5´-GTTTCCGTAGGTGAACCTGC-3´ The protocol for 
DNA extraction and condition for Polymerase chain 
reaction (PCR) amplification (reaction and cycling 
condition) were followed as Hominick et al. (1997) 
(Stock et al., 2018). The sequences were queried at 
the NCBI nucleotide database utilizing megablast with 
other sequences available at the GenBank using the 
BLASTn similarity search program. Finally, nematode 
was confirmed as S. diaprepesi with 99.07% identity. 
Approximately 10,000 freshly collected infective 
juveniles (IJ) were surface sterilized. Sterilized 
nematodes were flash-frozen in Liquid nitrogen and 
thawed twice for DNA extraction. High molecular 
weight genomic DNA was extracted using a phenol-
chloroform method (Donn et al., 2008). The DNA 
pellet was resuspended in 100 μ l Tris-EDTA buffer. 
University of Florida’s campus-wide Interdisciplinary 
Center for Biotechnology Research (ICBR) NextGen 
DNA Sequencing Core Facility (Gainesville, FL) 
performed library preparation and sequencing using 
MiSeq Illumina sequencing platform with 2X300v3 
format.

A total of ~22 million reads were generated, 
comprising 6.46 Gb using 300 bp paired-end sequen-
cing. The sequence quality of the raw reads was 
analyzed using FastQC (Andrews, 2010). Quality 
trimming, read filtering, and removing adapter con-
tamination were performed using Trimmomatic/0.36 
(Bolger, Lohse and Usadel, 2014). Clean reads 
were subjected to De Novo assembly using the 
SPAdes/3.13.0 assembler (Bankevich et al., 2012) with 
Kmer size of 21, 33, 55, 77, 99, and 127. Assembly 
obtained from kmer 127 was used for downstream 
evaluation based on fewer contigs and higher N50. 
Preliminary genome assembly was likely contaminated 
with the symbiotic bacteria, fungal, and bacterial 
contaminants. To remove possible bacterial sequences, 
a sequence search using Blastn of all the contigs was 
conducted against the NCBI nucleotide database (with 
E-value cutoff <1e−05), and taxonomy was assigned 
to each contig. Each raw read was mapped to contigs 
using Bowtie2 (Langmead and Salzberg, 2012). Finally, 
the assembly was decontaminated using Blobtools 
v1.0 (Laetsch and Blaxter, 2017), which removed all 
bacterial contigs. Additionally, all contigs below 500 bp 
were removed from the final assembly. The quality of 
the draft assembly was determined by Quast (Gurevich 
et al., 2013). The draft genome presented here of 
S. diaprepesi contains 118 MB distributed among 
35,545 contigs with contigs N50s of 11,474 bp and GC 
45.01% with the longest contigs of 1,706,490 bp. There 
were zero N’s per 100 kbp within this assembly. We 
assessed the genome for completeness using BUSCO 
(Simão et al., 2015). A total of 982 BUSCOs in the 

Nematoda dataset were used, and our draft genome 
of S. diaprepesi had a complete BUSCO score of 85%. 
Most of these genes are single-copy loci at 79.6%, 
with 5.4% complete and duplicated BUSCOs, 7.1% 
fragmented BUSCOs, and 7.9% missing BUSCOs. 
Prediction of protein-coding genes above 1,000 bp 
contigs was carried out by using GenMark-ES/4.33 
tool (Borodovsky and McIninch, 1993), which predicted 
15,094 genes (Table 1).

Due to the draft nature of this genome, it is 
incomplete, and we expect to see genome size 
variation between different isolates of the same 
nematode as Steinernema feltiae 82.5 Mb (Dillman 
et al., 2015) and 121.6 Mb (Fu et al., 2020). To confirm 
the genome size, checking for heterozygosity among 
the reads or using flow cytometry could provide a 
more accurate estimation. In its current state, this 
draft genome can provide support for comparative 
genomics of Steinernema nematodes, understand 
the evolution of genome network, genomic variation 
between different isolates, evolutionary process, 
and enable the functional genomics among entomo-
pathogenic nematodes.

The Whole Genome Project of S. diaprepesi is 
deposited at GenBank under the accession number 
JAANPW000000000. All DNA sequence data 
are deposited in GenBank under Biosample No. 
SAMN14073714 Bio project No. PRJNA605202.

Table 1. Summary Statistics of the 
Assembly of Steinernema diaprepesi.

Assembly statistics

Size (bp) 118,329,602

Number of contigs 35,545

Largest contigs (bp) 1,706,490

GC content (%) 45.01

N50 value (bp) 11,474

N’s per 100 kbp 0

Number of predicted genes 15,094

Complete BUSCOs 835 (85%)

Complete and single-copy BUSCOs 782 (79.6%)

Complete and duplicated BUSCOs 53 (5.4%)

Fragmented BUSCOs 70 (7.1%)

Missing BUSCOs 77 (7.9%)
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