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ABSTRACT

Objective: In applying machine learning (ML) to electronic health record (EHR) data, many decisions must be

made before any ML is applied; such preprocessing requires substantial effort and can be labor-intensive. As

the role of ML in health care grows, there is an increasing need for systematic and reproducible preprocessing

techniques for EHR data. Thus, we developed FIDDLE (Flexible Data-Driven Pipeline), an open-source frame-

work that streamlines the preprocessing of data extracted from the EHR.

Materials and Methods: Largely data-driven, FIDDLE systematically transforms structured EHR data into feature

vectors, limiting the number of decisions a user must make while incorporating good practices from the litera-

ture. To demonstrate its utility and flexibility, we conducted a proof-of-concept experiment in which we applied

FIDDLE to 2 publicly available EHR data sets collected from intensive care units: MIMIC-III and the eICU Collabo-

rative Research Database. We trained different ML models to predict 3 clinically important outcomes: in-

hospital mortality, acute respiratory failure, and shock. We evaluated models using the area under the receiver

operating characteristics curve (AUROC), and compared it to several baselines.

Results: Across tasks, FIDDLE extracted 2,528 to 7,403 features from MIMIC-III and eICU, respectively. On all

tasks, FIDDLE-based models achieved good discriminative performance, with AUROCs of 0.757–0.886, compa-

rable to the performance of MIMIC-Extract, a preprocessing pipeline designed specifically for MIMIC-III. Further-

more, our results showed that FIDDLE is generalizable across different prediction times, ML algorithms, and

data sets, while being relatively robust to different settings of user-defined arguments.

Conclusions: FIDDLE, an open-source preprocessing pipeline, facilitates applying ML to structured EHR data. By

accelerating and standardizing labor-intensive preprocessing, FIDDLE can help stimulate progress in building

clinically useful ML tools for EHR data.
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INTRODUCTION

To date, researchers have successfully leveraged electronic health re-

cord (EHR) data and machine learning (ML) tools to build patient

risk stratification models for many adverse outcomes, including

healthcare–associated infections,1–3 sepsis and septic shock,4,5 acute

respiratory distress syndrome,6 and acute kidney injury,7,8 among

others.9 Though these works take advantage of ML techniques,

prior to applying ML, substantial effort must be devoted to prepro-

cessing. EHR data are messy, often consisting of high-dimensional,

irregularly sampled time series with multiple data types and missing

values. Transforming EHR data into feature vectors suitable for ML

techniques requires many decisions, such as what input variables to

include, how to resample longitudinal data, and how to handle miss-

ing data, among many others.

Currently, EHR data preprocessing is largely ad hoc and can

vary widely between studies. For example, on the same task of pre-

dicting in-hospital mortality, Silva et al10 (in PhysioNet/CinC chal-

lenge 2012) used 41 input variables, while Harutyunyan et al11 used

17 input variables. To handle missing values, Purushotham et al12

used mean imputation, whereas Harutyunyan et al11 used prespeci-

fied “normal” values. This heterogeneity in the steps preceding the

application of ML makes it difficult to meaningfully compare differ-

ent ML algorithms and ensure reproducibility. To this end, research-

ers have proposed preprocessing pipelines, such as MIMIC-

Extract.13 However, such pipelines make assumptions that do not

necessarily generalize to new data sets. As the role of ML in health

care expands, there is an increasing need for the systematization of

generalizable preprocessing techniques for EHR data.

In an effort to speed up and standardize the preprocessing of EHR

data, we propose FIDDLE (Flexible Data-Driven Pipeline), which sys-

tematically transforms structured EHR data into representations that

can be used as inputs to ML algorithms. Our proposed approach is

largely data-driven and incorporates good practices from the litera-

ture. FIDDLE was designed to work out of the box with reasonable

default settings, but it also allows users to customize certain argu-

ments and incorporate task-specific domain knowledge. While it

applies broadly to structured clinical data, we evaluated FIDDLE

through a proof-of-concept experiment in the context of MIMIC-III

and the eICU Collaborative Research Database: 2 different but widely

used large-scale EHR data sets that represent health data collected in

intensive care units (ICUs) throughout the United States.14,15 We dem-

onstrate the pipeline’s utility and flexibility across a variety of clini-

cally important prediction tasks and several common ML algorithms.

The code for FIDDLE and all analyses is open source (https://gitlab.

eecs.umich.edu/MLD3/FIDDLE). Though FIDDLE is not a one-size-

fits-all solution to preprocessing and further work is needed to test the

limits of its generalizability, it can help accelerate ML research applied

to EHR data. By reducing the time and effort spent on labor-intensive

data preprocessing steps, FIDDLE streamlines the process. Moreover,

it provides an easily shareable and reproducible baseline, presenting

researchers with a quick and reasonable starting point.

MATERIALS AND METHODS

FIDDLE is an open-source preprocessing pipeline for structured

data extracted from the EHR (Figure 1). Preprocessing EHR data

for ML presents numerous challenges (Table 1), many of which are

not unique to EHR data and arise in other settings. In the subsec-

tions below, we describe how FIDDLE tackles these challenges in

the context of EHR data.

Input and output
FIDDLE takes as input tabular data with 4 columns—ID, t, var-

iable_name, and variable_value—where ID is a unique iden-

tifier for each example and t is the time of recording, measured

relative to a fiducial marker (eg, time of admission, t¼0). Gener-

ally, an ID may have multiple rows representing recordings of differ-

ent variables at different times. When t is null, the pipeline assumes

a time-invariant value recorded once (eg, baseline variables like

“age” and “sex”). Each variable_name uniquely encodes the

name of a variable (eg, “heart rate” and “white blood cell count”)

and is consistent across all IDs. The variable_value column

may contain numbers (eg, heart rate of “72” beats per minute) or

strings (eg, “abdominal pain”) and cannot be null. Each varia-

ble_name can be automatically classified as either numerical or

categorical, based on the associated variable_value type. A user

can always override the type of a variable_name to be either nu-

merical, categorical, or hierarchical (eg, International Classification

of Diseases [ICD]/current procedure terminology [CPT] codes,

where the user can specify which level[s] of the hierarchy to con-

sider). We do not make assumptions regarding the completeness of

the data; it is likely that not every ID will have a value associated

with every variable_name.

Given data in the format described above and a set of user-

defined arguments (Table 2), FIDDLE generates feature vectors

based on data within the observation period t 2 ½0;T�. This feature

representation can be used to make predictions at t ¼ T regarding

whether an outcome will occur after T. Tables 2 and 3 summarize

FIDDLE’s inputs and outputs. More specifically, FIDDLE outputs

f si; xið Þ for i ¼ 1 . . . Ng, a set of features for each example i, where

si 2 R
d contains time-invariant features and xi 2 R

L�D contains

time-dependent features. Here, N refers to the number of examples

(unique IDs in the data table), L ¼ bT=dtc is the number of time-

steps after “windowing” (ie, resampling) the observation period ½0;
T� into time bins of size dt. The dimensionalities of the time-

invariant and time-dependent features are denoted by d and D, re-

spectively. To generate these feature vectors, FIDDLE processes the

formatted data in 3 steps—(1) pre-filter, (2) transform, and (3) post-

filter—as illustrated in Figure 1 and described below.

Processing steps
Pre-filter

First, rows with timestamp t outside the observation period 0;T½ �
are eliminated and variables that occur rarely are removed. Specifi-

cally, all rows with a variable_name that appears in � h1 � 100

% of examples are filtered out. That is, if a specific drug is adminis-

tered to only 1% of examples and h1 ¼ 0:05, then rows/observations

involving this drug are removed. This step speeds up downstream

analyses, though aggressive filtering could result in a potential loss

of useful information.

Transform

Processing continues based on the timestamp types. If the timestamp

t of a variable_name is null, then data corresponding to that

variable_name are processed as “time-invariant”; otherwise,

those data are processed as “time-dependent” to capture dynamics

and longitudinal patterns.

Time-invariant data. All time-invariant data are concatenated into a

table bS of shape N � bd, where each row corresponds to a single ID

and each column pertains to a time-invariant variable. If a variable
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is not available for a particular ID, then that row-column pair is set

to null.

Time-dependent data. All time-dependent data are concatenated

into a tensor bx of shape N � L� bD, similar to above but with an ad-

ditional temporal dimension L. Here, we provide a high-level over-

view of the processing steps; additional details are available in the

code and in Supplementary Appendix 1. Each 1� L� bD slice in the

tensor corresponds to a single ID and contains the values of all bD

processed time-dependent variables over the L time bins. The pipe-

line processes “non-frequent” and “frequent” variables differently

(a numeric variable is considered “frequent” if recorded > hfreq

times on average over all N examples and all L time bins). Each

“non-frequent” variable is simply represented by its most recent

Figure 1. Overview of FIDDLE. Given formatted input data and user-defined arguments, FIDDLE processes data in 3 stages: (1) pre-filter, (2) transform, and (3)

post-filter. So long as the units are consistent, timestamps in the t column may be recorded at any level of granularity (eg, seconds, minutes, hours, days, visits,

etc.). In this sample input file, we consider time in hours. A row with [1, 0.2, Heart Rate, 72] corresponds to a patient with ID¼1 with a heart rate¼72 bpm

recorded at t¼0.2 h. In (1) pre-filter, FIDDLE eliminates rare variables. In (2) transform, FIDDLE transforms data into tensors containing time-invariant and time-

dependent features. In (3) post-filter, FIDDLE removes redundant features and features that are likely uninformative. The output consists of binary vectors si and

xi , describing the features for each ID. bpm: beats per minute; FIDDLE: Flexible Data-Driven Pipeline: ID: unique identifier; KCl: potassium chloride; WBC: white

blood cell.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 12 1923



Table 1. Challenges in preprocessing EHR data and FIDDLE’s solution

Challenges Example Solutions in FIDDLE

Some data have associated timestamps, while

others do not

• Sex is recorded once at the time of admis-

sion and typically does not have a time-

stamp;
• Administration of medications is time-

stamped.

Handle time-invariant and time-dependent data sepa-

rately.2,16,17

Data have heterogeneous types
• Categorical
• Numerical
• Hierarchical

• Drug route is categorical: oral, IV
• Heart rate is numerical: 70 bpm
• ICD-9 code is hierarchical

Different representations for each value type
• Categorical: one-hot encoding18

• Numerical: 3 options19,20

• Kept as continuous;
• Binned into quintiles and one-hot encoding; or
• Binned into quintiles and ordinal encoding.

• Hierarchical: user specifies which level(s) of the hier-

archy to encode; values are converted internally to

categorical values.21,22

Data are sparse and irregularly sampled, and

different variables can have different fre-

quencies of recording

• Vital signs, such as temperature or heart

rate, may be measured multiple times per

day at different intervals; and
• Laboratory tests are run infrequently (eg,

once/twice every day).

• Irregular sampling: resample data into time bins, de-

fined by the user input (dt, temporal granularity);23

and
• Different recording frequencies: handle “frequent”

and “non-frequent” variables differently (deter-

mined by a user-defined threshold hfreq), capturing

richer information for “frequent” variables (see be-

low).

After resampling the data according to some

temporal granularity (dt) we might have:
• Multiple recordings within a time bin; and
• Not every time bin will have a recording

(missing values)

• Multiple (potentially different) heart rate

values within an hour; and
• Temperature measurements were inter-

rupted when a patient is transferred be-

tween ICU wards.

• Multiple recordings per time bin: use the most re-

cent recording.
• Calculate summary statistics for “frequent”

variables.1

• Missing values:
• Imputation with carry-forward;24–26 and
• Keep track of “presence mask” and “delta time”

(how long the value has been imputed).27,28

High-dimensional feature space
• Some features are rarely recorded or nearly

constant; and
• Some features are correlated or duplicated.

Data extracted from the EHR typically con-

tain hundreds, if not thousands, of varia-

bles, including medications, labs, CPT

codes, etc.

• Feature selection, filter out potentially uninforma-

tive features;29–33 and
• Combine duplicate features into a single feature,

renaming the features where appropriate.34

Note: bpm: beats per minute; CPT: current procedure terminology; EHR: electronic health record; FIDDLE: Flexible Data-Driven Pipeline; ICD-9: Interna-

tional Classification of Diseases, Ninth Edition; ICU: intensive care unit; IV: intravenous.

Table 2. Summary of notation in user-defined arguments of FIDDLE

Argument Description

T A positive number specifying the time of prediction; ½0;T� is the observation period to consider when processing time-depen-

dent data. The unit of T could be minutes, hours, days, etc., and must be the same as the unit of dt.

dt A positive number specifying the temporal granularity (eg, hourly vs daily) at which to resample the time-dependent data.

The unit of dt must be the same as the unit of T.

h1 A value between 0 and 1 specifying the threshold for the pre-filter step.

h2 A value between 0 and 1 specifying the threshold for the post-filter step.

hfreq A positive number specifying the threshold, in terms of the average number of measurements per time window, at which we

deem a variable “frequent” (for which summary statistics will be calculated).

f/gK
j¼1 A set of K statistics functions (eg, min, max, mean). Each function takes as input 1 or more recordings within a time bin and

outputs a single summary statistic. These functions are only applicable to “frequent” variables, as determined by hfreq.

discretize A Boolean flag (default value: True) specifying whether features with numerical values are kept as raw values or discretized

into binary features.

discretization_encoding A string specifying how numerical values are encoded into binary features after discretization. Possible values are: “one-hot”

(default) and “ordinal.” This argument is ignored and should not be used when discretize¼False.

Note: FIDDLE: Flexible Data-Driven Pipeline.
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recorded value for every time bin (null if not available). To encode

information within each time bin, each “frequent” variable is

mapped to 3þ K processed variables: (1) value, (2) mask, (3) delta

time, and (4) K summary statistics resulting from f/gK
j¼1. Missing

values are handled with carry-forward imputation,26 as it makes

fewer assumptions about the data and is potentially more feasible to

implement in real time.24,25 As EHR data are assumed “missing not

at random,” the imputed values are tracked by a “mask” (indicating

presence) and “delta time” (the number of time bins since the previ-

ous non-imputed measurement).27,28 Finally, all processed time-

dependent variables are concatenated together, resulting in bD ¼M1

þ 3þ Kð ÞM2 dimensions for M1 “non-frequent” variables and M2

“frequent” variables.

The pipeline then discretizes categorical variables into binary

features using a one-hot encoding.2,3,6 If the “discretize” option is

set to true, numerical variables are first quantized based on quin-

tiles19 and then mapped to binary features using a one-hot or an or-

dinal encoding (as specified by the user); otherwise, each numerical

variable is used as a feature (raw values are used to preserve inter-

pretability; standardization/normalization might be necessary

depending on the ML algorithm). Missing entries (null) are

mapped to 0s in all categories/bins. The final output of this step is

a matrix ~S 2 R
N�~d and a tensor ~X 2 R

N�L� ~D , where ~d and ~D are

the dimensions of time-invariant/time-dependent features after

discretization.

Post-filter

After the data are transformed, features that are equal to 1 (or 0) in �
h2 � 100% of examples are removed (where h2 is small: eg, 0.01).30–

33 This removes features that are unlikely to be informative. Each

group of duplicated features (ie, features that are pairwise perfectly

Table 3. Symbols used to describe FIDDLE’s implementation

Symbol Shape Description

N – The number of examples.

L – The number of time bins, calculated as bT=dtc.
bd, bD – The number of input variables that are time-invariant/time-dependent after the pre-filter step.
~d, ~D – The dimensionalities of time-invariant / time-dependent features after the transform step and before the post-filter step.

d, D – The final dimensionalities of time-invariant / time-dependent features.
bS N � bd Data tables containing values of raw time-invariant/time-dependent values after the pre-filter step.
bX N � L� bD
~S N � ~d Tensors containing the time-invariant/time-dependent features for all N examples, after the transform step and before the

post-filter step.~X N � L� ~D

S N � d Tensors containing the final time-invariant/time-dependent features for all N examples.

X N � L�D

Note: FIDDLE: Flexible Data-Driven Pipeline.

age
18-51 52-62 63-71 72-80 >80

0 1 0 0 0

sex
Male

0

used 1-2 3-4 5-6 7-8 >8 IV drug 
push

0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

insulin
dosage route

0-1h

1-2h

2-3h

3-4h

ID t variable_name variable_value

2 1.5 insulin used 1

2 1.5 insulin dosage 3

2 1.5 insulin route drug push

ID t variable_name variable_value

1 NULL sex female

1 NULL age 55

FIDDLE

FIDDLE

A

B

Figure 2. Examples of FIDDLE input and output for time-invariant and time-dependent data. In this example, each ID represents a patient (an example). Time-

stamps are recorded in hours. Only the subset of input/output relevant for illustration is shown. The bins for numerical variables and the categories for categorical

variables are automatically determined from the entire input data table (not shown). (A) Time-invariant input data and output features for Patient 1. Patient 1 is fe-

male with an age of 55. The feature “sex ¼ female” is dropped in the post-filter step because it is perfectly correlated with “sex ¼ male.” (B) Time-dependent in-

put data and output features for Patient 2. At t¼ 1.5 h, Patient 2 had an insulin administration of 3 units via drug push. No imputation in 2–4 h is done, since the 3

variables related to insulin are not considered “frequent,” resulting in 0 s in the output features for the corresponding time bins. FIDDLE: Flexible Data-Driven

Pipeline; ID: unique identifier; IV: intravenous.
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correlated) are then combined into a single feature. This produces a

matrix S 2 R
N�d and a tensor X 2 R

N�L�D, with d time-invariant fea-

tures and D time-dependent features where d � ~d and D � ~D.

These preprocessing steps produce a data representation that can

be used as input to ML algorithms. Figure 2 illustrates how FIDDLE

can transform formatted EHR data into feature vectors, providing

examples for both time-invariant and time-dependent data.

Additional details of FIDDLE and guidelines on argument settings

are described in Supplementary Appendix 1.

Experiments
To demonstrate that FIDDLE generalizes across data sets and

produces useful features, we consider its use across a number of

different prediction tasks. We performed a proof-of-concept experi-

ment where we applied FIDDLE to 2 different EHR data sets, train-

ing and evaluating various ML models for a set of clinically relevant

prediction tasks. Here, the goal was not to train state-of-the-art

models, but produce a reasonable representation from which one

could rapidly iterate. We measured the predictive performance of

the learned models as a proxy for the utility of FIDDLE as a feature

preprocessing pipeline.

Data

In our experiments, we used the MIMIC-III database14 and the

eICU Collaborative Research Database,15 interpreting each ICU visit

as a unique example. Tables in the 2 data sets encompass many dif-

ferent aspects of patient care: demographics, physiological measure-

ments, laboratory measurements, medications, fluid output,

microbiology, and so forth. These tables contain both observations

and interventions, and can have numerical or categorial values. Ad-

ditional information about the data extraction process can be found

in Supplementary Appendix 2.

From MIMIC-III,14 we focused on 17,710 patients (23,620 ICU

visits) monitored using the iMDSoft MetaVision system (2008–

2012) for its relative recency over the Philips CareVue system

(2001–2008), thus representing more up-to-date clinical practices.

Each ICU visit is identified by a unique ‘ICUSTAY_ID’, for which

we extracted data from 10 structured tables (Table 4).

The eICU15 database consists of data from 139,367 patients

(200,859 ICU visits) who were admitted to 200 different ICUs lo-

cated throughout the United States in 2014 and 2015. Each ICU visit

is identified by a unique ‘patientunitstayid.’ Similar to above, we

extracted data from 18 structured tables that pertain to patient

health (Table 5).

The code to extract and format MIMIC-III and eICU data is

provided in our implementation. When mapping data from raw

database tables to the appropriate format as input to FIDDLE,

we worked closely with a critical care physician (MWS) to ensure

the mapping was appropriate (details are in Supplementary

Appendix 2).

Clinical outcomes

In our evaluation of FIDDLE, we trained ML models to predict in-

hospital mortality, acute respiratory failure (ARF), and shock.35,36

Interpreting each ICU stay as an example, we developed pragmatic

outcome definitions (see Supplementary Appendix 3) based on the

clinical experience of a critical care physician (MWS). In contrast

to previous definitions based on ICD diagnosis codes,11 we focused

on clinical data indicating the onset of events (eg, mechanical ven-

tilation and administration of vasopressors), since records of ICD

codes do not indicate the time of onset and may correspond poorly

to the actual diagnoses.37,38 Our clinical-based definitions for these

2 decompensation tasks more accurately reflect the timing of out-

comes. For ARF and shock, we defined onset time as the earliest

time the outcome criteria (Supplementary Appendix 3) were met.

Applying FIDDLE to MIMIC-III and eICU

We defined 5 prediction tasks, each with a distinct study cohort

(Figure 3; Supplementary Appendix 3). In all analyses, we excluded

neonates and children (age <18) because their physiology and risk

factors differ from adults.11,39 We did not attempt to exclude

patients with treatment limitations (eg, those who may be placed on

comfort measures), given the difficulty in identifying this status reli-

ably across data sets. While this allows us to compare with previous

work,11,13 it could ultimately make the prediction tasks easier and

limit the clinical utility of the learned models. For in-hospital mor-

tality, we used T ¼ 48 hours to predict whether the outcome would

occur after T following existing work.11 For ARF and shock, we

used both T ¼ 4 hours and T ¼ 12 hours. Examples (ICU stays)

with an event onset time before T, or discharges and deaths before

T, were excluded. For the eICU data, we also excluded examples for

which the ground truth labels could not be reliably determined due

to a lack of sufficient documentation.15 Specifically, for ARF and

shock, we excluded entire hospitals without any relevant ventilation

records or vasopressor records, respectively.

These 5 tasks correspond to a single prediction based on a fixed

look-back period; in the Supplementary Material, we further dem-

onstrate how FIDDLE applies to (1) multiple predictions over the

prediction window using a sequence-to-sequence long short-term

memory network model (Supplementary Appendix 8.1), and (2) pre-

dicting the 90-day post-discharge mortality of MIMIC-III patients

using clinical data in ICUs and ICD codes at discharge (Supplemen-

tary Appendix 8.2). These additional experiments illustrate how

FIDDLE can be applied more broadly and even handle hierarchical

values.

When applying FIDDLE to the 5 cohorts on MIMIC-III, we used

the following user-defined arguments (Tables 2 and 3): dt ¼ 1;

h1 ¼ h2 ¼ 0:001; hfreq ¼ 1; K ¼ 3 (/1 ¼ min, /2 ¼ max,

/3 ¼ mean); discretize¼True; and discretization_encoding ¼ “one-

hot.” These settings were determined based on how often the varia-

bles were recorded and the class balance within each cohort, in line

with our recommendations in Supplementary Appendix 1. On the

eICU cohorts, because of the large sample size and feature space, we

used more aggressive filtering thresholds (mortality:

h1 ¼ h2 ¼ 0:01; 4-hour tasks: h1 ¼ h2 ¼ 0:001; 12-hour tasks:

h1 ¼ 0:01; h2 ¼ 0:001). To understand the effect of user-defined

arguments on the utility of the features generated by FIDDLE, we

also tested FIDDLE using (1) different filtering thresholds,

h ¼ h1 ¼ h2; (2) temporal granularities, dt; (3) a continuous versus

one-hot encoding versus ordinal encoding representation; and (4)

carry-forward imputation versus median imputation versus no im-

putation (results are reported in Supplementary Appendix 7.5).

Model training and evaluation

We used the features generated by FIDDLE directly as input to 4

classification algorithms: penalized logistic regression (LR), random

forest (RF), 1-dimensional convolutional neural networks (CNN),

and long short-term memory networks (LSTM), adapting the fea-

tures depending on the model type. For models expecting flat input

(LR and RF), we flattened the time-dependent features xi and

1926 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 12



concatenated them with the time-invariant features si, resulting in a

feature vector of shape R
LDþd. For models expecting sequential in-

put (CNN and LSTM), we repeated the time-invariant features si at

every time-step of xi;
16 resulting in a feature matrix of shape

R
L�ðdþDÞ.

We randomly assigned each patient to either the train or the test parti-

tion, and then split each study cohort into train and test sets (containing

ICU stays) accordingly. Hyperparameters (Supplementary Appendix 5)

were selected using the training/validation data and a random search40

with a budget of 50, maximizing the average area under the receiver oper-

Table 4. Summary of MIMIC-III tables used in our analysis

MIMIC-III

Table name Description Example variables

PATIENTS Information on unique patients Age, Sex

ADMISSIONS Information on unique hospitalizations Admission type

Admission location

ICUSTAYS Information on unique ICU stays Care unit

Ward ID

Admission-to-ICU time

CHARTEVENTS Charted data, including vital signs, and other information relevant to

patients’ care

Heart rate

Pain location

Daily weight

LABEVENTS Laboratory test results from the hospital database Lactate

WBC

INPUTEVENTS_MV Fluid intake administered, including dosage and route (eg, oral or

intravenous)

NaCl 0.45%

Whole blood

OUTPUTEVENTS Fluid output during the ICU stay OR urine

Stool

PROCEDUREEVENT_MV Patients’ procedures during the ICU stay CT scan

X-ray

MICROBIOLOGYEVENTS Microbiology specimen from hospital database Sputum

DATETIMEEVENTS Documentation of dates and times of certain events Last dialysis

Pregnancy due

Note: We used all structured tables that pertain to patient health.

CT: computed tomography; ICU: intensive care unit; ID: unique identifier; OR: operating room; WBC: white blood cell.

Table 5. Summary of eICU tables used in our analysis

eICU

Table name Description Example variables

patient Information on unique patients, hospitalizations, and ICU stays Age, Sex

Hospital/ward ID

vitalPeriodic

vitalAperiodic

Vital signs measured through bedside monitors or invasively Temperature

End Tidal CO2

lab

customLab

Laboratory tests CPK

troponin - I

medication

infusionDrug

intakeOutput

Active medication orders, the intake of drug through infusions, and intake/output of fluids Morphine dosage

Dialysis total

microLab Microbiology cultures taken from patients Culture site (wound)

Organism

note

nurseAssessment

nurseCare

nurseCharting

Documentation of physician/nurse assessment Abdominal pain

Psychological status

Respiratory rate

pastHistory Relevant past medical history Transplant

AIDS

physicalExam Results of physical exam (structured) Blood pressure

Verbal score

respiratoryCare

respiratoryCharting

Respiratory care data Airway position

Vent details

treatment Structured data documenting specific, active treatments Thrombolytics

Note: We used all structured tables that pertain to patient health.

AIDS: acquired immunodeficiency syndrome; CPK: creatine phosphokinase; ICU: intensive care unit; ID: unique identifier.
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ating characteristics curve (AUROC). Due to the large sample size, deep

models (CNN and LSTM) on the eICU data were given a budget of 5.

Models were evaluated on the held-out test sets in terms of the receiver

operating characteristic curve (ROC), precision-recall curve (PR), and cali-

bration performance. We also measured the area under the ROC and PR

curves (AUROC and AUPR, respectively). Empirical 95% confidence

intervals (CIs) were estimated using 1000 bootstrapped samples of the test

set. When comparing model performance, statistical significance was de-

termined using a resampling test on the same 1000 bootstraps,41 with a

Bonferroni correction for multiple hypothesis testing where appropriate.42

All experiments were implemented in Python 3.6,43 Scikit-

learn,44 and Pytorch.45 The code for FIDDLE and all analyses is

open-source and available online, along with documentation and

further usage notes (Supplementary Appendix 1).

Baseline MIMIC-Extract

Increasingly, ML researchers in the clinical domain are sharing pre-

processing code, leading to improved reproducibility.11–13 However,

there exist limited efforts in developing generalizable tools for EHR

feature extraction. Most closely aligned with our goal is MIMIC-Ex-

tract,13 a recently developed data extraction and preprocessing pipe-

line that transforms EHR data from MIMIC-III into data frames

used for common ML models. Specific to MIMIC-III, it includes

outlier detection and the aggregation of semantically equivalent

features. However, due to this specificity, it does not readily port to

other data sets (eg, the eICU data). In our experiments, for each pre-

diction task on MIMIC-III we compared FIDDLE to MIMIC-

Extract following Wang et al’s13 implementation (see Supplemen-

tary Appendix 6 for details).

Source Popula�on 
ICU Stays in MIMIC-III

(2001-2012)
n = 61 532

Recorded in MetaVision
(2008-2012)
n = 23 620

Age ≥ 18
n = 23 593

Recorded in CareVue
n = 37 912

Age < 18
n = 27

Survival ≥ 4h
n = 23 499

Discharge ≥ 4h
n = 23 401

ARF < 4h
n = 7,528

Survival < 4h
n = 94

Discharge < 4h
n = 98

ARF Study Pop. (4h)
n = 15 873

4-hour Predic�ons

Shock Study Pop. (4h)
n = 19 342

Shock < 4h
n = 4,059

Survival ≥ 12h
n = 23 319

Discharge ≥ 12h
n = 23 060

ARF < 12h
n = 8,886

Survival < 12h
n = 274

Discharge < 12h
n = 259

ARF Study Pop. (12h)
n = 14 174

12-hour Predic�ons

Shock Study Pop. (12h)
n = 17 588

Shock < 12h
n = 5,472

In-hospital mortality Study 
Pop. (48h)
n = 8,577

Source Popula�on 
ICU Stays as defined in 

Harutyunyan et al. benchmark 
[11] 

n = 21 139

Recorded in MetaVision
n = 8,577

Recorded in CareVue
n = 12 562

In-hospital mortality task

Source Popula�on 
ICU Stays in eICU

(2014-2015)
n = 200 859

Age ≥ 18
n = 200 234

Age < 18
n = 625

Known mortality label
n = 199 108

Alive and in hospital at 48h
n = 77 066

Unknown label
n = 1,126

Death < 48h or 
Discharge < 48h
n = 122 042

In hospital mortality
Study Pop. (48h)

n = 77 066

In-hospital 
mortality

MIMIC-III eICU

From a hospital with 
vent/PEEP records

n = 191 178

Death < 4h or 
Discharge < 4h
n = 11 702

Unknown label
n = 9,056

ARF Study Pop. (4h)
n = 138 840

ARF

ARF Study Pop. (12h)
n = 122 619

Death < 12h or 
Discharge < 12h

n = 27 132

Alive and in hospital 
at 4h

n = 179 476

ARF < 4h
n = 40 636

ARF < 12h
n = 41 427

Alive and in hospital at 
12h

n = 164 046

From a hospital with 
infusion/med records

n = 198 382

Unknown label
n = 1,852

Shock

Death < 4h or 
Discharge < 4h
n = 11 966

Shock Study Pop. (4h)
n = 164 333

Shock Study Pop. (12h)
n = 144 725

Death < 12h or 
Discharge < 12h

n = 27 652

Alive and in hospital 
at 4h

n = 186 416

Shock < 4h
n = 22 083

Shock < 12h
n = 26 005

Alive and in hospital 
at 12h

n = 170 730

Figure 3. Harutyunyan et al11 definitions of the study cohorts. For each data set (MIMIC-III and eICU), we defined 5 prediction tasks, each with a distinct study co-

hort: in-hospital mortality at 48 h, ARF at 4 h, ARF at 12 h, shock at 4 h, and shock at 12 h. ARF: acute respiratory failure; ICU: intensive care unit; PEEP: positive

end-expiratory pressure.

Figure 4. Dimensionality of feature vectors for each prediction task on MIMIC-III. After applying FIDDLE to the MIMIC-III study cohorts, an ICU visit is represented

by time-invariant features and time-dependent features, both of which are high-dimensional. Though the number of time-invariant features is similar across

tasks, the number of time-dependent features varies because more data (likely corresponding to more variables) are collected for a later prediction time. FIDDLE:

Flexible Data-Driven Pipeline; ICU: intensive care unit.
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RESULTS

FIDDLE applied to MIMIC-III and the eICU data: study

cohorts and extracted features
The MIMIC-III study cohorts varied in size from 8,577 to 19,342

examples, whereas eICU varied from 77,066 to 164,333 examples

(Supplementary Appendix 3). The formatted input tables contained

up to 320 million rows. Applied to MIMIC-III and the eICU data,

FIDDLE produced feature vectors that varied in dimension from

4,143 to 7,403 and from 2,528 to 7,084, respectively. Later predic-

tion times T resulted in more time-dependent features, but the num-

ber of time-invariant features was approximately the same across all

tasks (Figure 4). The transform step identified 6 important vital

signs as “frequent” variables: heart rate, respiratory rate, tempera-

ture, systolic blood pressure, diastolic blood pressure, and peripheral

oxygen saturation. Since we set hfreq ¼ 1, this means these variables

were recorded more than once per hour on average across patients.

Examples of features generated by FIDDLE on the task of ARF

prediction (12 hours) from MIMIC-III are displayed in Tables 6 and

7. Time-invariant features correspond to age, sex, ICU locations,

and different sources of hospital admission (Table 6), whereas time-

dependent features cover a diverse range of descriptors, including vi-

tal signs, medications, laboratory results, and so forth. Much of the

information in the EHR is retained; for example, drug administra-

tions are described by both dosage and route (Table 7).

Applied to each cohort of MIMIC-III, FIDDLE extracted feature

vectors in approximately 30–150 minutes, depending on the size of

input data and argument settings. In contrast, MIMIC-Extract took

8 hours in total (including database operations, etc), but the feature-

processing stage alone took 1–2 hours. Due to the larger sample

sizes of eICU cohorts, processing took longer compared to MIMIC-

III (�10 hours using FIDDLE). In Supplementary Appendix 4, we

report detailed results on the runtime, the number of variables

remaining at each step, and the final feature dimensionalities for

each task.

Assessing the utility of FIDDLE
We measure the utility of FIDDLE by evaluating the performance of

ML models trained/tested on features generated by FIDDLE. We

summarize the results in Tables 8 and 9; extended results and com-

parisons to additional baselines are reported in Supplementary

Appendix 7.

FIDDLE across tasks and data sets

We hypothesized that the generated features are useful across the 2

data sets and the 5 prediction tasks (involving 3 outcomes and dif-

ferent prediction times). Comparing model performance across

MIMIC-III and eICU, the ML models performed similarly on each

task (Tables 8 and 9). Compared to MIMIC-Extract, FIDDLE-based

models achieved similar performance, despite the lack of data set–

specific curation (Table 8).

FIDDLE-generated features as input to different ML algorithms

To evaluate the generalizability of FIDDLE features across ML algo-

rithms, we compared the performance of the 4 ML algorithms on

the same prediction task. On MIMIC-III, for predicting ARF at 12

hours, all 4 ML models achieved good discriminative performance

(Figure 5A and B) and good model calibration (Figure 5C). Trends

were similar across the other 4 tasks (Table 8; Supplementary Ap-

pendix 7.2) and on eICU (Table 9; Supplementary Appendix 7.2),

supporting our claim that FIDDLE-generated features are useful for

common ML algorithms.

DISCUSSION

When applying ML to EHR data, researchers often fall back on easily

extracted, hand-selected features, because more comprehensive prepro-

cessing can be time intensive. In this work, we developed FIDDLE as

an open-source tool to streamline this process. In our proof-of-concept

experiments, features generated by FIDDLE led to good predictive per-

formance across different outcomes, prediction times, and classifica-

tion algorithms, with AUROCs comparable to those of MIMIC-

Extract applied to MIMIC-III. Furthermore, we demonstrated that

FIDDLE readily applies to other EHR data sets, such as the eICU Col-

laborative Research Database, provided that the data are appropriately

formatted. FIDDLE has the potential to greatly speed up EHR data

preprocessing, aiding ML practitioners who work with health data.

The proposed approach is largely data-driven; for example, vari-

able discretization depends on the underlying data distribution. Such

an approach relies less on domain knowledge compared to common

Table 6. Examples of time-invariant features extracted by FIDDLE

on the 12-hour ARF cohort for MIMIC-III

Time-invariant features

Age in Q1 (18–51)

Age in Q2 (52–62)

Age in Q3 (63–71)

Age in Q4 (72–80)

Age in Q5 (>80)

Sex ¼ Female

ICU Location ID ¼ 12

ICU Location ID ¼ 15

ICU Location ID ¼ 23

ICU Location ID ¼ 33

ICU Location ID ¼ 52

ICU Location ID ¼ 57

Hospital admission source: clinic referral

Hospital admission source: transfer from hospital

Hospital admission source: from emergency room

Note: ARF: acute respiratory failure; FIDDLE: Flexible Data-Driven Pipe-

line; ICU: intensive care unit; ID: unique identifier; Q, quintile.

Table 7. Examples of time-dependent features extracted by FIDDLE

on the 12-hour ARF cohort for MIMIC-III

Time-dependent features

At 0–1 h, insulin dosage in Q1 (�2 units)

At 0–1 h, insulin dosage in Q2 (>2 units, �3 units)

At 0–1 h, insulin dosage in Q3 (>3 units, �4 units)

At 0–1 h, insulin dosage in Q4 (>4 units, �8 units)

At 0–1 h, insulin dosage in Q5 (>8 units)

At 0–1 h, insulin route ¼ intravenous

At 0–1 h, insulin route ¼ drug push

At 1–2 h, insulin dosage in Q1 (�2 units)

At 1–2 h, insulin dosage in Q2 (>2 units, �3 units)

At 1–2 h, insulin dosage in Q3 (>3 units, �4 units)

At 1–2 h, insulin dosage in Q4 (>4 units, �8 units)

At 1–2 h, insulin dosage in Q5 (>8 units)

At 1–2 h, insulin route ¼ intravenous

At 1–2 h, insulin route ¼ drug push

Note: ARF: acute respiratory failure; FIDDLE: Flexible Data-Driven Pipe-

line; Q, quintile.
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alternatives, such as the manual specification of ranges for normal/ab-

normal values. With enough data, data-driven approaches can help re-

duce human effort and save time. Though largely data-driven,

FIDDLE still allows users to tailor the pipeline to their cohort/task.

This kind of flexibility is critical to many applications of ML in health

care. For example, users can set dt; the temporal granularity at which

the input is considered. Moreover, given the open-source nature of the

pipeline, researchers can build upon FIDDLE and adapt it to their task

requirements by modifying specific components (as illustrated in Sup-

plementary Appendix 7.5), such as using different imputation methods

for missing data, increasing the number of quantile bins, or incorporat-

ing additional clinical expertise. While FIDDLE is by no means the sin-

gle best way to preprocess data for all use cases, it facilitates

reproducibility and the sharing of preprocessing code (oftentimes over-

looked or not fully described in the literature).

FIDDLE helps to address many limitations in existing work. In

contrast to previous studies that have focused on a small set of

hand-selected variables,10–12,46,47 FIDDLE allowed us to consider

nearly all available structured data in MIMIC-III and eICU, pro-

ducing features that capture a rich representation of a patient’s

physiological state and longitudinal history. These extracted fea-

tures enable ML models to leverage the potentially high-

dimensional patterns in the data. Specifically, while MIMIC-Ex-

tract13 and FIDDLE share similarities in their goals, there are nota-

ble differences. Unlike FIDDLE, which produces feature vectors

that can be used as input to ML algorithms, MIMIC-Extract out-

puts several data frames (potentially containing null/missing values)

that require further preprocessing. Additionally, MIMIC-Extract

assumes a fixed resampling rate and performs clinical groupings of

variables. These decisions limit the generalizability of MIMIC-

Extract to tasks at different time scales or other data sets. In con-

trast, FIDDLE relies on fewer assumptions and can be applied to

any EHR data set that meets the required format. Beyond MIMIC-

Extract, alternative techniques to incorporate all available data in

an EHR system exist. For example, Rajkomar et al39 proposed a

representation learning framework for EHR data in the Fast

Healthcare Interoperability Resources (FHIR) format. Their

learned embeddings, however, lack the interpretability of FIDDLE-

generated features. The feature representation of FIDDLE facili-

tates debugging, as illustrated in Supplementary Appendix 7.4.

Moreover, their approach is not open-source; the open-source na-

ture of FIDDLE makes it readily accessible to researchers.

It is worth noting that FIDDLE only streamlines the preprocess-

ing of data extracted from the EHR; to obtain a usable ML model

starting from data collected at the bedside requires many more steps

beyond preprocessing. To this end, researchers have proposed other

EHR data pipelines that solve problems complementary to FID-

DLE’s goal (Supplementary Appendix 9). However, before FIDDLE

can be integrated into an EHR system,48 adaptations must be made

to generate features in a prospective setting (for example, by storing

the feature transformation functions and filters). Going forward,

such integrations might consider applying FIDDLE on top of inter-

operable data formats, such as FHIR,49 Observational Medical Out-

comes Partnership Common Data Model,50 and The National

Patient-Centered Clinical Research Network (PCORnetV
R

).51

As a pipeline, FIDDLE has limitations. First, FIDDLE processes all

numerical variables identically, which may be inappropriate in certain

settings. Though FIDDLE does process “frequent” variables through

user-defined summary statistics, future versions could allow a user to

specify different summary statistics for different groups of variables

(eg, “most recent” for vital signs, “total” for bodily fluids like urine

output). Second, FIDDLE considers only the structured contents in the

EHR. For the unstructured contents, such as imaging and nursing

notes, techniques from computer vision and natural language process-

ing could be used to generate a set of embeddings that can then be in-

corporated. Finally, FIDDLE does not attempt to harmonize data

across institutions. How to transfer models or feature representations

across different institutions remains an open problem.52,53

Though a data-driven approach, like FIDDLE, can help speed up

ML analyses, it does not eliminate the critical need for model check-

ing. In our experiments, we used FIDDLE to generate high-

dimensional feature vectors (ie, d>1000). In contrast to a

hypothesis-driven approach that starts with a small set of hand-

selected variables, FIDDLE can leverage the entire structured con-

tents of the EHR. In doing so, the model may take advantage of vari-

ables specific to a particular hospital or even unintended short-cuts

in the data. For example, in our experiments with MIMIC-III, the

models identified patients with a code status of “do not resuscitate”

as “lower risk” for ARF. Given our treatment-based definition of

ARF, the model was able to capitalize on the code status feature, im-

proving predictive performance in this subset of patients, but not

necessarily improving the clinical utility of the model. Carefully

reviewing the learned model and validating it in ways that mimic the

clinical use case remains necessary. While FIDDLE does not allow

A B C

Figure 5. Model performance (with 95% CI) for prediction of ARF at t¼12 h on MIMIC-III, evaluated on the held-out test set (n¼2093). On this task, all 4 FIDDLE-

based models exhibited similarly good discriminative and calibration performance. (A) ROC curves and AUROC scores. (B) PR curves and AUPR scores. (C) Cali-

bration plots and Brier scores. ARF: acute respiratory failure; AUROC: area under the receiver operating characteristics curve; AUPR: area under the precision-re-

call curve; CI: confidence interval; CNN: convolutional neural networks; FIDDLE: Flexible Data-Driven Pipeline; LR: logistic regression; LSTM: long short-term

memory networks; PR: precision-recall curve; RF: random forest; ROC: receiver operating characteristics curve.
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one to skip these critical steps, by saving the extracted feature

names, it can help one in the debugging process. Finally, when inte-

grating a model into hospital operations, there is a significant main-

tenance cost associated with each included variable. A tradeoff

arises between improvements in performance and the “technical

debt” that comes with including more variables in deployed ML

models.54 To address this, researchers may consider either (1) tuning

the filtering threshold in FIDDLE to be more aggressive, or (2) ap-

plying downstream feature selection approaches (eg, filtering, wrap-

per, or embedded methods).55

CONCLUSION

In summary, FIDDLE can help ML researchers preprocess data

extracted from the EHR. By accelerating and standardizing the

labor-intensive preprocessing steps, FIDDLE can help stimulate

progress in building clinically useful ML tools. We have made FID-

DLE open source, available online to the research community. We

hope that FIDDLE will be useful to other researchers; ultimately,

once the community starts using the tool, we will be able to collec-

tively refine and build on it together.
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